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tion analysis (Sonich-Mullin et al., 2001; USEPA, 2005; Meek et 
al., 2014), the human relevance framework (Meek et al., 2003), 
the key events/dose-response framework (Julien et al., 2009), 
mechanistic effect modeling (Forbes and Calow, 2012), and 
the adverse outcome pathway (AOP) framework (Ankley et al., 
2010). Simultaneously, hazard and risk assessments are evolv-
ing to focus on assays relevant to target species (e.g., human 
rather than rat), in vitro test data, ’omics data, and biological 
pathway perturbations leading to apical level changes (NRC, 
2007; Krewski et al., 2014). As a result, many opportunities 
exist to better support decision-making through development of 
new approaches for data integration, incorporation of data from 
emerging technologies, and extrapolating impacts to safety end-
points based on in vitro assays and chemical structures. 

1  Introduction

Risk assessors attempt to identify causal relationships between a 
stressor, for example a chemical, and an outcome of safety and 
regulatory interest, such as cancer or reproductive impairment, 
through the integration of a wide range of data and information 
(NRC, 1983, 2009; Abt et al., 2010). These efforts are facilitated 
using hypothesis driven approaches and conceptual frameworks 
to organize or describe data and information related to risk, e.g., 
sources and pathways of exposure, ADME (adsorption, distri-
bution, metabolism, and elimination), and the health hazard to 
individuals, communities, or populations (Suter and Cormier, 
2011). Several conceptual frameworks have been proposed to 
support hazard and risk decision-making including mode of ac-

Concept Article 

Chemical Hazard Prediction and Hypothesis Testing 
Using Quantitative Adverse Outcome Pathways  
Edward J. Perkins 1, Kalyan Gayen 2, Jason E. Shoemaker 3, Philipp Antczak 4, Lyle Burgoon 1,  
Francesco Falciani 4, Steve Gutsell 5, Geoff Hodges 5, Aude Kienzler 6, Dries Knapen 7, Mary McBride 8,  
Catherine Willett 9, Francis J. Doyle III 10 and Natàlia Garcia-Reyero 1 
1US Army Engineer Research and Development Center, Vicksburg, MS, USA; 2Department of Chemical Engineering, National Institute of Technology 
Agartala, Barjala, Jirania, West Tripura, Tripura, India; 3Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University 
of Pittsburgh, PA, USA; 4University of Liverpool, Liverpool, Merseyside, UK; 5Unilever, Safety and Environmental Assurance Centre, Colworth 
Science Park, Sharnbrook, UK; 6JRC Institute for Health and Consumer Protection, Ispra, Italy; 7University of Antwerp, Zebrafishlab, Wilrijk, Belgium; 
8Agilent Technologies, Washington, DC, USA; 9The Humane Society of the United States, Washington, DC, USA; 10Harvard John A. Paulson School of 
Engineering & Applied Sciences, Cambridge, MA, USA

Abstract
Current efforts in chemical safety are focused on utilizing human in vitro or alternatives to animal data in a bio-
logical pathway context. However, it remains unclear how biological pathways, and toxicology data developed 
in that context, can be used to quantitatively facilitate decision-making. The objective of this work is to determine if 
hypothesis testing using adverse outcome pathways (AOPs) can provide quantitative chemical hazard predictions. 
Current methods for predicting hazards of chemicals in a biological pathway context were extensively reviewed, spe-
cific case studies examined, and computational modeling used to demonstrate quantitative hazard prediction based on 
an AOP. Since AOPs are chemically agnostic, we propose that AOPs function as hypotheses for how specific chemicals 
may cause adverse effects via specific pathways. Three broad approaches were identified for testing the hypothesis 
with AOPs, semi-quantitative weight of evidence, probabilistic, and mechanistic modeling. We then demonstrate how 
these approaches could be used to test hypotheses using high throughput in vitro data and data from alternatives to 
animal testing. Finally, we discuss standards in development and documentation that would facilitate use in a regu-
latory context. We conclude that quantitative AOPs provide a flexible hypothesis framework for predicting chemical 
hazards, which accommodates a wide range of approaches that are useful at many stages and build upon one another 
to become increasingly quantitative. 

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 

https://doi.org/10.14573/altex.1808241
mailto:natalia.g.vinas@usace.army.mil
http://creativecommons.org/licenses/by/4.0/


Perkins et al.

ALTEX 36(1), 2019       92

Mechanistic modeling of a chemical’s impact on  
a population via an AOP
To demonstrate the mechanistic modeling of an AOP, we con-
structed a coupled component qAOP model representing the 
AOP for aromatase inhibition leading to reproductive dysfunc-
tion using mathematical and probabilistic models representing 
different KE within the AOP. Briefly, we extended a hypothala-
mus-pituitary-ovary model of 17β-estradiol synthesis for fathead 
minnow (Pimephales promelas) by Shoemaker et al. (2010) with 
a liver component that mathematically described the synthesis 
rate of VTG mRNA and VTG protein in liver controlled by 
plasma E2 concentrations with a time delay response (Equations 
S2 and S32). The resulting HPG-liver model was then coupled 
to the fathead minnow population matrix model of Miller et al. 
(2007) using a simple linear regression model that describes the 
relationship between fecundity and plasma VTG concentrations.

3  Results and discussion

3.1  Quantitative AOP frameworks 
to support decision making
Regulators involved in reviewing chemical use and permissible 
exposure levels are required to come to a sound and objective 
scientific judgment as to the potential of that chemical to cause 
adverse effects on humans and the environment (NRC, 2009). 
Many regulatory applications use a biological pathway-based 
hypothesis to examine the causal evidence for human and eco-
logical hazards as part of a risk-based approach (Boobis et al., 
2009; Suter and Cormier, 2011; Meek et al., 2014). Since an AOP 
represents a plausible biological pathway causally leading to an 
adverse effect, it can be used as a hypothesis that a chemical 
causes an adverse effect (e.g., cancer, mortality) when used with 
chemical-specific evidence. An AOP is composed of a molecular 
initiating event (MIE), where a stressor interacts with a receptor, 
enzyme or other biomolecule, that in turn causes the activation 
of a series of measurable events (key events or KE) leading to an 
adverse outcome (AO) of regulatory interest (Villeneuve et al., 
2014a). MIE, KE, and AO are linked by key event relationships 
(KER) that represent response-response relationships between 
events that can be used to develop quantitative AOPs. 

Arguably the greatest potential use of the AOP framework 
lies in using it to semi-quantitatively or quantitatively assess, in 
a transparent manner, the likelihood of a chemical causing an 
adverse effect, thereby supporting hazard and risk decisions. We 
anticipate that both existing and future quantitative toxicological 
models can be incorporated into an AOP framework since AOPs 
describe biological pathways required for toxicological effects. 
Three general approaches can be used for hypothesis testing 
of AOPs in a quantitative manner, ranging from expert judge-
ment-based, requiring limited information, to biological models, 
which require extensive data and development times (Gust et 
al., 2015): 1) in a semi-quantitative or quantitative weight of 

The AOP framework has been the focus of several research 
and regulatory organizations (e.g., the U.S. Environmental Pro-
tection Agency (EPA), the Organization for Economic Co-op-
eration and Development (OECD), Health Canada, and the 
European Commission Joint Research Center) as an approach 
to document and categorize chemical hazards in a biological 
pathway context. To support this effort, a knowledge base1 has 
been created to support the use of AOPs along with guidance for 
developing AOPs and potential application of AOPs in chemical 
hazard testing and screening (Meek et al., 2014; Tollefsen et al., 
2014; Villeneuve et al., 2014a,b; Becker et al., 2015; Patlewicz 
et al., 2015; Rovida et al., 2015; Perkins et al., 2015; Groh et 
al., 2015a,b). However, except for a general discussion on the 
recent description of the development of a quantitative AOP 
(qAOP) for aromatase inhibition leading to reproductive dys-
function in fish (Conolly et al., 2017), little guidance exists on 
how the AOP framework can be used in a quantitative manner 
to predict impacts on individuals and populations from in vitro 
data or even information derived from clinical studies (OECD, 
2013). 

