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workshops cosponsored by the NTP Interagency Center for the 
Evaluation of Alternative Toxicological Methods (NICEATM), 
the People for the Ethical Treatment of Animals (PETA) Inter-
national Science Consortium Ltd, and the Physicians Committee 
for Responsible Medicine (PCRM) (Hamm et al., 2017; Clip-
pinger et al., 2018a; Strickland et al., 2018). The relevant in-
formation is available at the PETA website1. In preclinical drug 
development, however, these studies are no longer required by 
default to support first clinical trials in humans (Robinson et al., 
2008; ICH, 2009; Chapman et al., 2010).

One of the main uses of acute systemic toxicity data is classi-
fication and labelling (Seidle et al., 2010; Graepel et al., 2016; 
Buesen et al., 2016; Strickland et al., 2018). Within the EU, the 
CLP (Classification, Labelling and Packaging) Regulation (EU, 
2008) is used to classify chemicals on the basis of acute oral tox-
icity into four toxicity categories (categories 1 to 4 of the United 
Nations Globally Harmonised System of Classification and La-

1  Introduction

Acute systemic toxicity after oral, dermal, or inhalation exposure 
requires that the substance becomes bioavailable at the target site 
and induces lethality through general toxicity or a specific mech-
anism. This means that kinetic factors, and mainly absorption, 
are important determinants of toxicity (EURL ECVAM, 2015). 
In addition, if the damage involves interference with homeostatic 
mechanisms at the organ system level, non-exposed tissues and 
vital organs can also be affected (Gennari et al., 2004; Andrew, 
2013).

The assessment of acute systemic toxicity is a core compo-
nent of the safety assessment of substances in the context of EU 
and international legislations (Hamm et al., 2017). Information 
requirements vary depending on the type of substance subject 
to regulation and the region (EU, 2006, 2008, 2009a,b, 2012). 
The regulatory landscape in the USA was reviewed during two 
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toxicity pathways that lead to acute systemic toxicity. Therefore, central to our work has been the collection and evalu-
ation of the mechanistic information on eight organs identified as relevant for acute systemic toxicity (nervous system, 
cardiovascular system, liver, kidney, lung, blood, gastrointestinal system, and immune system). While the nervous and 
cardiovascular systems are the most frequent targets, no clear relationship emerged between specific mechanisms of 
target organ toxicity and the level (category) of toxicity. From a list of 114 chemicals with acute oral in vivo and in vitro 
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approaches for chemical hazard or risk characterization that 
rely on an integrated analysis of existing information in a WoE 
assessment coupled with the generation of new information, if 
required (OECD, 2016a). An iterative approach that preferably 
relies on mechanistic information or available AOPs is followed 
to answer a defined question in a specific regulatory context, tak-
ing into account the acceptable level of uncertainty associated 
with the decision making (OECD, 2016a; Sachana and Leinala, 
2017). The importance of understanding the mechanisms of 
acute toxicity was further recognized during an international 
workshop in which a group of experts discussed alternative ap-
proaches for identifying acute systemic toxicity (Hamm et al., 
2017; Clippinger et al., 2018a). A better theoretical and mecha-
nistic understanding of acute systemic toxicity would be useful 
to developers of test methods and other predictive tools as well 
as to validation and regulatory bodies.

Mechanisms involved in cellular failure and susceptible func-
tions compromised in organ failure were discussed at an ECVAM 
workshop on strategies to replace in vivo acute systemic toxicity 
testing (Gennari et al., 2004). Several fundamental cellular pro-
cesses common to many organ systems were identified, including 
energy production and metabolism (mitochondrial function and 
glycolysis), transportation of molecules, membrane integrity 
and secretion of molecules (enzymes, proteins, hormones, neu-
rotransmitters). A number of key events associated with acute hu-
man poisoning were further identified in an ICCVAM/ECVAM/ 
JaCVAM workshop on acute chemical safety testing (NIH, 
2009) and it was agreed that mechanistic information could be 
used to develop more predictive in vitro test methods. A report, 
commissioned by the US Department of Defense, lists several of 
the cellular targets or molecular targets that are often associated 
with the acute lethal or debilitating effects of chemicals. This 
includes changes in neurotransmission function, altered ion flow, 
increased permeability of cellular membranes, altered bioener-
getics, altered oxygen transport, oxidative stress and reactive ox-
ygen species (ROS) formation, damage to DNA and subcellular 
systems, and immune-mediated effects (NRC, 2015). Hamm et 
al. (2017) and Clippinger et al. (2018b) have also reported some 
of the known mechanisms involved in acute systemic toxicity as 
part of ongoing activities in the US.

However, despite all the efforts made over the past 20 years in 
the area of acute systemic toxicity, relevant AOPs, mechanisti-
cally informed alternative methods, and IATA for acute systemic 
toxicity have not been adequately developed. This is partially 
due to the lack of a complete mechanistic understanding of the 
key acute toxicity pathways in humans specific for different cell 
types (e.g., neuronal, cardiac, liver, or kidney).

This study describes the analysis of mechanistic information 
collected on eight potential organs (i.e., nervous system, car-
diovascular system, liver, kidney, lung, blood, gastrointestinal 
system (GI), and immune system) identified as relevant for acute 
systemic toxicity and using a set of chemicals inducing acute 
toxicity after oral exposure. This work will support the develop-
ment of AOPs and IATA in the area of acute systemic toxicity, 

belling (UN GHS)). While CLP does not require animal testing, 
the classification criteria are based on data derived from animal 
tests (conducted, for example, under other pieces of legislation), 
including reduction and refinement methods for the oral, der-
mal, and inhalation routes (OECD TGs 402, 403, 420, 423, 425, 
433, 436). Most of the standard in vivo tests use lethality as the 
endpoint, even though this has been widely criticized both on an-
imal welfare and scientific grounds (Zbinden and Flury-Roversi, 
1981; Hoffmann et al., 2010; Prieto et al., 2013a).

Basal cytotoxicity is certainly a key factor in many prevalent 
toxicological modes-of-action associated with acute health ef-
fects. It covers many general mechanisms of toxicity common 
to most cell types that can lead to organ failure including, for 
example, disruption of cell membrane structure or function, 
inhibition of mitochondrial function, disturbance of protein 
turnover, and disruption of metabolism and energy production 
(Gennari et al., 2004; NIH, 2009; Andrew, 2013). This is the 
reason why the utility of in vitro cytotoxicity assays to predict 
acute oral toxicity has been extensively investigated (Ekwall, 
1999; Halle, 2003; NIH, 2006; Prieto et al., 2013a,b). Recently, 
Vinken and Blaauboer (2017) proposed the application of an 
adverse outcome pathway (AOP) framework for basal cytotox-
icity consisting of three consecutive steps, i.e., initial cell injury, 
mitochondrial dysfunction, and cell death. The outcome of the 
basal cytotoxicity was then suggested by the authors as the first 
step of a tiered strategy aimed to evaluate the toxicity of new 
chemical entities. Further, in a second step, more specific types 
of toxicity could be evaluated.

One of the better known and standardized in vitro methods for 
basal cytotoxicity is the 3T3 Neutral Red Uptake (NRU) assay 
(DB-ALM protocol 1392; Stokes et al., 2008). The use of data 
from the NRU cytotoxicity assay within a Weight-of-Evidence 
(WoE) assessment is one of the choices for adapting the standard 
information requirements for acute oral toxicity, as described in 
the last update of the ECHA’s guidance on Information Require-
ments and Chemical Safety Assessment. This WoE adaptation 
proposed by ECHA applies primarily to low toxicity substances 
(i.e., those that are not to be classified for acute toxicity) and it 
is based on an in-depth analysis of the REACH database (Gissi 
et al., 2017; ECHA, 2017). Nevertheless, the limitations of the 
in vitro cytotoxicity assay, such as the lack of metabolic compe-
tence of 3T3 cells and difficulty to capture specific mechanisms 
of action relating to interaction with specific molecular targets 
in certain tissues, need to be considered when building a WoE 
case for the purposes of REACH (Buesen et al., 2018; Gissi et 
al., 2018).

In addition to the assessment of basal cytotoxicity, it is also 
important to identify cell types and in vitro endpoints that are 
indicative of cell-type specific toxicities, with a view to incorpo-
rating such endpoints into integrated approaches to testing and 
assessment (IATA), as proposed in the EURL ECVAM strategy 
to replace, reduce, and refine the use of animals in the assessment 
of acute mammalian systemic toxicity (EURL ECVAM, 2014). 
As defined by the OECD, IATA are pragmatic, science-based 

2 https://ecvam-dbalm.jrc.ec.europa.eu/ (accessed 28.06.2018).
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in vivo oral LD50 data and of the 2000 mg/kg body weight 
threshold introduced by the CLP Regulation, all compounds 
with an acute LD50 mean value below or equal to 2000 mg/kg 
were identified as acutely toxic, whereas those with an acute 
oral LD50 mean value above 2000 mg/kg were identified as 
non-acutely toxic. Only the chemicals that fell into our group 
of toxic chemicals were considered in this second phase. 

3. In a third phase, chemicals from the group of non-toxic chem-
icals that, nevertheless, had been assigned a harmonized clas-
sification (Annex VI of EU CLP Regulation) were identified 
and selected.

The mechanisms collected and shown in this report are not in-
tended to be exhaustive.

Selection of chemicals with in vivo LD50 values and  
in vitro cytotoxicity data
In the in-house database 178 test chemicals had oral LD50 
values10 that were collected from publicly available databases 
(e.g., ChemIDplus, IUCLID, RTECS, and HSDB), Merck index, 
EU Risk Assessment Reports, Sax’s Dangerous Properties of 
Industrial Materials, and the published literature. According to 
the calculated mean LD50 values, 112 test chemicals were as-
signed to an EU CLP acute oral toxicity category and 66 remain 
as non-toxic (i.e., no category assigned because the LD50 was 
higher than 2000 mg/kg). Eleven out of the 66 non-classified 
chemicals had an official acute oral classification.

In vitro cytotoxicity data were available for 177 test chemicals 
that had been screened in the following international projects: 
NICEATM/ECVAM validation study (NIH, 2006), the EU FP6 
project ACuteTox (Prieto et al., 2013a), and the ECVAM val-
idation study (Prieto et al., 2013b). The list of chemicals used 
in each study is available through the JRC Chemical Lists of 
Information System (CheList11).