The development of AOP-based quantitative models is like-
ly to face similar challenges to those found with biological-
ly-based dose-response models where extensive data and long 
development times have limited their use in risk assessment 
(Crump et al., 2010). Indeed, development of a qAOP for 
aromatase inhibition took several years (Conolly et al., 2017) 
but this clearly does not have to be the rule. Complicating the 
prediction of adverse outcomes from AOPs is that the number 
of different AOPs is likely to be in the hundreds, many of which 
may interact as networks of pathways either due to the pres-
ence of chemical mixtures or activation of multiple events by 
a single chemical (Garcia-Reyero, 2015). As a result, there is 
a critical need to examine how quantitative AOPs can be used 
to meet these challenges, and how their development might be 
sped up. 

Our objective in this paper is to examine how hypothesis 
testing using quantitative qAOPs can support hazard and risk 
decisions. We also argue that qAOPs can take many forms, from 
text-based, descriptive AOPs to probabilistic network models 
(e.g., Bayesian networks) to mathematical models with high 
biological fidelity, thereby enabling rapid development of quan-
titative approaches to examine chemical effects across multiple 
AOPs. 

2  Methods 

The state of predicting chemical hazards 
Current methods for predicting hazards of chemicals in a bio-
logical pathway context were extensively reviewed based on the 
published literature. Specific case studies were identified and 
examined for quantitative measures of biological pathway-based 
hazards.

 

1 https://aopkb.oecd.org/
2 doi:10.14573/altex.1808241s
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pert judgment, WOE can be used to assess the overall confidence 
in the ability of a chemical to activate an AOP or its components 
(Becker et al., 2015; Linkov, 2015). This WOE approach has 
long been used to evaluate the impact of different factors in en-
vironmental risk assessment (Linkov et al., 2006; Linkov and 
Seager, 2011). 

Becker et al. (2017) used this hypothesis driven quantitative 
WOE approach to assess whether clofibrate induces hepatocar-
cinomas in rodents by one of two hypothesized AOPs, PPARα 
activation leading to liver tumors in rodents ((MIE PPARα 
activation) → (KE of altered cell growth pathways) → (KE of 
perturbation of cell growth and survival) → (KE of clonal ex-
pansion of preneoplastic foci) → (AO of rodent liver tumors)) 
or Mutagenesis leading to liver tumors in rodents ((MIE DNA 
reactivity leading to promutagenic adducts/lesions) → (KE of 
insufficient repair of DNA leading to mutations in key genes) 
→ (KE of perturbation of cell growth and survival) → (KE of 
clonal expansion of preneoplastic foci) → (AO of rodent liver 
tumors)). Becker et al. (2017) demonstrated that one could de-
velop a transparent and quantitative assessment of the evidence 
supporting whether a chemical acted via a specific pathway. An 
additional value of WOE approaches is the identification of areas 
where sufficient information exists to develop statistical rela-
tionships or where more resources should be invested to better 
define the pathway. 

3.3  Probabilistic quantitative AOPs 
Key event relationships and indirect KER describe response-re-
sponse relationships between events and the outcome and are an 
essential part of establishing causality in AOPs. Response-re-
sponse relationships permit development of statistical or prob-
abilistic relationships that enable prediction of the likelihood 
that a later event or outcome would occur based on changes in 
an earlier event. The incorporation of statistical or probabilistic 
relationships into an AOP creates a probabilistic quantitative 
AOP. This can enhance decision making by requiring less data 
to support the hypothesis testing for specific chemicals. Proba-
bilistic qAOPs can be composed of predictive relationships that 
span a few events or an entire AOP and be combined with WOE 
analyses depending on the application. Probabilistic AOPs can be 
developed, even when all essential KE have not been identified, 
if a predictive relationship exists linking events of interest to the 
AO or an event is causally linked to the AO. Significant statisti-
cal linkages between MIE and adverse outcomes have long been 
used in screening chemicals for the potential to cause hazardous 
effects. For example, the AOP for membrane disruption (narco-
sis) leading to respiratory failure is a non-specific toxicity char-
acterized by generalized depression in biological activity that can 
lead to hypoxia and death for which probabilistic qAOPs exist. 
Approximately 60% of industrial chemicals are thought to have 
the potential to exhibit only this mode of action (van Wezel and 
Opperhuizen, 1995; Volz et al., 2011) given relevant exposures. 
Non-polar and polar narcotics diffuse into membranes based 
on lipophilicity, resulting in a significant correlation between 
a measure of the MIE, hydrophobicity parameter octanol-wa-
ter partition coefficient or logKow, and the adverse outcome 

evidence (WOE) manner, where the evidence for a chemical act-
ing through a specific AOP is given a weighted value based on 
expert opinion and well-documented criteria (e.g., Becker et al., 
2017); 2) in a probabilistic manner, where statistical or sufficien-
cy relationships exist between MIE or KE and the AO permits 
extrapolation from in vitro assays or other data to events relevant 
to safety assessment and of regulatory interest (e.g., Miller et 
al., 2007; Burgoon et al., 2017); and 3) in a mechanistic manner, 
where mathematical models of MIE, KE and KER can be used 
to quantitatively predict the risk of an adverse effect given spec-
ified initial conditions (e.g., Conolly et al., 2017). These three 
areas are complementary and build upon one another to become 
increasingly more quantitative.

3.2  Semi-quantitative or quantitative weight  
of evidence qAOPs 
A large source of uncertainty can be due to different ways that 
the same data is valued by different people, which can lead to 
different assessments of risk (Weed, 2005). This uncertainty 
between values and conclusions can be bridged through explicit 
and transparent description of the values and approaches used in 
assessing data such as clear criteria for how one values toxicity 
test data. A WOE approach can provide clear criteria and valu-
ations that can be used in reviewing available data supporting 
hypotheses that a chemical causes an adverse effect through a 
specific pathway (Weed, 2005). Semi-quantitative and quanti-
tative WOE evaluations incorporate quantitative weighting and 
numerical assessments of value of data in order to integrate 
multiple separate lines of evidence into a single value to support 
decision-making (Linkov et al., 2011; Rhomberg, 2014). The use 
of transparent WOE approaches can increase certainty in scien-
tific judgement by documenting how data is interpreted and in-
tegrated to arrive at a final assessment and overcome reluctance 
to place values on risk assessments (Linkov and Seager, 2011; 
Rhomberg, 2014; Linkov, 2015). 

A simple and direct semi-quantitative approach for assessing 
the hypothesis that a chemical causes a health hazard through an 
AOP uses ranking of confidence in the key event relationships 
(KER) in the AOP using available evidence. The strength of re-
lationships between events is of particular importance as KER 
define how a perturbation proceeds from one event to the next 
(OECD, 2013; Villeneuve et al., 2014a,b). As a result, clearly 
defined criteria, including biological plausibility, essentiality 
of each KE, response-response concordance, temporal concor-
dance, incidence concordance (the incidence of upstream KE 
observations is greater than the downstream KE) and causal 
evidence can be used to assess the confidence in, or strength 
of, MIE, KE, KER, indirect KER (the ability to indirectly in-
fer a KE or AO from a non-adjacent event) and ultimately the 
AOP (OECD, 2013; Becker et al., 2015; Patlewicz et al., 2015). 
Frameworks for assessing dose response relationships (Simon et 
al., 2014) or approaches determining points of departure from 
controls (Thomas et al., 2007; Chepelev et al., 2014; Webster et 
al., 2015; Burgoon et al., 2017; Farmahin et al., 2016) may also 
be appropriate for placing a value of strength on the KERs. Once 
KEs and KERs are scored, either based on strict guidance or ex-
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and have been shown to have significant accuracy in predicting 
in vivo endpoints (Rotroff et al., 2013; Cox et al., 2014). Since 
estrogen receptor (ER) binding and activation is the primary 
MIE leading to estrogenic adverse outcomes in animals, these 
models have been proposed as prioritization tools. Judson et 
al. (2015) tested the hypothesis that a chemical activates the 
estrogen receptor by extending these efforts to create a partial 
qAOP describing the MIE of ER binding and activation, the KE 
of RNA transcription and translation of ER dependent genes, and 
the KE of ER-dependent cell proliferation. While this does not 
specifically model biological events, it does incorporate biolog-
ical assay results that capture these KE by using a mathematical 
network model that integrates the areas under the curve for assay 
responses of 18 different high throughput assays to predict po-
tential endocrine agonists and antagonists. 

3.4  Probabilistic quantitative AOP networks 
Probabilistic approaches such as Bayesian network analysis are 
well suited to the AOP framework because, like a Bayesian net-
work, an AOP is an intuitive representation of a graphical model 
that is a formal representation of a joint probability distribution 
(Koller and Friedman, 2009; Pearl, 2010). Bayesian network ap-
proaches have been used to model outcomes in a wide range of 
complex systems (for review see Weber et al., 2012). Bayesian 
networks are useful for making probabilistic predictions as to 
whether one or multiple hypotheses are likely to be true, provide 
diagnostic analysis of evidence available for decisions, and the 
ability to update calculations based on new evidence such as ad-

of respiratory failure (Mackay et al., 2009). Highly predictive 
quantitative structure activity relationship (QSAR) models have 
been developed using the predictive relationship of logKow to 
non-polar narcotic acute toxicity that are used in hazard screen-
ing efforts to test the hypothesis that a chemical acts through the 
narcosis AOP (Verhaar et al., 1992; Dom et al., 2012; Claeys et 
al., 2013). QSAR modeling has been widely used to model the 
effects of chemicals on MIE and has provided substantial support 
for testing whether or not a specific chemical might initiate an 
AOP (Allen et al., 2016; Cronin et al., 2017). 

The potential of a chemical to cause effects through endocrine 
signaling is an important hypothesis tested by several different 
quantitative approaches. Agonism or antagonism of estrogen 
receptor signaling is involved in several AOPs including repro-
ductive dysfunction in mammals, fish and other species (Ankley 
et al., 2010; Becker et al., 2015). As there are strong causal link-
ages between estrogen receptor activation, many efforts have fo-
cused upon predicting chemical binding to the estrogen receptor 
using QSAR (e.g., Tong et al., 1997), machine learning methods 
(e.g., Zang et al., 2013), molecular docking (e.g., Shao et al., 
2004), and other methods. Models of estrogen receptor binding 
and subsequent activation of estrogen receptor gene expression 
have also been used to develop a decision model to facilitate 
hazard identification and prioritization using a combination of 
structure activity relationships, receptor binding and vitellogenin 
gene activation assays (Schmieder et al., 2014).

High throughput assay data for estrogen and androgen recep-
tor binding and activation have been used in statistical models 

Fig. 1: Conceptual model of a 
quantitative steatosis adverse outcome 
network 
Six possible AOPs are initiated by 
molecular initiating events (MIE, hexagon 
boxes) leading to the adverse outcome 
steatosis. The probability that one event 
leads to another is represented by an 
arrow. The probability an event will 
interfere with or inhibit another event 
is represented by a line and bar. The 
probability that any one AOP will result 
in steatosis is represented by the joint 
probability distribution across that AOP. 
Possible crosstalk between different 
AOPs is revealed in the network. The 
effect of complex mixtures could be 
assessed by examining the joint probability 
distribution across the entire network 
given the available data. DHB4/HSD17B4, 
hydroxysteroid (17-β) dehydrogenase 4; 
FXR, farnasoid X receptor; LXR, liver X 
receptor; NFE2L2/Nrf2, nuclear factor, 
erythroid 2 like 2; PPAR, peroxisome 
proliferator-activator receptor; SHP, small 
heterodimer partner 
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that underlay compensatory responses. Feedback regulation 
is a central component of many biological systems (Bhalla 
and Iyengar, 1999; Avraham and Yarden, 2011; Cowan et al., 
2014) including the hypothalamus-pituitary-gonadal (HPG) axis 
(Norris and Carr, 2013) and the hypothalamus-pituitary-thyroid 
axis (Chiamolera and Wondisford, 2009; Carr and Patiño, 2011). 
Mechanistic qAOPs are typically more complex and time-con-
suming to construct than WOE or probabilistic qAOPs, include 
(first order) mathematical relationships, and generally represent 
a more accurate biological model (e.g., Conolly et al., 2017). 
Mechanistic modeling also facilitates a quantitative estimate of 
uncertainty in the risk assessment. Mechanistic qAOPs can also 
include toxicokinetic and toxicodynamic modeling that explic-
itly capture the details on absorption, distribution, metabolism, 
and elimination of chemicals. This level of modeling requires 
large amounts of data and remains a long-term effort for most 
current AOPs. 

3.6  Hypothesis testing with mechanistic  
quantitative AOPs 
The AOP for inhibition of aromatase leading to reproductive 
dysfunction in fish (Becker et al., 2015) provides a well charac-
terized pathway with which to highlight essential features of a 
mechanistic qAOP (Conolly et al., 2017). Here, we constructed 
a mechanistic qAOP for aromatase inhibition using mathemat-
ical and probabilistic models representing different KE within 
the aromatase inhibition AOP (Fig. 2, details of model devel-
opment and predictions in supplementary file2). The biological 
effects of aromatase inhibition in fathead minnow have been 
extensively studied and sufficient data exists to support mech-
anistic model development (Ankley et al., 2002; Villeneuve 
et al., 2009, 2013). Fadrozole (FAD) is a model endocrine 
disruptor that specifically inhibits aromatase, an enzyme that 
catalyzes the final step in the synthesis of estradiol (E2), an es-
trogen required for reproductive function (Browne et al., 1991). 
Breen et al. (2007) developed a metabolic model of ex vivo 
fathead minnow ovary slice assays converting cholesterol to 
testosterone and estradiol that described the MIE of inhibition 
of aromatase by the inhibitor fadrozole and KE1 – a decrease in 
estradiol synthesis. Shoemaker et al. (2010) extended this mod-
el to incorporate endocrine signaling feedback control from the 
ovary to the hypothalamus/pituitary, the luteinizing hormone / 
luteinizing hormone receptor signaling cascade, regulation of 
the steroidogenic acute response protein responsible for cho-
lesterol transport into mitochondria, and critical transcription 
factors into a dynamic mathematical model to predict the ef-
fects of fadrozole exposure on plasma E2 concentrations (Fig. 
2). The Shoemaker model was able to accurately predict effects 
of aromatase inhibition on testosterone and E2 production by 
fathead minnow in the presence of 50 µg/l FAD over 6, 12, 
and 24 h (Shoemaker et al., 2010). The model is also generally 
predictive of plasma E2 concentration behavior after 8 days 
exposure to FAD, although it fails to predict compensation for 
FAD inhibition of aromatase at low (3 µg/l) concentrations and 
slow recovery of normal E2 levels after removal of FAD (Fig. 
3a). This is consistent with the findings of Breen et al. (2013) 

ditional in vitro tests. For example, based on empirical evidence 
showing that various events in the AOP are predictive of the 
potential of a chemical to be a skin sensitizer, several non-an-
imal test methods that measure the impact of chemical sensi-
tizers on these key events have been developed (Liebsch et al., 
2011; Maxwell et al., 2014). However, individually, the assays 
are inconsistent in predicting the relative potency of a chemical. 
Consequently, integrated testing strategies for the AOP for skin 
sensitization caused by covalent binding to proteins have been 
developed where Bayesian network models incorporate in vitro 
assays representing MIE and KE events to predict the potency of 
a chemical in inducing a response in a local lymph node assay 
(Pirone et al., 2014). The value of the skin sensitization Bayes-
ian network is that it provides a probabilistic estimation of the 
sensitization potential of a chemical and allows a quantitative 
examination of whether addition of more tests would improve 
the predictive ability of the framework. A further example is 
the toxicokinetic/toxicodynamic modeling approach taken by 
MacKay et al. (2013), who have extended an existing skin bio-
availability model (Davies et al., 2011) to estimate the probabil-
ity of allergy in a given human population to be predicted using 
a toxicodynamic model of skin protein haptenation, DC antigen 
presentation, and CD8+ T cell activation for application in skin 
sensitization risk assessment. 

A major limitation of linear AOPs is that real world risks are 
due to multiple factors such as diseases caused by interactions 
between susceptible genotypes and the presence of certain met-
als, cross-talk between pathways, chemicals that initiate multiple 
AOPs, or complex mixtures where an organism may be exposed 
to multiple chemicals. The flexibility of Bayesian networks is 
also valuable in examining multiple interacting variables and 
networks of interacting AOPs. For example, non-alcoholic liver 
steatosis can be caused via several AOPs creating a complex 
network where multiple interactions could contribute to steato-
sis (Fig. 1; Hashimoto et al., 2000; Reddy, 2001; Grefhorst et 
al., 2002; Pineda Torra et al., 2003; Kay et al., 2011; Sharif et 
al., 2014). Understanding the potential contribution of multiple 
AOPs in the presence of chemical mixtures can be very chal-
lenging. Given the appropriate experimental data and formal 
relationship criteria (OECD, 2013; Becker et al., 2015), statis-
tical relationships could be developed to enable construction of 
a probabilistic network that captures potential crosstalk between 
pathways. For example, the AOP network for steatosis suggests 
that a mixture of PPARγ agonists and FXR antagonists could lead 
to a greater risk of steatosis by increasing lipogenesis through 
removing feedback repression of LXRα expression (Goodwin 
et al., 2000; Lu et al., 2000) and increasing PPARγ dependent 
expression of enzymes involved in lipogenesis (Morán-Salvador 
et al., 2011). If placed in a Bayesian network context, multiple 
hypotheses can be tested.              