When the two sets were compared, in vitro cytotoxicity data 
were not available for two compounds, formaldehyde and car-
bon tetrachloride, and in vivo oral LD50 data were not found for 
benz(a)anthracene. Therefore, the final common set contained 
176 chemicals.

3  Results

3.1  Overall analysis of mechanistic maps
The mechanistic information collected following the three-step 
strategy was visualized in maps according to the eight organs/
systems. The layout and structure across organs and systems 

and will inform the development and application of mechanisti-
cally relevant new approach methodologies.

2  Materials and methods

Collection of mechanistic information
Information was collected on the eight potential target organs 
identified as relevant for acute systemic toxicity during the EC-
VAM workshop on acute systemic toxicity (Gennari et al., 2004): 
liver, blood, kidney, cardiovascular system, central and peripher-
al nervous system (CNS/PNS), lung, immune system, and GI. In 
safety pharmacology studies, the cardiovascular, respiratory, and 
central nervous systems are assessed in a core battery since they 
are considered vital organs or systems, the functions of which 
are acutely critical for life (ICH, 2000).

In order to approach the ambitious task of mapping mecha-
nisms specific for these potential target organs, a three-step 
approach was taken to identify the potential pathways of target 
organ toxicity.
1. Based on a literature review using *target organ* and *acute 

toxicity* and *mechanism* as key words, commonly rec-
ognized pathways of toxicity were identified for each target 
organ/system. Information was derived from published liter-
ature, toxicology handbooks, short descriptions of reference 
compounds used in the EU FP6 project ACuteTox3, and in-
ternet databases (HSDB4, INCHEM5, PubChem6, PubMed7,  
Scopus8, Google Scholar9). The pathways were then orga-
nized and visualized according to the target organ/system, the 
cell type, the effect, and the mechanism. In this context, the 
effect refers to any adverse reaction that could be observed or 
measured (in vivo) and the mechanism refers to the molecular 
or cellular process that is interrupted by chemical stressors 
and leads to the observed adverse effect.

2. In the second phase, the “completeness” of the theoretical 
pathways of toxicity that were developed in phase 1 was 
probed. In order to do so, we consulted the in-house data-
base and selected chemicals that were shown to be acutely 
toxic. For these chemicals, a thorough literature search was 
conducted to identify the target organ and mechanism of 
toxicity, searching first for *chemical* AND *acute toxicity* 
and *mechanism*, followed by *chemical* AND *target or-
gan*. These mechanisms were then added into the generated 
“maps” if they were not already present. Chemicals for which 
both in vivo acute oral toxicity data and in vitro cytotoxicity 
data were available were selected. On the basis of reference 

3 http://www.acutetox.eu/ (accessed 28.06.2018). 
4 https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm (accessed 28.06.2018). 
5 http://www.inchem.org/ (accessed 28.06.2018). 
6 https://pubchem.ncbi.nlm.nih.gov/ (accessed 28.06.2018). 
7 https://www.ncbi.nlm.nih.gov/pubmed (accessed 28.06.2018). 
8 https://www.elsevier.com/solutions/scopus (accessed 28.06.2018). 
9 https://scholar.google.it/ (accessed 28.06.2018). 
10 Rat oral LD50 values (mg/kg body weight) collected for 178 chemicals in the context of the following international projects NICEATM/ECVAM  

validation study (NIH, 2006), the EU FP6 project ACuteTox (Hoffmann et al., 2010) and the ECVAM validation study (Prieto et al., 2013b): doi:10.14573/
altex.1805181s1  

11 http://chelist.jrc.ec.europa.eu/ (accessed 28.06.2018).
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information collected from the literature. The list of mechanisms 
shown is neither exhaustive nor definitive.

Referring to organ specific mechanisms of toxicity, inter-
ference with neurotransmitters and/or neurotransmission and 
impairment of propagation of electrical activity are among the 
main reported mechanisms for chemicals that target the nervous 
system. In particular, many chemicals interfere at the level of 
receptors and ion channel function.

Chemicals that target the cardiovascular system often interfere 
with ion balance/signaling/membrane potential of the cell and 
with intracellular signaling mechanisms.

For many of the chemicals that damage the liver after an acute 
insult, mechanisms such as depletion of free radical scavengers, 
ROS production, lipid peroxidation (grouped under oxidative 
stress induced inflammation), and necrosis were reported. 

Alterations in kidney tubule cell structure (accumulation in 
proximal tubular cells, loss of tubular epithelial barrier, and/or 
tight junctions), alterations in tubule cell metabolism (interfer-
ence with ion balance), tubular obstruction (impaired Na+ and 
water reabsorption, distal cast formation, crystal deposition), 
and alterations in cell viability (necrosis) are among the most 
reported mechanisms leading to acute renal failure.

The in vivo classification for acute oral toxicity (i.e., the as-
signed CLP acute oral toxicity categories based on the collected 
mean oral LD50 values) of the chemicals acting via specific 
mechanisms of toxicity at organ/system level was evaluated in 
view of the information found in the literature for each chemical. 
Table 10 summarizes the outcome of this analysis, confirming 
that the nervous and cardiovascular systems are the most fre-
quent targets for chemicals inducing acute oral toxicity. 

was harmonized and analyzed as shown below. Three maps 
were created per target organ/system. A first map illustrated the 
mechanisms found based on information collected from litera-
ture (step 1 under methods). The second map was an updated 
version based on the information collected from the in-house 
list of selected compounds (steps 2 and 3 under methods). The 
final harmonized version of each organ/system was shown by the 
third map (Fig. 1-8). 

Information on mechanisms of toxicity was collected for 114 
out of the 123 oral acutely toxic chemicals (see Methods). In 
terms of target organ/systems, the overall analysis summarized 
in Figure 9 shows that, according to the information found, the 
nervous and cardiovascular systems are the most frequent targets 
(67 and 39 chemicals, respectively) followed by liver, kidney, 
lung, gastrointestinal system, blood and immune system (31, 30, 
24, 18, 11, and 3 chemicals, respectively). Twenty-six chemicals 
appear to target single organs, in particular the nervous systems 
(12 chemicals). Seventy-five chemicals affect more than one or-
gan/system and thirteen chemicals affect all organs (non-specific 
target organ effects) (Fig. 10). Indirect effects were reported for 
9 chemicals with multi-organ/system effects: 6 on the lung, 1 on 
the kidney, and 4 on the cardiovascular system (Fig. 9).

General cytotoxicity mechanisms were cited for 72 chemi-
cals and target organ/system specific effects for 40 chemicals  
(11 chemicals acting on a single organ/system and 29 on multiple 
targets) (see Tab. 1). For pentachlorobenzene and tetramethyl- 
thiuram monosulfide, the specific mechanism of acute toxicity 
was not found.

Tables 2-9 provide an overview of the specific target organ/
system mechanisms leading to acute toxicity according to the 

Fig. 1: Target organ blood – visualization of mechanisms leading to acute systemic toxicity
CO, carbon monoxide

BLOOD Hypoxia 

Hemorrhage 

Infection 

Lysis of cells: 
• Binding to cell (antigen) triggers immune-mediated destruction 
• Direct destruction of cells, e.g., via oxidative damage to cell wall (non-immune mediated destruction) 

Organ Effect Mechanism 

Decrease oxygen carrying capacity by: 
• Interference with hemoglobin, oxidation of the oxygen carrying iron molecule to Fe3+ 

(methemoglobinemia)  
• Interference with hemoglobin, e.g., CO binds to hemoglobin with higher affinity than O2  
• Direct reaction with ion of cytochrome oxidase in mitochondria 

Lysis of cells: 
• Binding to cell (antigen) triggers immune-mediated destruction 
• Direct destruction of cells, e.g., via oxidative damage to cell wall (non-immune mediated destruction) 
 

Clotting factor exhaustion: 
• Interference with clotting factor production 
• Clotting factor exhaustion from circulation by triggering massive coagulation 

Inhibition of normal function such as phagocytosis 

Lysis of cells: 
• Binding to cell (antigen) triggers immune-mediated destruction 
• Direct destruction of cells, e.g., via oxidative damage to cell wall (non-immune mediated destruction) 
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Fig. 2: Target organ liver – visualization of mechanisms leading to acute systemic toxicity
ROS, reactive oxygen species

LIVER 

Acute hepatitis 

Acute cholestatic 
liver injury 

Organ Effect Mechanism 

Acute fatty liver 
(fatty 

degeneration)  

Acute hepatic 
necrosis 

Phospholipidosis 

Oxidative stress induced inflammation 
• Reactive oxygen radicals are formed primarily as a by-product of mitochondrial electron transport; 

ROS can interact with biological macromolecules such as DNA and protein or with lipids 
• Mitochondrial-derived ROS generation 
• Depletion of free radical scavenger (such as glutathione, catalase) content in liver tissue 
• Lipid peroxidation 

Activation of inflammatory cells 
• Migration of neutrophils, lymphocytes, inflammatory cells into regions of damaged liver; activated 

neutrophils release ROS and cytotoxic proteases 
• Endothelial and Kupffer cells are activated as primary or secondary factors in chemical-induced injury 

following the hapten hypothesis 
• Activation of Kupffer cells producing ROS  
• Lipopolysaccharide sensitization, inducing pro-inflammatory gene expression 

Metabolic inhibitors cause fat accumulation in the hepatocytes 
Interference with synthesis of the protein moiety, affecting mitochondrial function; impaired conjugation 
of triglyceride with lipoprotein; interference with transfer of lipoproteins across cell membranes: hallmark 
is hepatic microvesicular steatosis; decreased synthesis of phospholipids; impaired oxidation of lipids by 
mitochondria; inadequate energy for lipid and protein synthesis.  
 
Disturbance of normal bile acid secretion 
• Inflammation or blockage of the bile ducts; retention of bile salts and bilirubin accumulation; 

jaundice; inhibition of the bile acid export pump/alteration of hepatocyte membrane transporters 
• Changes in membrane permeability of hepatocytes or biliary canaliculi 
• Increase in serum activities of enzymes localized to bile ducts; cholangiodestructive cholestasis 
• Altered Na+,K+-ATPase; decrease in the lipid content of Na+ in the plasma membrane; decrease of 

transport of glutathione conjugates 
 

Lysosomal storage disorder formation of lamellar bodies that contain primarily undegraded phospholipids 

Cell membrane disruption and/or interference with macromolecules 
Membrane disruption and/or interference with macromolecules (mitochondrial damage, disruption of the 
cytoskeleton, massive calcium influx, inhibition of protein synthesis, interference with metabolic 
pathways, shifts in Na+ and K+ balance, disturbance of Ca2+ homeostasis).  