3.5  Mechanistic quantitative AOPs 
While probabilistic qAOPs are clearly useful in estimating if 
an adverse outcome may occur given available data, they gen-
erally do not explicitly incorporate mechanisms of action and 
fail to account for regulatory and feedback control mechanisms 
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Fig. 2: Linkage of multiple models to create a mechanistic qAOP model for aromatase inhibition leading to reproductive 
dysfunction 
The AOP for aromatase inhibition leading to reproductive dysfunction is diagrammed on the right of the figure with arrowhead indicating 
equivalent sections of the mechanistic qAOP. (A) A mechanistic hypothalamus-pituitary-gonad (HPG) model that simulates steroidogenesis 
(yellow) and conversion of testosterone (T) into estradiol (E2) by aromatase, a negative feedback to the hypothalamus/pituitary where 
decreasing levels of E2 cause increased synthesis of luteinizing hormone (LH; pink), LH binds to the LH receptor in the ovary and 
stimulates a cAMP cascade (green, purple) resulting in phosphorylation (light green, red) of transcription factor SF1, increased transport  
of cholesterol into mitochondria by steroid acute response protein and ultimately increased synthesis of E2. I represents a  
chemical aromatase inhibitor, here fadrozole. (B) Vitellogenin liver compartment model. (C) Model relating vitellogenin levels to fecundity.  
(D) Density-dependent population matrix model.
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Since a decrease in plasma VTG levels in female fathead min-
nows is highly correlated to fecundity, KE5, impaired ovulation 
and spawning (Fig. 2), can be modelled using a simple linear 
regression model developed by Miller et al. (2007) based on 
21-day reproductive studies with different chemical stressors 
that describes the relationship between fecundity and plasma 
VTG concentrations relative to untreated females (Equation 
S42). The population matrix model of Miller et al. (2007) can 
then be used to create a complete model of the AOP from 
aromatase inhibition through the population level outcome by 
linking the fecundity model, KE5, to population level effects, 
the AO (see supplementary file2). We used the complete model 
(Fig. 2) to predict population trajectories for various levels of 
constant FAD exposure (Fig. 3). As observed by Miller et al. 
(2007), depression of VTG levels results in a decline of popu-
lation trajectories, relative to no FAD exposure, which stabilize 
at lower population levels. Concentrations of FAD above 1μg/l 
produced catastrophic effects resulting in the total collapse of 
the population (Fig. 3). 

that additional regulatory or biological elements not explicitly 
described in the AOP or the model exist that influence fathead 
minnow responses to FAD.

We extended the Shoemaker HPG model to create a HPG-liv-
er model that includes KE2, a decrease in estrogen receptor 
agonism, and KE3, reduced VTG production in liver, by math-
ematically describing the synthesis rate of VTG mRNA con-
trolled by plasma E2 concentrations with a time delay response 
(Equation S22). The process of translation of VTG protein was 
also described with a time delay function in a separate equa-
tion (Equation S32). The resulting HPG-liver model accurately 
predicted plasma VTG levels in the presence of low (3 µg/l) 
and high (30 µg/l) concentrations of FAD (Fig. 3b). As with 
predictions of plasma E2 levels, predicted plasma VTG levels 
rapidly returned to normal, whereas observed plasma VTG lev-
els took significantly longer to return to normal, indicating that 
additional biological mechanisms need to be incorporated into 
the models to accurately simulate the impact of FAD on plasma 
VTG levels. 

Fig. 3: Quantitative AOP modeling  
of KE and AO responses for aromatase 
inhibition leading to reproductive 
dysfunction in fish in the presence of 
fadrozole
Calculated responses of (A) plasma 
estradiol levels and (B) plasma vitellogenin 
levels in fathead minnow exposed for  
8 days (192 h) to fadrozole followed by  
8 days of recovery; black line, control;  
blue line, 30 μg/l fadrozole; red line, 30 μg/l 
fadrozole. Symbols indicate experimental 
data points (adapted from Villeneuve et al., 
2010); circle, control; red triangle,  
3 μg/l fadrozole; blue box, 30 μg/l fadrozole. 
Y axis indicates the normalized value 
relative to control on a log2 scale. The bar 
below graphs A and B depicts exposure 
to fadrozole (black bar) and recovery 
without fadrozole (white bar). (C) Relative 
population trajectory forecasted for fathead 
minnow (Pimephales promelas) exposed 
to different levels of fadrazole. Relative 
population becomes stable at lower 
capacity (78%) upon exposure to 0.04 μg/l 
fadrozole while capacity reduces to 40% at 
exposure to 0.5 μg/l fadrozole. Population 
becomes zero after 15 and 10 years 
under exposure to 2 and 3 μg/l fadrozole, 
respectively. The black bar beneath graph 
C indicates constant exposure to fadrozole.



Perkins et al.

ALTEX 36(1), 2019       98

team will need to document reasons for including and excluding 
studies. The goal is for teams to provide sufficient documentation 
of their reasoning so that another scientist trained in the field can 
understand, not necessarily agree, how the team reached the con-
clusions. This is where the use of standardized questionnaires or 
score sheets becomes valuable and tools such as the National In-
stitutes of Health’s Office of Health Assessment and Translation 
(OHAT) Risk of Bias Tool5 or the Systematic Omics Analysis 
Review (SOAR) tool (McConnell et al., 2014) are helpful.

Standard 3: AOP synthesis 
Here, the information from individual studies is synthesized 
into an overall AOP on the AOP-Wiki. Evidence for events 
and relationships should be assessed via weight of evidence 
frameworks as described in Becker et al. (2015). We strongly 
advocate the use of meta-analysis and statistical methods to in-
tegrate evidence from multiple studies. Publication bias across 
the databases can be identified using a trim-and-fill plot (Duval 
and Tweedie, 2000). Analyses using Galbraith plots can help 
identify if there are differences in standard errors from different 
studies as a function of effect size (Galbraith, 1990). In an ideal 
situation, where multiple studies all report statistical analyses for 
the same potential key event, meta-analyses could be used to 
ascertain the strength of the evidence that a potential key event 
is or is not involved. For instance, where studies have used gene 
knock-out models, several individual studies might report that 
the knock-out of a protein representing a key event is necessary 
to block the adverse outcome, while a few studies may contradict 
this view. If all the studies had reasonable approaches, then the 
data could be integrated using Bayesian analysis, thereby per-
mitting an objective determination of whether the data supports 
the protein being used as a key event or not. The analysis and 
the results would then become part of the argument for/against 
inclusion of the key event.

Standard 4: Submit the AOP 
For AOPs/qAOPs to be useful, they need to be made publicly 
available so that others can use them. The AOP-Wiki is an excel-
lent resource for making AOPs available and, potentially, qAOPs 
in the future. If an AOP/qAOP is made part of the OECD work 
plan, it will be peer-reviewed by experts. Although we do not see 
requiring AOPs/qAOPs to be made publicly available as part of 
the standard, we do see the need for data standards to share them. 
On the computational side, the AOP ontology6 allows AOPs (and 
qAOPs soon) to be exchanged between computers, and to facili-
tate computational analyses. We would also like to have methods 
that can translate future exchange formats with other existing 
standards for systems biology, such as systems biology mark up 
language. 

Although these systematic review standards are currently a 
work in progress, we feel they will help improve the quality of 

The qAOP model described here did not model compensatory 
behavior found when fathead minnow were exposed to low doses 
of fadrozole (Villeneuve et al., 2009, 2013). Therefore, while the 
mechanistic qAOP incorporated many of the biological elements 
essential to describing the aromatase inhibition AOP, additional 
regulatory mechanisms, such as those proposed by Breen et al. 
(2013), are still required to capture dynamic behaviors at low 
doses of chemical inhibitors. 