Acute, toxic injury to the liver with sudden and precipitous onset  
• Inhibition of microtubule or spindle formation and mitotic arrest  
• Denaturation of proteins 

LUNG 

Bronchoconstriction 
(narrowing of the 

smaller bronchi and 
bronchioles) 

Smooth muscle contraction, excessive mucous production and inflammation:  
• Activation of cell surface receptors (endothelial cells, neurons, vascular smooth muscle cells) 
• Induced broncho- and vasoconstriction mediated by thromboxane  
• Constriction or excess fluid in the bronchial tubes  
• Interstitial pneumonitis and intra-alveolar haemorrhage, respiratory insufficiency  

Organ Effect Mechanism 

• Indirectly by affecting CNS  
• Indirectly by heart failure 
 
 

Respiratory arrest 

Chemical pneumonia • Inflammatory cell influx, oxidative damage to lipids and proteins  
• Pneumonitis, consolidation of lung tissue, exudation  

Pulmonary edema 

• Glutathione and lactate dehydrogenase release 
• Destruction of Type I epithelial cells with pulmonary edema  
• Muscarinic action with accumulation of acetylcholine  
• Pulmonary endothelium damage leading to pleural effusion  
• Mitochondrial swelling, cell degeneration, cytoplasmic edema, bulging of the cytoplasm in the alveolar space, rupture 

of the Type I cell  
• Inflammatory response as result of the damage to Type I cells: rapid and extensive influx of inflammatory cells into 

the interstitium and alveolar spaces (alveolitis)  
 
Oxidative stress: 
• Cell poison, uncoupling of oxidative phosphorylation, inhibition Krebs cycle dehydrogenases  
• ROS production causing cell damage (Type I, -II cells and Clara cells more difficult to demonstrate) 
• ROS production induces upregulation of Th2 cytokines and eotaxin CCR3 and ICAM-1 molecules, causing 

infiltration of eosinophils in the airways sites  

Fig. 3: Target organ lung – visualization of mechanisms leading to acute systemic toxicity
Th2, T helper type 2 cells; ROS, reactive oxygen species; CCR3, C-C motif chemokine receptor 3; ICAM-1, Intercellular Adhesion  
Molecule 1; CNS, central nervous system
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Interference with intracellular signaling mechanisms: 
• Enzyme activity (activate/inhibit) such as phosphodiesterases and protein kinases 
• Mitochondrial function (imbalance/inhibition) such as electron transport and/or uncoupled 

phosphorylation 
• Sarcoplasmic reticulum (interference) intracellular calcium storage and release 
• Cell membrane receptors (GPCR) such as adenosine receptor (activate/inhibit) 

Organ 

HEART  
 

Arrhythmias:  
• Tachycardia 
• Bradycardia 

Changed coronary blood 
flow: 

• Myocardial infarction  
• Increased coronary 

blood flow 

Necrosis/Apoptosis  
(ventricular) myocardial 

damage 

Indirectly by affecting CNS/PNS   
 
 

Cardiac arrest 
 
 

Increased local blood flow by (also see vascular toxicity): 
• Activation of local receptors leading to increased heart rate and contraction 

Decreased local blood flow & resulting myocardial infarction leading to ischemia, see above 

Following arrhythmias (see above) or myocardial infarction (see below)  

Decreased local blood flow by (also see vascular toxicity): 
• Formation of thrombus leading to reduced blood flow through vessel.  
• Vascular spasm following, e.g., activation of α-adrenergic receptors  

Oxidative stress: 
• Interference with mitochondrial function  
• Decrease of antioxidant defenses and increased production of ROS 
• Myocardial infarction leading to ischemia and potentially ischemia/reperfusion injury 

Effect Mechanism 

Interference with ion balance/signaling/membrane potential of cell: 
• Sodium channels (agonize/antagonize) (similar to Vaughan-Williams classification I) 
• Sympathetic activity (mimic/block) (similar to Vaughan-Williams classification II)  
• Potassium channels (agonize/antagonize) (similar to Vaughan-Williams classification III) 
• Calcium channels (agonize/antagonize) (similar to Vaughan-Williams classification IV) 
• Transporter enzymes such as Na+-K+-ATPase (mimic substrate/block) 
• Parasympathetic activity (mimic/block) 
• Stabilization of cell membrane leading to reduced excitation and conduction 

Vasculotoxicity 

Endothelial cell damage: 
• Alterations in membrane structure and function; reaction with sulfhydryl, carboxyl or 

phosphate groups, interference with ion channels. 
• Oxidative stress 
• Accumulation of toxin or metabolic activation of toxicant in cells 
• Raising of osmotic pressure by chemicals causes shrinkage of endothelial cells 
 
Increased capillary fragility 

Vascular tone 

Increased vasoconstriction through: 
• Activation of α adrenergic receptors increased intracellular calcium in vascular smooth 

muscle cells 
• Activation of vasoconstrictor receptors like endothelin receptor; vasopressin receptor, 

angiotensin I receptor, thromboxane receptor, NPY receptor, P2X receptor, muscarinic M2 
receptor, stretch receptors and ATP activated K+ receptors. 

• Inhibition of vasodilator signals such as prostaglandins 

Organ Effect Mechanism 

Increased vasodilation through: 
• Trigger production of vasodilators: nitric oxide, prostacyclin, endothelial derived 

hyperpolarizing factor (EDHF)  
• Activation of vasodilatory receptors such as: Ca2+ sensitive K+ channels; β-adrenergic 

receptors 
• Histamine receptor, prostaglandin/prostacyclin receptor, VIP receptor, adenosine receptor, 

bradykinin receptor or neurokinin receptor. Inhibition of vasoconstrictor signals. 

VASCULATURE 

Fig. 4: Cardiovascular system – visualization of mechanisms leading to acute systemic toxicity
GPCRs, G protein-coupled receptors; CNS, central nervous system; PNS, peripheral nervous system; ROS, reactive oxygen species;  
NPY, neuropeptide Y; P2X, purinergic receptors; M2, muscarinic acetylcholine receptor; VIP, vasoactive intestinal peptide
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Organ Effect Mechanisms 

Neurodegeneration 
 

Neuronopathy 
• Direct action on parikaryon 
• Loss of synaptic target site 
• Breakdown of myelin sheath through action on oligodendrocyte  
• Inhibition of microtubule formation via binding of tubulin  
• Neuroinflammation 
 
 
   
  

Myelinopathy 
• Intramyelinic edema  
• Demyelination (loss of myelin)  
• Dysmyelination (alterations in myelin sheath) 
 
 
 
 
 
 

Axonopathy 
• Blocking neurofilament transport via cross linking of neurofilaments; neurofilament filled swelling of proximal 

axon  
• Inhibition of microtubule formation via binding to tubulin 
• Interference with mitochondrial function (imbalance/ inhibition): reduced energy (ATP) generation, oxidative 

stress  
• Interference with fast axonal transport system 

 
 
 
 
 
 
   
  

CENTRAL 
NERVOUS 
SYSTEM 

General cytotoxic mechanisms leading to neurodegeneration 
• Interference with mitochondrial function (imbalance/ inhibition): reduced energy (ATP) generation, oxidative 

stress 
• Oxidative stress, ROS generation 
• Alkylation or phosphorylation of macromolecules 
• Hyper/hypoglycemia & anoxia (reduced blood supply/ oxygen carrying capacity, see cardiovascular system & 

blood) 
• Interference with calcium homeostasis at the level of: calcium binding proteins, voltage-sensitive plasma 

membrane calcium channels, plasmalemmal Ca2+-ATPase pumping, plasma membrane Na+, Ca2+ exchanges 
and intracellular Ca2+ storage organelles 

• Intercalation with DNA and interference with transcription 
• Impaired nucleic acid biosynthesis and/or protein synthesis 
• Cellular metabolism 

BBB dysfunction 
 

Organ 

Neurotransmission-
associated neurotoxicity 

BBB dysfunction 
 

CENTRAL 
NERVOUS 
SYSTEM 

Effect Mechanisms 

Interference with neurotransmitters/neurotransmission 
• Affecting neurotransmitter synthesis  
• Affecting neurotransmitter transport (activate/inhibit) 
• Affecting packing into presynaptic vesicles (activate/inhibit) 
• Neurotransmitter release into synaptic cleft (activate/inhibit) 
• Neurotransmitter clearance from synaptic cleft: (mimic substrate/block) reuptake by astrocytes; 

enzymatic breakdown (e.g., acetylcholinesterase or succinic dehydrogenase) or reuptake transporters 
• Interference at level of receptor (agonize/antagonize) – (5-HT, NA, GABA, NMDA, AMPA, D2) 

• Interference with cellular metabolic reactions – phosphorylation  
• Interference with second messenger system (activate/inhibit) 

 

Excitotoxicity 
• NMDA receptor (glutamate receptor) overactivation – can lead to neuronal swelling and cell death 
• AMPA (glutamate receptor) overexpression 
• Decreased inhibitory neurotransmitters (e.g., GABA) 
• Interference with calcium homeostasis 
 
 
 
 
   
  

Impaired propagation of electrical activity  
• Interaction with membrane ion channels (Na+, K+, Cl-, Ca2+) either (agonise/antagonise) or through 

biochemical modification, e.g., phosphorylation 
• Interference with transporter enzymes (e.g., Na+-K+-ATPase) (mimic substrate/block)  
• Interference with calcium homeostasis at the level of: calcium binding proteins, (agonise/block) 

voltage-sensitive plasma membrane calcium channels, (mimic substrate/block) plasmalemmal Ca2+- 
ATPase pumping, plasma membrane Na+, Ca2+ exchanges and intracellular Ca2+ storage organelles. 