3.7  Data standards for development of qAOPs
An essential component of all three approaches to qAOP devel-
opment is the need for extensive review and documentation of 
available data and literature. While expert judgment will remain 
central to AOP development, including qAOPs, transparency 
in how relationships and values were derived in addition to the 
reproducibility of WOE, probabilistic, and mechanistic values, 
will be critical to gain acceptance for an AOP/qAOP. Systematic 
review has emerged as one approach to help ensure transparency 
and begin to provide guidelines for reproducibility. We view the 
systematic review standards proposed by the Institute of Medi-
cine (IOM, 2011) to be transferable and helpful in development 
of AOPs, especially in development and documentation of WOE, 
probabilistic, and mechanistic qAOPs. 

Currently, AOPs are documented and reviewed via the 
AOP-Wiki3 under the auspices of the Organization for Economic 
Cooperation and Development (OECD), which also implements 
an internal and external expert review of AOPs4. Many of the el-
ements of the systematic review standards can be easily incorpo-
rated into the AOP-Wiki to provide transparency in development 
of AOPs for risk assessment. Here we briefly outline some of our 
vision of what standards for AOPs might look like, along with 
some reasoning for their importance. 

Standard 1: Initiating an AOP systematic review project
The key element of this standard is to establish the systematic re-
view protocol. This includes describing exactly what the adverse 
outcome is that will be assessed, in what species the literature 
search will be conducted, describing the literature search and da-
ta extraction strategies, identifying any conflicts of interest that 
team members have, and describing the study quality protocols. 
The purpose of this standard is to ensure a rigorous protocol is 
in place, and that the investigators have given this some thought. 
Ideally, the project team would put their protocol out for com-
ment for a short period of time and incorporate the feedback they 
obtained prior to starting the project.

Standard 2: Execute the protocol 
The AOP team executes the searches, performs study quality 
analyses (this might include a risk of bias analysis), and extracts 
the data and places it into a centralized database. Any deviations 
from the protocol must be noted. To ensure transparency, the 

3 https://aopwiki.org
4 http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
5 https://ntp.niehs.nih.gov/ntp/ohat/pubs/riskofbiastool_508.pdf
6 https://github.com/DataSciBurgoon/aop-ontology

https://aopwiki.org
http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
https://ntp.niehs.nih.gov/ntp/ohat/pubs/riskofbiastool_508.pdf
https://github.com/DataSciBurgoon/aop-ontology
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uation of the aromatase inhibitor fadrozole in a short-term 
reproduction assay with the fathead minnow (Pimephales pro-
melas). Toxicol Sci 67, 121-130. doi:10.1093/toxsci/67.1.121

Ankley, G.T., Bennett, R. S., Erickson, R. J. et al. (2010). Ad-
verse outcome pathways: A conceptual framework to support 
ecotoxicology research and risk assessment. Environ Toxicol 
Chem 29, 730-741. doi:10.1002/etc.34

Avraham, R. and Yarden, Y. (2011). Feedback regulation of EGFR  
signaling, decision making by early and delayed loops. Nat 
Rev Mol Cell Bio 12, 104-117. doi:10.1038/nrm3048

Becker, R. A., Ankley, G. T., Edwards, S. W. et al. (2015). In-
creasing scientific confidence in adverse outcome pathways: 
Application of tailored Bradford-Hill considerations for eval-
uating weight of evidence. Regul Toxicol Pharmacol 72, 514-
537. doi:10.1016/j.yrtph.2015.04.004

Becker, R. A., Dellarco, V. Seed, J. et al. (2017). Quantitative 
weight of evidence to assess confidence in potential modes of 
action. Regul Toxicol Pharmacol 86, 205-220. doi:10.1016/j.
yrtph.2017.02.017

Bhalla, U. S. and Iyengar, R. (1999). Emergent properties of 
networks of biological signaling pathways. Science 283, 381-
387. doi:10.1126/science.283.5400.381

Boobis, A. R., Daston, G. P. Preston, R. J. and Olin, S. S. (2009). 
Application of key events analysis to chemical carcinogens 
and noncarcinogens. Crit Rev Food Sci Nutr 49, 690-707. 
doi:10.1080/10408390903098673

Breen, M., Villeneuve, D., Breen, M. et al. (2007). Mechanistic 
computational model of ovarian steroidogenesis to predict 
biochemical responses to endocrine active compounds. Ann 
Biomed Eng 35, 970-981. doi:10.1007/s10439-007-9309-7

Breen, M., Villeneuve, D. L., Ankley, G. T. et al. (2013). De-
veloping predictive approaches to characterize adaptive re-
sponses of the reproductive endocrine axis to aromatase inhi-
bition: II. Computational modeling. Toxicol Sci 133, 234-247. 
doi:10.1093/toxsci/kft067

Browne, L. J., Gude, C., Rodriguez, H. et al. (1991). Fadrozole 
hydrochloride: A potent, selective, nonsteroidal inhibitor of 
aromatase for the treatment of estrogen-dependent disease. J 
Med Chem 34, 725-736. doi:10.1021/jm00106a038

Burgoon, L. D., Druwe, I. L., Painter, K. and Yost., E. E. (2017). 
Using in vitro high-throughput screening data for predicting 
benzo[k]fluoranthene human health hazards. Risk Anal 37, 
280-290. doi:10.1111/risa.12613

Carr, J. A. and Patiño, R. (2011). The hypothalamus-pituitary-thy-
roid axis in teleosts and amphibians, endocrine disruption and 
its consequences to natural populations. Gen Comp Endocri-
nol 170, 299-312. doi:10.1016/j.ygcen.2010.06.001

Chepelev, N. L., Meek, M. E. and Yauk, C. L. (2014). Applica-
tion of benchmark dose modeling to protein expression data 
in the development and analysis of mode of action/adverse 
outcome pathways for testicular toxicity. J Appl Toxicol 34, 
1115-1121. doi:10.1002/jat.3071

Chiamolera, M. I. and Wondisford, F. E. (2009). Thyrotropin-re-
leasing hormone and the thyroid hormone feedback mecha-
nism. Endocrinology 150, 1091-1096. doi:10.1210/en.2008-
1795

future AOPs/qAOPs, and will facilitate meaningful dialogue, 
discussion, and the identification of best practices as we continue 
to develop these tools into the future.

4  Conclusion

These examples of qAOPs demonstrate several important points. 
1) Quantitative AOPs can be developed at many different stages 
(weight of evidence to mechanistic) depending on the amount 
of information available and the intended use. 2) qAOPs can be 
based on a combination of multiple modeling approaches includ-
ing deterministic mathematical models and statistical models.  
3) Regulatory mechanisms are not explicitly included as a sepa-
rate element in an AOP, yet are essential for developing accurate 
mechanistic qAOPs. If AOPs are to be useful in a mechanistic 
context, then the relationships between KE must be understood 
and examined in the context of regulatory interactions important 
in moving from one KE to another. 4) The application of qAOPs 
in a full risk assessment requires consideration of chemical ex-
posure since the amount of chemical present to initiate an AOP 
is dependent upon exposure conditions, chemical bioavailability, 
adsorption, distribution, metabolism, or excretion parameters. 
Therefore, an AOP coupled to exposure events provides an in-
tuitive framework for assessing the probability that exposure to 
a chemical will cause interaction with a MIE, thereby affecting 
molecular processes at the cellular level leading to adverse out-
comes such as cancer, decreased survival and reproduction, or 
declines in population size and growth. Future use in risk as-
sessment and decision-making will require a level of confidence 
in model predictions at least as high as the currently accepted 
methods. Further efforts will be required to benchmark the out-
put from these mathematical models against relevant datasets, 
such as human clinical datasets (e.g., diagnostic patch test data) 
or ecological species where appropriate (Maxwell et al., 2014), 
although the availability of such data may be limited.

We anticipate that in the near term, as high confidence AOPs 
begin to emerge, we will see the rise of computational predic-
tions based on AOPs for limited decision-making (e.g., priori-
tization, screening, and hazard identification), where assay data 
will be applied to these high confidence AOPs to make hazard 
predictions. Ultimately, this will lay the foundation for more 
quantitative use of AOPs in support of predictive toxicology and 
preliminary risk estimates that can be used by risk assessors as 
the starting point for future chemical risk assessments.