Glial cell dysfunction 

Gliopathy 
• Reactive gliosis 
• Microglial activation – inflammation 
• Astrocyte swelling and morphological changes 
• Gliovascular lesions 
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Organ Effect

Peripheral 
Nervous 
System

Peripheral 
neuropathy/

Polyneuropathy

Interference at 
neuromuscular 

junction

Axonopathy
• Blocking neurofilament transport via cross linking of neurofilaments
• Inhibition of microtubule formation via binding to tubulin
• Interference with mitochondrial function (imbalance/ inhibition): reduced energy (ATP) generation, 

oxidative stress , 
• Interference with fast axonal transport system

Myelinopathy
• Intramyelinic edema 
• Demyelination (loss of myelin)
• Dysmyelination (alterations in myelin sheath).
• Breakdown of Schwann cells

Interference with neurotransmitters/ neurotransmission
• Affecting neurotransmitter synthesis 
• Affecting neurotransmitter transport (activate/inhibit)
• Affecting packing into presynaptic vesicles (activate/inhibit)
• Neurotransmitter release into synaptic cleft (activate/inhibit)
• Neurotransmitter clearance from synaptic cleft: (mimic substrate/block) reuptake by astrocytes; enzymatic 

breakdown (e.g., acetylcholine esterase or succinic dehydrogenase) or reuptake transporters;
• Interference at level of receptor (agonize/antagonize) – (5-HT, NA, GABA, NMDA, AMPA, D2), 

interference with cellular metabolic reactions – phosphorylation 
• Interference with second messenger system (activate/inhibit)

Impaired propagation of electrical activity
• Interaction with membrane ion channels (Na+, K+, Cl-, Ca2+) either (agonize/antagonize) or through 

biochemical modification, e.g., phosphorylation
• Interference with transporter enzymes (e.g., Na+-K+-ATPase) (mimic substrate/block)
• Interference with calcium homeostasis at the level of: calcium binding proteins, (agonize/block) voltage-

sensitive plasma membrane calcium channels, (mimic substrate/block) plasmalemmal Ca2+-ATPase 
pumping, plasma membrane Na+, Ca2+ exchanges and intracellular Ca2+ storage organelles 

General cytotoxic mechanisms:
• Intercalation with DNA and interference with transcription; impaired nucleic acid biosynthesis and/or 

protein synthesis
• Oxidative stress/ROS generation; oxidation of catecholamines; impaired aerobic respiration - dopamine, 6-

hydroxydopa, catecholamines
• Impaired glycolysis

Mechanisms

Fig. 5: Nervous system – visualization of mechanisms leading to acute systemic toxicity
ROS, reactive oxygen species; BBB, blood brain barrier; 5-HT, 5-hydroxytryptamine; NA, noradrenaline; GABA, gamma-aminobutyric acid; 
NMDA, N-methyl-D-aspartate; AMPA, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid; D2, dopamine

Immune 
organs: 
Thymus, 
spleen, 
lymph 

nodes, bone 
marrow, 
tonsils, 
Peyer’s 
patches 

Immunosuppression 
(increase in incidence 
of infections/no good 

response to 
vaccination/cancer) 

Immunostimulation 
(flu-like 

reactions/increase in 
incidence of autoimmune 

disease and 
allergies/inhibition of 

drug-metabolising 
enzymes) 

Increase in white blood cell counts or subpopulations 

Changes in bone marrow cell proliferation 

Hypersensitivity 
[Immune-mediated (IgE) 
(immune allergy)/non-

mediated 
(pseudoallergy)] 

Fig. 6: Immune system – visualization of mechanisms leading to acute systemic toxicity 

Decrease in white blood cell counts or subpopulations 

Alteration in cytokine synthesis or secretion  

Degenerative changes and cell death following necrosis and apoptosis, in 
combination with slow replacement of affected immune cells, due to inhibition 
of protein synthesis 

Blockage of metabolic pathways 

Changes in bone marrow cell proliferation 

Effects on cytotoxic T lymphocyte/natural killer cells 

Alteration in cytokine synthesis or secretion 

Increase in autoantibody levels 

Failure of normal apoptotic mechanisms (e.g., NFAT, NF-κB) 

Histamine release  
Dendritic cell cytotoxicity 

Effect Mechanism Organ 

Fig. 6: Immune system – visualization of mechanisms leading to acute systemic toxicity
NFAT, nuclear factor of activated T-cells; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
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GASTRO- 
INTESTINAL 

TRACT 

Ulceration 

Acidosis 

Acute  
inflammation 

Acute (haemorrhagic and 
erosive) gastropathy  

Diarrhea 

Acute radiation toxicity 
Cell death in the crypt epithelium followed by insufficient replacement of the villus epithelium, breakdown 
of the mucosal barrier and mucosal inflammation with neutrophil influx  
 

Inflammation of the mucosa 
Usually marked by infiltration of neutrophils, can affect the whole gastrointestinal tract from mouth to anus 
(hyperaemic, oedematous mucosa, erosions/ulcers and active bleeding)   

 
 

Mechanism 

Formation of metabolite (formic acid) at the place of contact   

Alteration of the mucosal defence by allowing back diffusion of hydrogen ions and subsequent 
epithelial cell injury, vasoconstriction 
• Oxidative stress (lipid peroxidation) 
• Necrosis 
• Inflammation (infiltration of leukocytes and macrophages leads to activation of local fibroblasts, 

endothelial and epithelial cells)  

Nonspecific response/injury to chemicals of the gastric/stomach mucosa leading to epithelial cell 
damage and regeneration in the absence of inflammation marked by gastrointestinal upset (nausea, 
vomiting, abdominal pain, hematemesis, and diarrhea; patients may become hypovolemic because of 
significant fluid and blood loss) 
• Enzyme inactivation 
• Corrosion/irritation of the mucosa  
• Mucosal damage by reduction of prostaglandin synthesis 
• Necrotic lesions  
• Edema formation  
• Interference with potassium channels 

 

Impairment of the normal absorptive processes in the small intestine and colon 
• Increase of the amount of liquid that is secreted and which is moved too quickly through the digestive 

tract for the water to be absorbed 
• Destruction of the intestinal flora 

Pancreatitis 
1. Co-localization of zymogens with lysosomal hydrolases, leading to premature enzyme activation and 
pathological exocytosis of zymogens into the interstitial space (acinar cell injury). 2. Acute inflammatory 
mediators triggered, oxidative stress intensified, microcirculation compromised and a neurogenic feedback 
activated. 3. Systemic inflammatory response and multi-organ dysfunction. 

Organ Effect 

Fig. 7: Gastrointestinal system – visualization of mechanisms leading to acute systemic toxicity

KIDNEY 

Inflammation 

Organ Effect Mechanisms 

Tubular damage and 
dysfunction 

Renal vascular 
abnormalities 

 
 

Acute Renal Failure (abrupt fall 
in glomerular filtration rate) 

Alterations in tubule cell structure 
• Loss of tubular epithelial barrier and/or tight junctions 
• Loss of cell polarity with misallocation of Na+, K+, ATPase, adhesion molecules and other proteins 
• Loss of viable and non-viable cells 
• Accumulation in cells of proximal tubular cells 
Alteration in tubule cell metabolism 
• Compromised respiration, ATP production and inhibition of membrane transporters that keep ion balance 
• Putative mitochondrial tension pore 
• ROS production 
• Endoplasmic reticulum stress – triggering unfold protein response 
• Activation of enzymes such as phospholipases, endonucleases, proteinases and signalling kinases 

• Increase of plasma membrane potential, increase of mitochondrial membrane permeability 
• Interference with ion balance  
• Increase of intracellular Ca2+  

Tubular obstruction 
• Distal cast formation (containing actin and actin depolymerizing factor), myoglobinuria as indirect effect 

due to rhabdomyolysis 
• Necrosis/apoptosis 
• Crystal deposition  
• Impaired Na+ and water reabsorption  
Tubuloglomerular balance 
• Stimulation of Tubuloglomerular feedback mechanisms by increased NaCl delivery to macula densa 
Tubular fluid back leak 
• Back leak of glomerular filtrate (loss of tubular epithelial barrier and/or tight junctions) 
Alterations in cell viability 
• Necrosis 
Generation of inflammatory and vasoactive mediators 
• Induction of nitric oxide synthase in tubule cells 
 

Interstitial nephritis  
• Infiltration of inflammatory cells with renal interstitium 
Glumerulonephritis  

Vasoconstriction 
• Increased cytosolic and mitochondrial calcium  
• Endothelial damage: increase in vasoconstrictors [endothelin, angiotensin II, thromboxane, adenosine, 

leukotrienes, platelet-activating factor], deficiency vasodilators [PG2, endothelium-derived NO] 
• Interaction with renal V2-vasopressin receptor 
• Formation of superoxide anions  
• Tubule-glomerular feedback (see below) 
• Arteriolar vasoconstriction – indirect effect by rhabdomyolysis  
• Outer medullary congestion 
• Up-regulation of adhesion molecules 
 

Fig. 8: Target organ kidney – visualization of mechanisms leading to acute systemic toxicity
ROS, reactive oxygen species
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Fig. 9: Frequency of target organs/systems effects after acute oral insult
The number on top of each bar represents the number of chemicals affecting a particular organ/system. GI, gastrointestinal system

Fig. 10: Chemicals with specific target organs/systems effects (single and multiple) and non-specific effects
Indirectly acting chemicals are included under multi-target organ/system.
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Tab. 1: Chemicals acting through general cytotoxic mechanisms and/or specific mechanisms of toxicity

General cytotoxic mechanisms   Specific mechanism of toxicity

(4-Ammonio-m-tolyl)ethyl Endosulfan (±)-Propranolol hydrochloride 
(2-hydroxyethyl) ammonium sulfate

1,2,3,4-Tetrachlorobenzene Ethoxyquin (±)-Verapamil hydrochloride

1,2,4-Trichlorobenzene  Ferrous sulfate  1-Naphthylamine

1,2-Dichlorobenzene Formaldehyde 1-Phenyl-3-pyrazolidone

17α-Ethynyloestradiol Glutethimide 2,4,6-Tris(dimethylaminomethyl)phenol

1-Phenyl-2-thiourea Haloperidol 5,5-Diphenylhydantoin

2,4-Dichlorophenoxyacetic acid Hexachlorophene Acetophenone

4-Aminofolic acid Isoniazid Ammonium chloride

5-Fluorouracil Lindane Atropine sulfate monohydrate

Acetaldehyde Maleic acid Codeine

Acetylsalicylic acid  Malononitrile D-Amphetamine

Aconitine Maprotiline Diazepam

Acrolein Mercury II chloride Diethylene glycol

Acrylamide Nicotine Digoxin

Amitriptilyne hydrochloride Ochratoxin A Diphenhydramine hydrochloride

Arsenic trioxide Octyl 3,4,5-trihydroxybenzoate  Disopyramide

Barium chloride Orphenadrine hydrochloride Disulfoton

Benzaldehyde Paraquat dichloride  Epinephrine hydrogen tartrate 

Brucine p-Benzoquinone Ethyl chloroacetate

Busulfan Pentachlorophenol Ethylene glycol

Cadmium (III) chloride  Phenanthrene Fenpropathrin

Caffeine Phenol Glufosinate-ammonium

Carbon tetrachloride  Potassium cyanide  Lithium carbonate

Chloral hydrate Sodium arsenite Lithium sulfate

Chloroform Sodium cyanate Malathion

Chloroquine bis(phosphate) Sodium lauryl sulfate  Meprobamate

Chlorpromazine Sodium oxalate  Methadone hydrochloride

cis-Diammineplatinum (II) dichloride Sodium salt of chloroacetic acid N-isopropyl-N’-phenyl-p-phenylenediamine

Colchicine Sodium selenate Paraldehyde

Copper sulfate Sodium valproate Parathion

Cupric sulfate pentahydrate Strychnine Phenobarbital

Cyclohexamide Tert-butyl hydroperoxide Physostigmine 

Cyclosporin A Thallium sulfate Procainamide hydrochloride

Diallyl phthalate Theophylline Quinidine sulfate dehydrate

Dichlorvos Triethylenemelamine Resorcinol

Diquat dibromide Valproic acid Rifampicin

  Sodium pentobarbital

  Thioridazine hydrochloride

  Triphenyltin hydroxide

  Warfarin
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Tab. 2: Specific mechanisms of acute blood toxicity

Mechanisms Example of chemicals References

Decrease oxygen carrying capacity

• Interference with hemoglobin N-isopropyl-N'-phenyl-p-phenylenediamine Williamson et al., 1981

• Oxidation of the oxygen carrying  Resorcinol NJ RTK, 2010 
  iron molecule to Fe3+ 1-Naphthylamine NJ RTK, 2004

Clotting factor exhaustion

• Interference with clotting factor production Warfarin Hanley, 2004

Lysis of cells 

• Binding to cell (antigen) triggers Rifampicin POISINDEX® Systema; Manika et al., 2013 
  immune-mediated destruction Quinidine sulfate Freedman et al., 1956

• Direct destruction of cells, e.g.,  Copper sulfate Franchitto et al., 2008 
  via oxidative damage to cell wall

a https://www.micromedexsolutions.com/home/dispatch (accessed 09.07.2018). Login required.

Tab. 3: Specific mechanisms of acute liver toxicity

Mechanisms Example of chemicals References

Disturbance of normal bile acid 17α-Ethynyl estradiol Wan and O’Brien, 2014; Davis et al., 1978 
secretion 

• Changes in membrane permeability Chlorpromazine Jennings et al., 2014 
  of hepatocytes or biliary canaliculi

Fat accumulation in hepatocytes Barium chloride Ananda et al., 2013

Membrane disruption and/or  Isoniazid Saukkonen et al., 2006;  
interference with macromolecules  Boelsterli and Lee, 2014

Inflammation induced by oxidative stress   

• Lipid peroxidation Carbon tetrachloride  El-Hadary and Ramadan Hassanien, 2016

Tab. 4: Specific mechanisms of acute lung toxicity

Mechanisms Example of chemicals References

Pulmonary endothelium damage 1-Phenyl-2-thiourea Scott et al., 1990; Henderson et al., 2004

Increase capillary permeability Dichlorvos Li et al., 1989

Muscarinic action Dichlorvos Li et al., 1989

Destruction of Type I epithelial cells Cadmium chloride INCHEM, 2017

Inflammation Chloroform de Oliveira et al., 2015

Induced broncho- and vasoconstriction Tert-butyl hydroperoxide  Olafsdòttir et al., 1991 
mediated by thromboxane  

Intra-alveolar hemorrhage Paraquat Dinis-Oliveira, 2008

Deposits of calcium oxalate crystals Ethylene glycol Pomara et al., 2008;  
in lung parenchyma  Leth and Gregersen, 2005

Irritation to respiratory tract Acrolein Bein and Leikauf, 2011

Lung accumulation through Paraquat Dinis-Oliveira, 2008 
the polyamine uptake system

https://www.micromedexsolutions.com/home/dispatch
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Tab. 5: Specific mechanisms of acute cardiovascular toxicity

Mechanisms Example of chemicals References

Interference with ion balance/signaling/membrane potential of cell

• Mimic substrate/block transporter enzymes such as Digoxin  Nicolas et al., 2015;  
  Na+-K+-ATPase  Prassas et al., 2011 
 Thallium sulphate Riyaz et al., 2013

• Interference with sodium and/or potassium channels Thallium sulphate Riyaz et al., 2013 
 Barium chloride Bhoelan et al., 2014 
 5,5-Diphenylhydantoine Ekwall et al., 1998 
 Quinidine sulphate dehydrate Kim and Benowitz, 1990 
 Disopyramide Kim and Benowitz, 1990 
 Procainamide hydrochloride Kim and Benowitz, 1990 
 Amitriptyline hydrochloride Woolf et al., 2007

• Interference with Ca2+ channels Aconitine Sun et al., 2014

• QT interval prolongation Thioridazine hydrochloride Beach et al., 2013 
 Haloperidol Raudenska et al., 2013;  
  Henderson et al., 1991

• Calcium channel blocker and binding to the cytosolic Verapamil Nicolas et al., 2015;  
  surface of the channel  Meister et al., 2010

• Stabilization of cell membrane leading to reduced Chloroquine bis(phosphate) Ekwall et al., 1998 
  excitation and conduction 

• Mimic/block parasympathetic activity Atropine sulphate Ekwall et al., 1998

• Prevention of the reuptake of heart noradrenaline Amitriptyline hydrochloride Dollery, 1991; Ekwall et al., 1998

• Pronounced negative chronotropic and inotropic effect and Propranolol Kerns et al., 1997 
  a quinidine-like effect

Interference with intracellular signaling mechanisms

• Interference with adenosine receptors Caffeine Ekwall et al., 1998

Increased vasoconstriction

• Activation of β1-adrenergic receptors, β2-adrenergic Epinephrine hydrogen tartrate Zhang et al., 2011 
  receptors in blood vessels 

Increased capillary fragility Warfarin Hanley, 2004

Tab. 6: Specific mechanisms of acute neurotoxicity

Mechanisms Example of chemicals References

Interference with neurotransmitters/ neurotransmission

• Inhibition of glutamine synthetase and glutamate decarboxylase  Glufosinate ammonium Lluís et al., 2008

• Inhibition of the dopamine transporter  Chloral hydrate Kreuter et al., 2004;  
  Sabeti et al., 2003

• Slowing down catecholamine metabolism by inhibiting D-amphetamine Fitzgerald and Bronstein, 2013 
  monoamine oxidase  

Neurotransmitter release into synaptic cleft 

• Stimulation of glutamate release which can activate glutamate Potassium cyanide Patel et al., 1993 
  receptors to initiate excitotoxic processes

• Stimulation of the release of norepinephrine and dopamine from D-amphetamine Fitzgerald and Bronstein, 2013 
   stores in adrenergic nerve terminals  

• Attenuation of glutamate release and reduction of activation Chloral hydrate Kreuter et al., 2004 
  of glutamate receptors  
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Mechanisms Example of chemicals References

Neurotransmitter clearance from synaptic cleft 

• Inhibition of acetylcholinesterase and accumulation of Dichlorvos Binukumar and Gill, 2010;  
  acetylcholine  EXETOXNET, 1999;  
  Sachana et al., 2001 
 Physostigmine Gilman, 1985 
 Disulfoton ATSDR, 1995 
 Parathion Casarett and Doull, 2001

• Increased acetylcholine release at the neuromuscular junction Phenol Liao and Oehme, 1980

• Blockage of the neuronal reuptake of norepinephrine, serotonin,  Amitriptilyne hydrochloride Dollery, 1991; Ekwall et al., 1998 
  and dopamine  

• Selective norepinephrine re-uptake blockade Maprotiline Jan et al., 2013;  
  Baumann and Maître, 1979

• Depletion of gamma-aminobutyric acid (GABA) Isoniazid Casarett and Doull, 2001

• Increase of GABA by indirect mechanisms involving inhibition Sodium valproate Sztajnkrycer, 2002;  
  of the enzyme succinate semialdehyde dehydrogenase (SSA-DH)   Chateauvieux et al., 2010 
  in the GABA shunt  

Interference at level of receptor Phenobarbital Jana et al., 2014 
 Theophylline Nakada et al., 1983

• Blockage of the action of acetylcholine at muscarinic receptors Atropine sulfate monohydrate Ekwall et al., 1998

• Competitive antagonism of cellular adenosine receptors Caffeine Fredholm et al., 1999

• Antagonist at the glycine receptor Brucine Teske et al., 2011 
 Strychnine Teske et al., 2011

• Blocking the release of inhibitory neurotransmitters such Codeine NCIt, 2018; Takahama and 
  as GABA and acetylcholine  Shirasaki, 2007

• Down-regulation of GABA receptors  Diazepam Casarett and Doull, 2001

• Antagonizing chloride ion transport in GABA receptors Endosulfan Jang et al., 2016

• Interaction with GABAA receptors in a barbiturate-like fashion Meprobamate Rho et al., 1997

• Inhibition of NMDA receptors  Meprobamate Rho et al., 1997

• Blockade of the GABA-receptor coupled sodium channel Lindane POISINDEX® Systema

• GABAA receptor agonist Sodium pentobarbital Dollery, 1991 

• Inhibition of the reuptake of GABA into the glia and nerve endings Valproic acid TOXNET, 2015b; POISINDEX® 
  Systema

• Interference at the level of GABAA receptors Chloroform Dick, 2006;  
  Greenblatt and Meng, 2001 
 Phenobarbital Jana et al., 2014 
 Valproic acid Sztajnkrycer, 2002;  
  Chateauvieux et al., 2010

• Anticholinergic effects Quinidine sulfate dehydrate Kim and Benowitz, 1990 
 Disopyramide 