References 
Abt, E., Rodricks, J. V., Levy, J. I. et al. (2010). Science and de-

cisions, advancing risk assessment. Risk Anal 30, 1028-1036. 
doi:10.1111/j.1539-6924.2010.01426.x

Allen, T. E., Liggi, S., Goodman, J. M. et al. (2016). Using 
molecular initiating events to generate 2D structure-activity 
relationships for toxicity screening. Chem Res Toxicol 29, 
1611-1627. doi:10.1021/acs.chemrestox.6b00101

Ankley, G. T., Kahl, M. D., Jensen, K. M. et al. (2002). Eval-

https://doi.org/10.1093/toxsci/67.1.121
https://doi.org/10.1002/etc.34
https://doi.org/10.1038/nrm3048
https://doi.org/10.1016/j.yrtph.2015.04.004
https://doi.org/10.1016/j.yrtph.2017.02.017
https://doi.org/10.1016/j.yrtph.2017.02.017
https://doi.org/10.1126/science.283.5400.381
https://doi.org/10.1080/10408390903098673
https://doi.org/10.1007/s10439-007-9309-7
https://doi.org/10.1093/toxsci/kft067
https://doi.org/10.1021/jm00106a038
https://doi.org/10.1111/risa.12613
https://doi.org/10.1016/j.ygcen.2010.06.001
https://doi.org/10.1002/jat.3071
https://doi.org/10.1210/en.2008-1795
https://doi.org/10.1210/en.2008-1795
https://doi.org/10.1111/j.1539-6924.2010.01426.x
https://doi.org/10.1021/acs.chemrestox.6b00101


Perkins et al.

ALTEX 36(1), 2019       100

34190. doi:10.1074/jbc.M204887200
Groh, K. J., Carvalho, R. N., Chipman, J. K. et al. (2015a). De-

velopment and application of the adverse outcome pathway 
framework for understanding and predicting chronic toxicity: 
I. Challenges and research needs in ecotoxicology. Chemo-
sphere 120, 764-777. doi:10.1016/j.chemosphere.2014.09.068

Groh, K. J., Carvalho, R. N., Chipman, J. K. et al. (2015b). De-
velopment and application of the adverse outcome pathway 
framework for understanding and predicting chronic toxicity: 
II. A focus on growth impairment in fish. Chemosphere 120, 
778-792. doi:10.1016/j.chemosphere.2014.10.006

Gust, K. A., Collier, M. D., Mayo, M. et al. (2015). Limitations 
of toxicity characterization in life cycle assessment – Can 
adverse outcome pathways provide a new foundation? Integr 
Environ Assess Manag 12, 580-590. doi:10.1002/ieam.1708

Hashimoto, T., Cook, W. S., Qi, C. et al. (2000). Defect in 
peroxisome proliferator-activated receptor alpha-inducible 
fatty acid oxidation determines the severity of hepatic ste-
atosis in response to fasting. J Biol Chem 275, 28918-28928. 
doi:10.1074/jbc.M910350199

IOM – Institute of Medicine (2011). Finding What Works in 
Health Care: Standards for Systematic Reviews. Washington, 
DC, USA: National Academies Press.

Julien, E., Boobis, A. R., Olin, S. S. and ILSI Research Founda-
tion Threshold Working Group (2009). The key events dose-re-
sponse framework: A cross-disciplinary mode-of-action based 
approach to examining dose-response and thresholds. Crit Rev 
Food Sci Nutr 49, 682-689. doi:10.1080/10408390903110692

Judson, R. S., Magpantay, F. M., Chickarmane, V. et al. (2015). 
Integrated model of chemical perturbations of a biological 
pathway using 18 in vitro high-throughput screening assays for 
the estrogen receptor. Toxicol Sci 148, 137-154. doi:10.1093/
toxsci/kfv168

Kay, H. Y., Kim, W. D., Hwang, S. J. et al. (2011). Nrf2 inhibits 
LXRα-dependent hepatic lipogenesis by competing with FXR 
for acetylase binding. Antioxid Redox Signal 15, 2135-2146. 
doi:10.1089/ars.2010.3834 

Koller, D. and Friedman, N. (2009). Probabilistic Graphical 
Models: Principles and Techniques. MIT Press.

Krewski, D., Westphal, M., Andersen, M. E. et al. (2014). A 
framework for the next generation of risk science. Environ 
Health Perspect 122, 796-805. doi:10.1289/ehp.1307260

Liebsch, M., Grune, B., Seiler, A. et al. (2011). Alternatives to 
animal testing, current status and future perspectives. Arch 
Toxicol 85, 841-858. doi:10.1007/s00204-011-0718-x

Linkov, I., Satterstrom, F. K., Kiker, G. et al. (2006). Multicrite-
ria decision analysis: A comprehensive decision approach for 
management of contaminated sediments. Risk Anal 26, 61-78. 
doi:10.1111/j.1539-6924.2006.00713.x

Linkov, I. and Seager, T. P. (2011). Coupling multi-criteria de-
cision analysis, life-cycle assessment, and risk assessment 
for emerging threats. Environ Sci Technol 45, 5068-5074. 
doi:10.1021/es100959q

Linkov, I., Welle, P., Loney, D. et al. (2011). Use of multicriteria 
decision analysis to support weight of evidence evaluation. Risk 
Anal 31, 1211-1225. doi:10.1111/j.1539-6924.2011.01585.x

Claeys, L., Iaccino, F., Janssen, C. R. et al. (2013). Development 
and validation of a quantitative structure-activity relationship 
for chronic narcosis to fish. Environ Toxicol Chem 32, 2217-
2225. doi:10.1002/etc.2301

Conolly, R. B., Ankley, G. T., Cheng, W. et al. (2017). Quan-
titative adverse outcome pathways and their application to 
predictive toxicology. Environ Sci Technol 51, 4661-4672. 
doi:10.1021/acs.est.6b06230 

Cowan, N. J., Ankarali, M. M., Dyhr, J. P. et al. (2014). Feedback 
control as a framework for understanding tradeoffs in biology. 
Integr Comp Biol 54, 223-237. doi:10.1093/icb/icu050

Cox, L. A. T., Popken, D., Marty, M. S. et al. (2014). Develop-
ing scientific confidence in HTS-derived prediction models: 
Lessons learned from an endocrine case study. Regul Toxicol 
Pharmacol 69, 443-450. doi:10.1016/j.yrtph.2014.05.010

Cronin, M. T. D., Enoch, S. J., Mellor, C. L. (2017). In silico pre-
diction of organ level toxicity: Linking chemistry to adverse ef-
fects. Toxicol Res 33, 173-182. doi:10.5487/TR.2017.33.3.173

Crump, K. S., Chen, C., Chiu, W. A. et al. (2010). What role 
for biologically based dose-response models in estimat-
ing low-dose risk? Environ Health Perspect 118, 585-588. 
doi:10.1289/ehp.0901249

Davies, M., Pendlington, R. U., Roper, C. S. et al. (2011). Deter-
mining epidermal dispositions kinetics for use in an integrated 
nonanimal approach to skin sensitization risk assessment. Tox-
icol Sci 119, 308-318. doi:10.1093/toxsci/kfq326

Dom, N., Vergauwen, L., Vandenbrouck, T. et al. (2012). Physio-
logical and molecular effect assessment versus physico-chem-
istry based mode of action schemes: Daphnia magna exposed 
to narcotics and polar narcotics. Environ Sci Technol 46, 10-
18. doi:10.1021/es201095r

Duval, S. and Tweedie, R. (2000). Trim and fill: A simple funnel-
plot-based method of testing and adjusting for publication bias 
in meta-analysis. Biometrics 56, 455-463. doi:10.1111/j.0006-
341X.2000.00455.x

Farmahin, R., Williams, A., Kuo, B. et al. (2016). Recommend-
ed approaches in the application of toxicogenomics to derive 
points of departure for chemical risk assessment. Arch Toxicol 
91, 2045-2065. doi:10.1007/s00204-016-1886-5

Forbes, V. E. and Calow, P. (2012). Promises and problems for 
the new paradigm for risk assessment and an alternative ap-
proach involving predictive systems models. Environ Toxicol 
Chem 31, 2663-2671. doi:10.1002/etc.2009

Galbraith, R. F. (1990). The radial plot: Graphical assessment 
of spread in ages. Int J Rad Appl Instrum D Nuc Tracks Rad 
Meas 17, 207-214. doi:10.1016/1359-0189(90)90036-W

Garcia-Reyero, N. (2015). Are adverse outcome pathways here 
to stay? Environ Sci Technol 49, 3-9. doi:10.1021/es504976d