• Competitive antagonism of acetylcholine at the neuroreceptor sites Orphenadrine hydrochloride POISINDEX® Systema;  
  Rejdak et al., 2011

• Blockade of the H1-receptors Diphenhydramine hydrochloride Pragst et al., 2006

• Direct stimulation of α- and β-adrenergic receptors D-amphetamine Fitzgerald and Bronstein, 2013

• Glutamate receptor activation Glufosinate ammonium Matsumura et al., 2001

• Dopamine receptor antagonism Chlorpromazine Haddad and Winchester, 1990

• Blockage of dopamine D2 receptor Thioridazine hydrochloride POISINDEX® Systema

• Competitive blockade of postsynaptic dopamine (D2) receptors Haloperidol Raudenska et al., 2013
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Tab. 7: Specific mechanisms of acute immune toxicity

Mechanisms Example of chemicals References

• Degenerative changes in combination with slow replacement Ochratoxin A Al-Anati and Petzinger, 2006 
  of affected immune cells due to inhibition of protein synthesis  

• Decrease in whole blood cell counts or subpopulations Triethylene melamine Bickham et al., 1994 
 Triphenyl tin hydroxide Vos et al., 1984

• Changes in bone marrow cell proliferation Triethylene melamine Bickham et al., 1994

Tab. 8: Specific mechanisms of acute gastrointestinal toxicity

Mechanisms Example of chemicals References

Epithelial cell damage Colchicine Iacobuzio-Donahue et al., 2001

• Corrosion/irritation of the mucosa Ferrous sulfate Yuen and Gossman, 2018

• Interference with potassium channels  Barium chloride Bhoelan et al., 2014

• Enzyme activation Theophylline Barnes, 2013

Inflammation of the mucosa 5-Fluorouracil Boussios et al., 2012

Formation of metabolite (formic acid) at the place of contact Formaldehyde Wood, 2014; Pandey et al., 2000;  
  Eells et al., 1981

Mechanisms Example of chemicals References

• NMDA antagonism and inhibition of serotonin/norepinephrine Methadone Zorn and Fudin, 2011;  
reuptake  Jamero et al., 2011

• Agonist at nicotinic cholinergic receptors Nicotine Williams and Robinson, 1984

Impaired propagation of electrical activity

• Interaction with membrane ion channels (Na+, K+, Cl-, Ca2+) 5,5-Diphenylhydantoin Ekwall et al., 1998 
 Aconitine Chan, 2009; Peng et al., 2009 
 Fenpropathrin Xiong et al., 2016;  
  Spencer et al., 2001

• Interference with transporter enzymes (e.g. Na+-K+-ATPase)  Thallium sulfate Osorio-Rico et al., 2017;  
  (mimic substrate/block)  Ekwall et al., 1998;  
  Casarett and Doull, 2001 
 Aconitine Peng et al., 2009

• Interference with the normal flux of Na+ and K+ ions across Lindane Vučević et al., 2009 
  the axon membrane as nerve impulses pass  

Peripheral neuropathy/ Polyneuropathy

Myelinopathy 

• Intramyelinic edema Hexachlorophene Persson et al., 1978;  
  Casarett and Doull’s, 2001

Axonopathy 

• Blocking neurofilament transport via cross linking of Acrylamide Le Quesne, 1985;  
  neurofilaments  LoPachin et al., 2003

• Neurofilament filled swelling of proximal axon Acrylamide Le Quesne, 1985;  
  LoPachin et al., 2003

• Inhibition of microtubule formation via binding to tubulin Colchicine Gooneratne et al., 2014; 
  Finkelstein et al., 2010

a http://www.thomsonhc.com 
b https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3582

http://www.thomsonhc.com
https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3582
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Tab. 9: Specific mechanisms of acute kidney toxicity

 Mechanisms Example of chemicals References

Vasoconstriction 

• Arteriolar vasoconstriction indirect effect by rhabdomyolysis Codeine Pokorny and Saunders, 1994 
 Endosulfan Jang et al., 2016 
 Brucine Teske et al., 2011;  
  Achappa et al., 2012 
 Diphenhydramine Pragst et al., 2006

• Deficiency vasodilators (PG2) Acetylsalicylic acid Ferenbach and Bonventre, 2016

• Endothelial damage with increase in vasoconstrictors CsA Bonventre, 2014

• Interaction with renal V2-vasopressin receptor Lithium Bonventre, 2003

Glumerulonephritis Lithium Naughton, 2008

Interstitial nephritis Acetylsalicylic acid Naughton, 2008

Alterations in tubule cell structure

• Accumulation in cells of proximal tubular cells Cisplatin Bulacio and Torres, 2013;  
  Kuhlmann et al., 1997 
 Cadmium chloride Ozbek, 2012 
 Mercury chloride Bonventre, 2003; Zhou et al., 2008

• Loss of tubular epithelial barrier and/or tight junctions Ochratoxin A Gennari et al., 2004

Alterations in tubule cell metabolism

• Interference with ion balance Ammonium chloride McEvoy, 2006

Tubular obstruction 

• Impaired Na+ and water reabsorption Cisplatin Safirstein, 2004

• Distal cast formation  Diethylene glycol Fowles et al.,2017 
 Ethylene glycol Fowles et al., 2017; Hess et al.,  
  2004; Huhn and Rosenberg, 1995;  
  Pomara et al., 2008

• Crystal deposition and tubular obstruction Sodium oxalate Pawar and Vyawahare, 2017

Generation of inflammatory and vasoactive mediators  Cisplatin Bonventre, 2003

Alterations in cell viability

• Necrosis of tubular epithelium  Mercury chloride Zhou et al., 2008 
 4-ammonio-m-tolyl)ethyl EPA TSCATSa 
 (2-hydroxyethyl)ammonium  
 sulfate   
 Cadmium chloride Bonventre, 2003 
 Brucine Liu et al., 2015

a https://bit.ly/2QkpbQ5

Figure 11 complements Table 11 by adding the collected mech-
anistic information. It also shows the percentage of chemicals 
identified in vitro as acutely toxic acting through cell type specific 
mechanisms of toxicity and via general cytotoxic mechanisms 
when the acute oral toxicity category was correctly predicted  
(50 chemicals), under-predicted (32 chemicals), and over-predicted  
(9 chemicals) by the in vitro cytotoxicity assay.

An overview of the information collected with regard to specif-
ic target organ/system and general cytotoxicity for the chemicals 

3.2  Analysis of mechanistic information and  
in vitro 3T3 NRU cytotoxicity results
A total of 97 chemicals, for which in vivo and in vitro cytotox-
icity data were available, have been identified with target organ/
system specific effects, of which 91 were predicted as acutely 
toxic by the 3T3 NRU cytotoxicity assay (LD50 ≤ 2000 mg/kg).  
Table 11 summarizes the prediction of the acute oral toxicity 
(EU CLP toxicity categories) by the in vitro cytotoxicity assay 
for these chemicals.

https://bit.ly/2QkpbQ5
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Tab. 10: Contribution of specific target organ/system mechanisms of toxicity to the in vivo acute oral toxic category of chemicals

Organ specific mechanisms of aCLP Cat. 1 aCLP Cat. 2 aCLP Cat. 3 aCLP Cat. 4 
acute toxicity (5 chemicals) (15 chemicals) (26 chemicals) (52 chemicals)

Neurotoxicity 3 (60%) 8 (53%) 13 (50%) 29 (56%)

Cardiovascular toxicity 0 5 (33%) 5 (19%) 21 (40%)

Liver toxicity 0 1 (7%) 4 (15%) 11 (21%)

Kidney toxicity 1 (20%) 4 (27%) 4 (15%) 10 (19%)

Lung toxicity 1 (20%) 0 7 (27%) 5 (10%)

Gastrointestinal toxicity 0 2 (13%) 5 (19%) 4 (8%)

Blood toxicity 0 2 (13%) 0 4 (8%)

Immune toxicity 1 (20%) 1 (7%) 1 (4%) 0

a Cat. 1: ≤ 5 mg/kg; Cat. 2: > 5 mg/kg, ≤ 50 mg/kg; Cat. 3: > 50 mg/kg, ≤ 300 mg/kg; Cat. 4: > 300 mg/kg, ≤ 2000 mg/kg

that are correctly assigned to the CLP acute oral toxicity category, 
under-predicted and over-predicted by the in vitro cytotoxicity 
assay, respectively, is provided in the supplementary information 
(Tab. S1, S2, and S312). 

Among the 50 correctly predicted chemicals, 29 act through 
some general mechanisms of cytotoxicity (58%) and 21 only via 
cell type specific mechanisms of toxicity (42%).

Among the 32 under-predicted chemicals, 20 act through a gen-
eral mechanism of cytotoxicity (63%) and only 12 via cell type 
specific mechanisms of toxicity (38%).

Among the 9 chemicals with toxicity category over-predicted 
by the cytotoxicity assay, 6 act through a general mechanism of 
cytotoxicity (67%) and 3 only via specific mechanisms of toxicity 
(33%).

Among the 6 chemicals falsely predicted as non-classified (Fig. 
12), two act through some mechanism of general cytotoxicity 
(33%) and four act only via cell type specific mechanisms of 
toxicity (67%), as shown in the supplementary information (Tab. 
S412).

3.2.1  Acute oral toxicity category 1
From the compounds assigned in vivo to the acute oral toxicity 
category 1 (fatal if swallowed), three (i.e., brucine, disulfoton, 
and physostigmine) target the nervous system and act via specif-
ic mechanisms (e.g., inhibition of cholinesterase, antagonism of 
glycine receptor). Among the remaining compounds, 1-phenyl- 
2-thiourea has the lung as target organ and needs bio-activation, 
and triethylenemelamine affects the immune system. Gen-
eral mechanisms of cytotoxicity have also been reported for 
these two compounds. For brucine, necrosis was found as the 
mechanism responsible for kidney tubular cell damage. When 
in vivo and in vitro mean values are compared, all compounds 
are misclassified by the in vitro cytotoxicity assay. Triethylene 
melamine is under-classified by one toxicity category and the 
other four compounds by 3 toxicity categories.