Goodwin, B., Jones, S. A., Price, R. R. et al. (2000). A regu-
latory cascade of the nuclear receptors FXR, SHP-1, and 
LRH-1 represses bile acid biosynthesis. Mol Cell 6, 517-526. 
doi:10.1016/S1097-2765(00)00051-4

Grefhorst, A., Elzinga, B. M., Voshol, P. J. et al. (2002). Stimula-
tion of lipogenesis by pharmacological activation of the liver 
X receptor leads to production of large, triglyceride-rich very 
low density lipoprotein particles. J Biol Chem 277, 34182-

https://doi.org/10.1074/jbc.M204887200
https://doi.org/10.1016/j.chemosphere.2014.09.068
https://doi.org/10.1016/j.chemosphere.2014.10.006
https://doi.org/10.1002/ieam.1708
https://doi.org/10.1074/jbc.M910350199
https://doi.org/10.1080/10408390903110692
https://doi.org/10.1093/toxsci/kfv168
https://doi.org/10.1093/toxsci/kfv168
https://doi.org/10.1089/ars.2010.3834
https://doi.org/10.1289/ehp.1307260
https://doi.org/10.1007/s00204-011-0718-x
https://doi.org/10.1111/j.1539-6924.2006.00713.x
https://doi.org/10.1021/es100959q
https://doi.org/10.1111/j.1539-6924.2011.01585.x
https://doi.org/10.1002/etc.2301
https://doi.org/10.1021/acs.est.6b06230
https://doi.org/10.1093/icb/icu050
https://doi.org/10.1016/j.yrtph.2014.05.010
https://doi.org/10.5487/TR.2017.33.3.173
https://doi.org/10.1289/ehp.0901249
https://doi.org/10.1093/toxsci/kfq326
https://doi.org/10.1021/es201095r
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1007/s00204-016-1886-5
https://doi.org/10.1002/etc.2009
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2F1359-0189%2890%2990036-W
https://doi.org/10.1021/es504976d
https://doi.org/10.1016/S1097-2765(00)00051-4


Perkins et al.

ALTEX 36(1), 2019 101

application of adverse outcome pathways for regulatory pur-
poses. Regul Toxicol Pharmacol 71, 463-477. doi:10.1016/j.
yrtph.2015.02.011

Pearl, J. (2010). An introduction to causal inference. Int J Biostat 
6, Article 7. doi:10.2202/1557-4679.1203 

Perkins, E. J., Antczak, P. Burgoon, L. et al. (2015). Adverse 
outcome pathways for regulatory applications, examination of 
four case studies with different degrees of completeness and 
scientific confidence. Toxicol Sci 148, 14-25. doi:10.1093/
toxsci/kfv181

Pineda Torra, I., Claudel, T., Duval, C. et al. (2003). Bile acids 
induce the expression of the human peroxisome prolifera-
tor-activated receptor α gene via activation of the farnesoid X 
receptor. Mol Endocrinol 17, 259-272. doi:10.1210/me.2002-
0120

Pirone, J. R., Smith, M., Kleinstreuer, N. C. et al. (2014). Open 
source software implementation of an integrated testing strate-
gy for skin sensitization potency based on a Bayesian network. 
ALTEX 31, 336-340. doi:10.14573/altex.1310151

Reddy, J. K. (2001). Nonalcoholic steatosis and steatohepatitis. 
III. Peroxisomal beta-oxidation, PPAR alpha, and steatohepa-
titis. Am J Physiol Gastrointest Liver Physiol 281, G1333-9. 
doi:10.1152/ajpgi.2001.281.6.G1333

Rhomberg, L. (2014). Hypothesis-based weight of evidence: 
An approach to assessing causation and its application to 
regulatory toxicology. Risk Anal 35, 1114-1124. doi:10.1111/
risa.12206 

Rotroff, D. M., Dix, D. J., Houck, K. A. et al. (2013). Using in 
vitro high throughput screening assays to identify potential en-
docrine-disrupting chemicals. Environ Health Perspect 121, 
7-14. doi:10.1289/ehp.1205065

Rovida, C., Asakura, S., Daneshian, M. et al. (2015). Toxicity 
testing in the 21st century beyond environmental chemicals. 
ALTEX 32, 171-181. doi:10.14573/altex.1506201

Schmieder, P. K., Kolanczyk, R. C., Hornung, M. W. et al. 
(2014). A rule-based expert system for chemical prioritization 
using effects-based chemical categories. SAR QSAR Environ 
Res 25, 253-287. doi:10.1080/1062936X.2014.898691

Shao, D., Berrodin, T. J., Manas, E. et al. (2004). Identification 
of novel estrogen receptor α antagonists. J Steroid Biochem 
Mol Biol 88, 351-360. doi:10.1016/j.jsbmb.2004.01.007

Sharif, A. l., Alov, M. P., Vitcheva, V. et al. (2014). Modes-
of-action related to repeated dose toxicity: Tissue-specific 
biological roles of PPARγ ligand-dependent dysregulation 
in nonalcoholic fatty liver disease. PPAR Res 2014, 432647. 
doi:10.1155/2014/432647

Shoemaker, J. E., Gayen, K., Garcia-Reyero, N. et al. (2010). 
Fathead minnow steroidogenesis: In silico analyses reveals 
tradeoffs between nominal target efficacy and robustness to 
cross-talk. BMC Syst Biol 4, 89. doi:10.1186/1752-0509-4-89

Simon, T. W., Simons, S. S., Jr., Preston, R. J. et al. (2014). The 
use of mode of action information in risk assessment: Quan-
titative key events/dose-response framework for modeling the 
dose-response for key events. Crit Rev Toxicol 44, 17-43. doi:
10.3109/10408444.2014.931925

Sonich-Mullin, C., Fielder, R., Wiltse, J. et al. (2001). IPCS 

Linkov, I. (2015). From “weight of evidence” to quantitative data 
integration using multicriteria decision analysis and Bayesian 
methods. ALTEX 32, 3-8. doi:10.14573/altex.1412231

Lu, T. T., Makishima, M., Repa, J. J. et al. (2000). Molecular 
basis for feedback regulation of bile acid synthesis by nu-
clear receptors. Mol Cell 6, 507-515. doi:10.1016/S1097-
2765(00)00050-2

Mackay, D., Arnot, J. A., Petkova, E. P. et al. (2009). The phys-
icochemical basis of QSARs for baseline toxicity. SAR QSAR 
Environ Res 20, 393-414. doi:10.1080/10629360902949153

MacKay, C., Davies, M., Summerfield, V. and Maxwell, G. 
(2013). From pathways to people: Applying the adverse out-
come pathway (AOP) for skin sensitization to risk assessment. 
ALTEX 30, 473-486. doi:10.14573/altex.2013.4.473

Maxwell, G., MacKay, C., Cubberley, R. et al. (2014). Apply-
ing the skin sensitisation adverse outcome pathway (AOP) 
to quantitative risk assessment. Toxicol In Vitro 28, 8-12. 
doi:10.1016/j.tiv.2013.10.013

McConnell, E. R., Bell, S. M., Cote, I. et al. (2014). Systematic 
omics analysis review (SOAR) tool to support risk assessment. 
PLoS One 9, e110379. doi:10.1371/journal.pone.0110379

Meek, M. E., Bucher, J. R., Cohen, S. M. et al. (2003). A 
framework for human relevance analysis of information on 
carcinogenic modes of action. Crit Rev Toxicol 33, 591-653. 
doi:10.1080/713608373

Meek, M. E., Boobis, A., Cote, I. et al. (2014). New develop-
ments in the evolution and application of the WHO/IPCS 
framework on mode of action/species concordance analysis. J 
Appl Toxicol 34, 1-18. doi:10.1002/jat.2949

Miller, D. H., Jensen, K. M., Villeneuve, D. L. et al. (2007). 
Linkage of biochemical responses to population-level ef-
fects: A case study with vitellogenin in the fathead minnow 
(Pimephales promelas). Environ Toxicol Chem 26, 521-527. 
doi:10.1897/06-318R.1

Morán-Salvador, E., López-Parra, M., García-Alonso, V. et al. 
(2011). Role for PPARγ in obesity-induced hepatic steatosis 
as determined by hepatocyte- and macrophage-specific con-
ditional knockouts. FASEB J 25, 2538-2550. doi:10.1096/
fj.10-173716

Norris, D. O. and Carr, J. A. (2013). Vertebrate Endocrinology. 
5th edition. Academic Press. ISBN 9780123964656.