3.2.2  Acute oral toxicity category 2
Among the compounds assigned in vivo to the acute oral toxic-
ity category 2 (fatal if swallowed), only colchicine is correctly 
predicted by the cytotoxicity assay. Colchicine inhibits microtu-
bule formation and, thus, effectively inhibits mitosis, which is 
a general mechanism of toxicity. This mechanism of toxicity is 
also reported as the one responsible for the toxicity at the level of 
the nervous system and the liver. Digoxin and aconitine, which 
were predicted as false negatives by the cytotoxicity assay, act 
via specific mechanisms of toxicity such as interference with 
transporter enzymes (e.g., Na+-K+-ATPase) and calcium chan-
nels. Digoxin targets the cardiovascular system while aconitine 

Tab. 11: Summary of prediction of EU CLP toxicity  
categories in vivo and in vitro for the set of chemicals 
classified for acute oral toxicity 
Shadow cells indicate concordant predictions. EU CLP:  
EU regulation on classification, labelling and packaging of 
substances and mixtures; Cat: acute oral toxicity category; Cat. 1: 
rat oral LD50 ≤ 5 mg/kg; Cat. 2: 5mg/kg < rat oral LD50 ≤ 50 mg/kg; 
Cat. 3: 50 mg/kg < rat oral LD50 ≤ 300 mg/kg; Cat. 4:  
300 mg/kg < rat oral LD50 ≤ 2000 mg/kg

3T3 NRU predicted Reference in vivo oral LD50 (mg/kg)  
toxicity (mg/kg) 

 Cat. 1 Cat. 2 Cat. 3 Cat. 4

Cat. 1 0 0 0 0

Cat. 2 1 1 1 0

Cat. 3 0 6 9 8

Cat. 4 4 6 15 40

12 doi:10.14573/altex.1805181s2
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Fig. 11: Specific target organ/system toxicity and general cytotoxicity reported for the 91 chemicals predicted by  
the 3T3 NRU cytotoxicity assay as positive chemicals (i.e., LD50 ≤ 2000 mg/kg)
Bars in each group represent from left to right: nervous system, cardiovascular system, liver, kidney, lung, gastrointestinal system, 
blood, immune system, general cytotoxicity, only specific target organ/systems. Cat., acute oral toxicity category

Fig. 12: Specific target organ/system toxicity and general cytotoxicity reported for the 6 chemicals falsely predicted as  
negatives by the 3T3 NRU cytotoxicity assay
GI, gastrointestinal system

acts on both the nervous and the cardiovascular system (Qiu et 
al., 2008; Chan, 2009; Prassas et al., 2011; Sun et al., 2014). 

The compounds assigned to the toxicity category 2 in vivo 
but under-predicted in vitro act mainly via specific target or-
gan toxicity mechanisms. For D-amphetamine, parathion, and 
strychnine, the central nervous system is the main target and 
specific mechanisms of toxicity were identified (i.e., inhibition 
of acetylcholinesterase, antagonism of glycine receptor, stimula-
tion of the release of norepinephrine and dopamine). The kidney 
is the target for ochratoxin A, a well-known nephrotoxic agent 
acting on tubular cells (Ozbek, 2012). General cytotoxicity is 

also reported for ochratoxin A, and necrosis has been found as 
the mechanism underlying strychnine effects on kidney tubular 
cell damage. Epinephrine hydrogen tartrate targets the cardio-
vascular system, while warfarin targets both the cardiovascular 
system and blood cells (Hanley, 2004; Klaassen, 2001).

3.2.3  Acute oral toxicity category 3
General mechanisms of toxicity were also described for the 
chemicals correctly assigned in vitro to the acute oral toxicity 
category 3 (toxic if swallowed). Only for ethyl chloroacetate 
no general mechanisms of toxicity were reported, although 
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Four harmful compounds were falsely predicted in vitro as 
non-acutely toxic. Of those, isoniazid and paraldehyde act via 
specific mechanisms such as interference at the level of CNS re-
ceptors and ion channel function, depletion of GABA (isoniazid), 
impairment of the propagation of electrical activity in the CNS 
(paraldehyde), and inflammation of the GI mucosa (paraldehyde) 
(Gilman, 1985; Carpentier et al., 1992). The harmful effects of 
ethylene glycol mainly result from the accumulation of its more 
toxic metabolites (Hess et al., 2004). Diethylene glycol is me-
tabolized to 2-hydroxyethoxyacetaldehyde by alcohol dehydro-
genase oxidation, then to 2-hydroxyacetic acid (HEAA) by alde-
hyde dehydrogenase. HEAA causes acidosis, renal failure, and 
neurologic dysfunction. It is thought that the parent compound 
is toxic as well (Schep et al., 2009). The formation of toxic me-
tabolites will be missed in the in vitro cell system due to the lack 
of metabolic competence of the 3T3 cells. This could explain, at 
least in part, the misclassification by the in vitro approach.

Many of the harmful compounds are extensively or rapidly 
metabolized in the liver and toxic metabolites were reported for 
five compounds (quinidine sulfate dehydrate (Kim and Benowitz, 
1990), chloroform (HSDB, ACuteTox project; Hodgson, 2004), 
chloral hydrate (Beland, 1999; Pershad et al., 1999; Dogan-Du-
yar et al., 2010), sodium valproate (ACuteTox project; Sztajnk-
rycer, 2002), and malathion (ACuteTox project; Simoneschi et 
al., 2014)). 

4  Discussion

The exercise reported here served several purposes. First of 
all, the mechanistic information collected was visually summa-
rized, allowing direct comparison across target organs/systems. 
Secondly, by organizing acute toxic effects by their mechanism 
and cell type(s), we could start to associate known acutely toxic 
compounds with the different mechanisms. Finally, organizing 
information in this manner should facilitate the development of 
AOPs and IATA, for example by identifying properties that are 
requisites of in vitro testing systems for specific target organ tox-
icity testing. 

This work also aimed to identify specific (complementary) 
mechanisms of acute toxicity that are perhaps not covered by the 
validated 3T3 NRU cytotoxicity assay. Therefore, in our analysis 
we tried to address: (i) whether chemicals can be identified and 
classified based on either positive or negative specific effects on 
target organ(s) (according to the 2000 mg/kg threshold) using the 
3T3 NRU assay; (ii) which organs are the most frequent targets; 
and (iii) whether the triggered pathways of toxicity are conserved 
across organs.

In the overall analysis, of the 97 chemicals identified with tar-
get organ specific effects, 94% (91/97) were predicted as acutely 
toxic by the in vitro cytotoxicity assay and 6% (6/97) as non-tox-
ic. When comparing the positive (i.e., acutely toxic) and negative 
(i.e., non-acutely toxic) in vitro predictions with those of the in 
vivo study, it turned out that all six negatives were false predic-
tions (false negatives), while 55% of the positive predictions were 
correctly predicted, according to a CLP acute toxicity category, 

it is a moderate irritant via the oral route. For the compounds 
under-predicted in vitro by only one toxicity category, mecha-
nisms of general cytotoxicity were reported. For sodium salt of 
chloroacetic acid and pentachlorophenol also the mechanisms 
identified at target organ level were general mechanisms of tox-
icity such as interference with mitochondrial function (CNS), 
membrane disruption and/or interference with macromolecules, 
depletion of free radical scavenger (such as glutathione, cata-
lase) content in liver tissue, and compromised mitochondrial res-
piration of tubular cells (kidney). Dichlorvos and theophylline 
act through general mechanisms of cytotoxicity at CNS level, 
and also via specific mechanisms of toxicity. Seventy-three per 
cent of these under-predicted compounds are linked to the CNS 
as the target system (i.e., GABAA receptor agonist, blockade of 
the GABAA-receptor coupled sodium channel, interference with 
the normal flux of Na+ and K+ ions across the axon membrane 
during neuronal signaling, antagonism of N-methyl-D-aspartate 
(NMDA) receptors and inhibition of serotonin/norepinephrine 
reuptake, agonist of nicotinic cholinergic receptors, neurotrans-
mitter clearance from synaptic cleft). Verapamil, barium chlo-
ride, and theophylline act at the level of the heart by different 
mechanisms (blocking the calcium channel and binding to the 
cytosolic surface of the channel; interference with potassium 
channels, interference with intracellular signaling mechanisms, 
such as enzymatic activity, e.g., phosphodiesterases and protein 
kinases). Fat accumulation in hepatocytes was also described as  
the liver specific mechanism of toxicity of barium chloride 
(Ananda et al., 2013).

3.2.4  Acute oral toxicity category 4
General mechanisms of toxicity are reported for 49% of the 
compounds correctly assigned to the acute oral toxicity category 
4 (harmful if swallowed). For several of these compounds, gen-
eral cytotoxicity was identified at the target organ/level alone or 
in addition to other specific mechanisms of toxicity (e.g., acetyl-
salicylic acid uncouples mitochondrial oxidative phosphoryla-
tion and also inhibits Krebs cycle dehydrogenases at CNS level 
(Ekwall et al., 1998); valproic acid alters the activity of the GA-
BA neurotransmitter by increasing the inhibitory activity of GA-
BA through inhibition of GABA degradation, inhibition of GA-
BA transaminobutyrate, increased GABA synthesis, decreased 
turnover and inhibition of the GABA reuptake by the glia and 
synaptic mechanisms. It also interferes with cellular metabolic 
processes, interacts with membrane ion channels (Sztajnkrycer, 
2002; Chateauvieux et al., 2010), and induces oxidative stress 
by compromising the antioxidant status of the neuronal tissue 
(Chaudhary and Parvez, 2012); caffeine in the CNS competitive-
ly antagonizes adenosine receptors, inhibits phosphodiesterase, 
stimulates catecholamine release, and increases free calcium 
and intracellular cAMP (Fredholm et al., 1999); orphenadrine 
chloride competitively antagonizes acetylcholine binding at the 
neuroreceptor sites and induces necrosis in liver (Sangster et al., 
1978; Ekwall et al., 1998)). The nervous and the cardiovascular 
system appeared as targets for 70% and 54% of the harmful com-
pounds, respectively. Among the compounds acting via specific 
mechanisms of toxicity, 65% (13/20) targeted both the nervous 
and the cardiovascular system.
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vitro concentration causing toxicity that could be compared with 
the concentration that the target cells in vivo would be exposed 
to (EU FP6 project ACuteTox). In silico tools such as the Virtual 
Cell Based Assay (VCBA) can be used to simulate the distribu-
tion of the chemicals in the in vitro system (Zaldivar Comenges 
et al., 2017). By comparing the simulated and the nominal IC50 
concentrations of the dissolved chemical, the influence of the in 
vitro kinetics on the cytotoxicity result may be anticipated. In 
addition, in vivo kinetics is an important determinant of acute 
systemic toxicity that requires further investigation (Graepel et 
al., 2017; Duarte Lopes Mascarenhas Proença et al., 2017). In 
silico tools such as Physiologically Based Kinetic (PBK) models 
(Paini et al., 2017) can be used to simulate the kinetics and dis-
tribution of chemicals in vivo.