NRC – National Research Council (1983). Risk Assessment in 
the Federal Government: Managing the Process. Washington, 
DC: The National Academies Press. doi:10.17226/366 

NRC (2007). Toxicity Testing in the 21st Century: A Vision and 
a Strategy. Washington, DC: The National Academies Press. 
doi:10.17226/11970 

NRC (2009). Science and Decisions: Advancing Risk Assessment.  
Washington, DC: The National Academies Press. doi:10. 
17226/12209 

OECD (2013). Revised Guidance Document for Developing and 
Assessing Adverse Outcome Pathways (AOPs). 2nd edition. 
ENV/JM/MONO(2013)6. Series on Testing and Assessment 
No. 184. OECD Publishing, Paris. https://bit.ly/1RJXOEx

Patlewicz, G., Simon, T. W., Rowlands, J. C. et al. (2015). Pro-
posing a scientific confidence framework to help support the 

https://doi.org/10.1016/j.yrtph.2015.02.011
https://doi.org/10.1016/j.yrtph.2015.02.011
https://doi.org/10.2202/1557-4679.1203
https://doi.org/10.1093/toxsci/kfv181
https://doi.org/10.1093/toxsci/kfv181
https://doi.org/10.1210/me.2002-0120
https://doi.org/10.1210/me.2002-0120
https://doi.org/10.14573/altex.1310151
https://doi.org/10.1152/ajpgi.2001.281.6.G1333
https://doi.org/10.1111/risa.12206
https://doi.org/10.1111/risa.12206
https://doi.org/10.1289/ehp.1205065
https://doi.org/10.14573/altex.1506201
https://doi.org/10.1080/1062936X.2014.898691
https://doi.org/10.1016/j.jsbmb.2004.01.007
https://doi.org/10.1155/2014/432647
https://doi.org/10.1186/1752-0509-4-89
https://doi.org/10.3109/10408444.2014.931925
https://doi.org/10.3109/10408444.2014.931925
https://doi.org/10.14573/altex.1412231
https://doi.org/10.1016/S1097-2765(00)00050-2
https://doi.org/10.1016/S1097-2765(00)00050-2
https://doi.org/10.1080/10629360902949153
https://doi.org/10.14573/altex.2013.4.473
https://doi.org/10.1016/j.tiv.2013.10.013
https://doi.org/10.1371/journal.pone.0110379
https://doi.org/10.1080/713608373
https://doi.org/10.1002/jat.2949
https://doi.org/10.1897/06-318R.1
https://doi.org/10.1096/fj.10-173716
https://doi.org/10.1096/fj.10-173716
https://doi.org/10.17226/366
https://doi.org/10.17226/11970
https://doi.org/10.17226/12209
https://doi.org/10.17226/12209
https://bit.ly/1RJXOEx


Perkins et al.

ALTEX 36(1), 2019       102

es of the reproductive endocrine axis to aromatase inhibition: 
I. Data generation in a small fish model. Toxicol Sci 133, 225-
233. doi:10.1093/toxsci/kft068

Villeneuve, D. L., Crump, D., Garcia-Reyero, N. et al. (2014a). 
Adverse outcome pathway (AOP) development I: Strategies 
and principles. Toxicol Sci 142, 312-320. doi:10.1093/toxsci/
kfu199

Villeneuve, D. L., Crump, D., Garcia-Reyero, N. et al. (2014b). 
Adverse outcome pathway development II: Best practices. 
Toxicol Sci 142, 321-330. doi:10.1093/toxsci/kfu200

Volz, D. C., Belanger, S. Embry, M. et al. (2011). Adverse out-
come pathways during early fish development: A conceptual 
framework for identification of chemical screening and pri-
oritization strategies. Toxicol Sci 123, 349-358. doi:10.1093/
toxsci/kfr185

Weber, P., Medina-Oliva, G., Simon, C. and Iung, B. (2012). 
Overview on Bayesian networks applications for dependabil-
ity, risk analysis and maintenance areas. Eng Appl Artif Intel 
25, 671-682. doi:10.1016/j.engappai.2010.06.002

Webster, A. F., Chepelev, N., Gagné, R. et al. (2015). Impact of 
genomics platform and statistical filtering on transcriptional 
benchmark doses (BMD) and multiple approaches for se-
lection of chemical point of departure (PoD). PLoS One 10, 
e0136764. doi:10.1371/journal.pone.0136764

Weed, D. L. (2005). Weight of evidence, a review of concept 
and methods. Risk Anal 25, 1545-1557. doi:10.1111/j.1539-
6924.2005.00699.x

Zang, Q., Rotroff, D. M. and Judson, R. S. (2013). Binary classi-
fication of a large collection of environmental chemicals from 
estrogen receptor assays by quantitative structure-activity re-
lationship and machine learning methods. J Chem Inf Model 
53, 3244-3261. doi:10.1021/ci400527b

Conflict of interest
The authors declare that they have no conflicts of interest.

conceptual framework for evaluating a mode of action for 
chemical carcinogenesis. Regul Toxicol Pharmacol 34, 146-
152. doi:10.1006/rtph.2001.1493

Suter, G. W., II and Cormier, S. M. (2011). Why and how to 
combine evidence in environmental assessments: Weighing 
evidence and building cases. Sci Total Environ 409, 1406-
1417. doi:10.1016/j.scitotenv.2010.12.029

Thomas, R. S., Allen, B. C., Nong, A. et al. (2007). A method 
to integrate benchmark dose estimates with genomic data to 
assess the functional effects of chemical exposure. Toxicol Sci 
98, 240-248. doi:10.1093/toxsci/kfm092

Tollefsen, K. E., Scholz, S. Cronin, M. T. et al. (2014). Apply-
ing adverse outcome pathways (AOPs) to support integrated 
approaches to testing and assessment (IATA). Regul Toxicol 
Pharmacol 70, 629-640. doi:10.1016/j.yrtph.2014.09.009

Tong, W., Perkins, R., Xing, L. et al. (1997). QSAR models 
for binding of estrogenic compounds to estrogen receptor 
alpha and beta subtypes. Endocrinology 138, 4022-4025. 
doi:10.1210/endo.138.9.5487

USEPA – US Environmental Protection Agency (2005). Guide-
lines for Carcinogen Risk Assessment. Risk Assessment Fo-
rum, US Environmental Protection Agency, Washington, DC.

van Wezel, A. P. and Opperhuizen, A. (1995). Narcosis due to 
environmental pollutants in aquatic organisms: Residue-based 
toxicity, mechanisms, and membrane burdens. Crit Rev Toxi-
col 25, 255-279. doi:10.3109/10408449509089890

Verhaar, H. J., Van Leeuwen, C. J. and Hermens, J. L. (1992). 
Classifying environmental pollutants. 1: Structure-activity 
relationships for prediction of aquatic toxicity. Chemosphere 
25, 471-491. doi:10.1016/0045-6535(92)90280-5

Villeneuve, D. L., Mueller, N. D., Martinović, D. et al. (2009). 
Direct effects, compensation, and recovery in female fathead 
minnows exposed to a model aromatase inhibitor. Environ 
Health Perspect 117, 624-631. doi:10.1289/ehp.11891

Villeneuve, D. L., Breen, M., Bencic, D. C. et al. (2013). Devel-
oping predictive approaches to characterize adaptive respons-

https://doi.org/10.1093/toxsci/kft068
https://doi.org/10.1093/toxsci/kfu199
https://doi.org/10.1093/toxsci/kfu199
https://doi.org/10.1093/toxsci/kfu200
https://doi.org/10.1093/toxsci/kfr185
https://doi.org/10.1093/toxsci/kfr185
https://doi.org/10.1016/j.engappai.2010.06.002
https://doi.org/10.1371/journal.pone.0136764
https://doi.org/10.1111/j.1539-6924.2005.00699.x
https://doi.org/10.1111/j.1539-6924.2005.00699.x
https://doi.org/10.1021/ci400527b
https://doi.org/10.1006/rtph.2001.1493
https://doi.org/10.1016/j.scitotenv.2010.12.029
https://doi.org/10.1093/toxsci/kfm092
https://doi.org/10.1016/j.yrtph.2014.09.009
https://doi.org/10.1210/endo.138.9.5487
https://doi.org/10.3109/10408449509089890
https://doi.org/10.1016/0045-6535(92)90280-5
https://doi.org/10.1289/ehp.11891