Although specific target organ mechanisms of toxicity could 
in some cases explain the false negative prediction obtained with 
the cytotoxicity assay, in general it is difficult to explain in vitro 
misclassifications only on the basis of mechanistic information. 
Therefore, in addition to kinetic considerations, in vitro misclas-
sifications could be also linked to the number of acute oral toxic-
ity categories under CLP and the associated LD50 ranges, which 
are not based on a particular mechanistic rationale. Indeed, the 
outcome of the classification analysis carried out in the context 
of the EU FP6 project ACuteTox indicated that it is challenging 
to make a clear distinction between acute oral toxicity catego-
ries 1, 2, and 3 based on in vitro concentration-response data 
(Kinsner-Ovaskainen et al., 2013) and, therefore, three levels of 
toxicity (i.e., level 1: combination of categories 1 to 3, level 2: 
category 4, and level 3: non-classified) were proposed (Prieto et 
al., 2013a). A similar grouping was also considered by Norlén 
et al. (2012) in an investigation of the predictive performances 
of five alternative approaches for the assessment of acute oral 
toxicity. Overall, the value of the CLP classification into four 
acute oral toxicity categories could be challenged.

Building on all the collected/generated information it would be 
worth trying to develop an alternative way of classifying chem-
icals for acute oral toxicity based mainly on cytotoxicity and 
kinetic information, and complemented, if needed, with relevant 
organ specific mechanisms of toxicity. Based on the mechanistic 
knowledge discussed in this paper, we propose to integrate in 
vitro assays anchored to the most frequent mechanisms of acute 
toxicity specific for each organ (CNS, heart, liver, and kidney) 
into an IATA. An IATA can include defined approaches, i.e., 
formalized decision-making approaches that apply fixed data 
interpretation procedures to data generated with a defined set of 
information sources (OECD, 2016b). In this regard, an in vitro 
cytotoxicity assay would be used together with specific target 
tissue toxicity mechanisms tested by assays permitting evalua-
tion of neurotoxicity (as the most sensitive), followed by cardio-
toxicity, hepatotoxicity, and kidney toxicity. Such a battery of 
tests should be designed to allow assessment of the compounds 
based on their cytotoxicity (e.g., based on the 3T3 NRU assay) 
and organ specific mechanisms. In the broader context of IATA, 
these in vitro mechanistic data should be integrated with addi-
tional sources of information (QSAR, read-across, in chemico, 
human data, in vivo data, etc.) including, where appropriate, 
exposure and ADME information. 

35% under-predicted and 10% over-predicted. When evaluating 
the performance of any alternative approach for the purposes 
of regulatory classification, it is also necessary to consider the 
uncertainty associated with both the in vivo and the in vitro data. 
Actually, the analysis of consistency in classification published 
by Hoffmann et al. (2010) showed that conventional in vivo 
acute oral toxicity tests are intrinsically imprecise themselves 
and, about 44% of the substances would ambiguously occur 
within the limits of two adjacent classification categories (with 
at least 90% probability). A discussion of in vivo and in vitro data 
variability is outside the scope of this paper. Therefore, for the 
purpose of the mechanistic analysis shown and discussed here, 
the assignment of the compounds to the CLP acute oral toxicity 
categories was made based on the collected mean values (in vivo 
and in vitro). Another major source of uncertainty, not analyzed 
here due to lack of information, is the role of ADME (absorption, 
distribution, metabolism, and excretion) in determining the acute 
toxicity category. ADME has also been identified as a source of 
uncertainty in many OECD IATA case studies that are based on 
new approach methodologies. Several regulatory bodies have 
published guidance on the identification, characterization, and 
reporting of uncertainty (SCHEER, 2018).

A closer look at the chemicals acting through the specific tar-
get organs has not revealed a clear pattern with regard to which 
specific mechanisms of target organ toxicity are representative 
of compounds in the different CLP acute oral toxicity categories. 
For instance, approximately the same percentage of compounds 
acting through mechanisms of neurotoxicity was found in each 
acute oral toxicity category (i.e., 55% of the highly toxic chem-
icals allocated to toxicity categories 1 and 2, 50% of the toxic 
chemicals in category 3, and 56% of the harmful chemicals in 
category 4). A similar situation holds true for chemicals that act 
through mechanisms of cardiovascular toxicity, which were al-
located to toxicity categories 2, 3, and 4 (33%, 19%, and 40%, 
respectively). Mechanisms of nephrotoxicity were also found for 
chemicals in all toxicity categories. Mechanisms of liver, lung, 
and blood toxicity were described for a small percentage of the 
highly toxic compounds (8%-21%). Based on these results, it 
can be concluded that mechanisms of toxicity specific for each 
organ can be triggered by compounds that belong to the different 
CLP acute oral toxicity categories. This is not surprising since 
the CLP categorization is based on potency, which can result 
from both toxicokinetic and toxicodynamic factors.

From the information collected and the analysis presented it 
can be concluded that general cytotoxicity is an important de-
terminant of acute systemic toxicity. Overall, the majority of the 
analyzed chemicals (63%) causing acute lethal toxicity act via 
some general (rather than organ specific) mechanisms of toxici-
ty. The nervous and the cardiovascular systems are the most fre-
quent targets, with changes in neurotransmission and altered ion 
flow being important mechanisms often associated with acute 
neurotoxicity and cardiotoxicity, respectively.

It is well recognized that the use of basal cytotoxicity alone 
to determine the acute toxicity of a chemical may not always be 
enough and, furthermore, it depends on the chemical’s kinetic be-
havior and/or its specific mechanisms of toxicity. These features 
may need to be considered in order to correctly estimate the in 
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Binukumar, B. K. and Gill, K. D. (2010). Cellular and molecular 
mechanisms of dichlorvos neurotoxicity: Cholinergic, non-
chlolinergic, cell signaling, gene expression and therapeutic 
aspects. Indian J Exp Biol 48, 697-709. 

Boelsterli, U. A. and Lee, K. K. (2014). Mechanisms of iso-
niazid-induced idiosyncratic liver injury: Emerging role of 
mitochondrial stress. J Gastroenterol Hepatol 29, 678-687. 
doi:10.1111/jgh.12516

Bonventre, J. V. (2003). Molecular response to cytotoxic injury: 
Role of inflammation, MAP kinases, and endoplasmic reticu-
lum stress response. Semin Nephrol 23, 439-448. doi:10.1016/
S0270-9295(03)00115-3

Bonventre, J. V. (2014). Primary proximal tubule injury leads to 
epithelial cell cycle arrest, fibrosis, vascular rarefaction, and 
glomerulosclerosis. Kidney Int Suppl 4, 39-44. doi:10.1038/
kisup.2014.8

Boussios, S., Pentheroudakis, G., Katsanos, K. and Pavlidis, N. 
(2012). Systemic treatment-induced gastrointestinal toxicity: 
Incidence, clinical presentation and management. Ann Gastro-
enterol 25, 106-118. 

Buesen, R., Oberholz, U., Sauerm, U. G. and Landsiedel, R. 
(2016). Acute oral toxicity testing: Scientific evidence and 
practicability should govern Three Rs activities. Altern Lab 
Anim 44, 391-398. 

Buesen, R., Oberholz, U., Sauer, U. G. and Landsiedel, R. (2018). 
Comment on “Alternative acute oral toxicity assessment under 
REACH based on sub-acute toxicity values”. ALTEX 35, 119-
121. doi:10.14573/altex.1710111

Bulacio, R. P. and Torres, A. M. (2013). Organic anion transport-
er 5 (Oat5) renal expression and urinary excretion in rats treat-
ed with cisplatin: A potential biomarker of cisplatin-induced 
nephrotoxicity. Arch Toxicol 87, 1953-1962. doi:10.1007/
s00204-013-1062-0

Carpentier, P., Lallement, G., Bodjarian, N. et al. (1992). Effects 
of paraldehyde on the convulsions induced by administra-
tion of soman in rats. Fundam Clin Pharmacol 6, 309-318. 
doi:10.1111/j.1472-8206.1992.tb00125.x

Casarett, L. J. and Doull, J. (2001). Toxicology: The Basic Sci-
ence of Poisons. New York, USA: McGraw-Hill Education 
Ltd.

Chan, T. Y. (2009). Aconite poisoning. Clin Toxicol (Phila) 47, 
279-285. doi:10.1080/15563650902904407

Chapman, K., Creton, S., Kupferschmidt, H. et al. (2010). The 
value of acute toxicity studies to support the clinical manage-
ment of overdose and poisoning: A cross-discipline consensus. 
Regul Toxicol Pharmacol 58, 354-359. doi:10.1016/j.yrtph. 
2010.07.003

Chateauvieux, S., Morceau, F., Dicato, M. and Diederich, M. 
(2010). Molecular and therapeutic potential and toxicity of 
valproic acid. J Biomed Biotechnol 2010, 479364. doi:10. 
1155/2010/479364

Chaudhary, S. and Parvez, S. (2012). An in vitro approach to as-
sess the neurotoxicity of valproic acid-induced oxidative stress 
in cerebellum and cerebral cortex of young rats. Neuroscience 
225, 258-268. doi:10.1016/j.neuroscience.2012.08.060

The development of AOPs relevant to acute neurotoxicity, 
cardiotoxicity, hepatotoxicity, etc., is already ongoing. How-
ever, as indicated, they are at different stages of development 
(Tab. S512). It is worth noting that some of the relevant AOPs 
are not specific to acute toxicity but nevertheless include key 
events that are relevant to acute exposure effects. Interestingly, 
some of the chemicals identified in these AOPs as triggers of 
molecular initiating events overlap with the chemicals reviewed 
in this report. The mechanistic information provided in this pa-
per should inform the development of AOPs relevant to acute 
systemic toxicity, as well as AOP-informed IATA. The further 
development of AOPs and IATA should focus on the major target 
organs identified, i.e., the CNS, heart, liver, and kidney.
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