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otherwise not engaged signaling pathways (Moore et al., 2001). 
Moreover, the use of FCS is incompatible with donations of cells 
to humans for therapeutic purposes (Barsotti et al., 2013; Doucet 
et al., 2005). Due to these concerns, alternative strategies to the 
use of FCS have been considered. 

While fully recombinant serum replacements are still a cost is-
sue, human platelet lysate (hPL) could be a valid and ethically 
justifiable option. Human keratinocyte cells, renal epithelial cells, 
and various leukemic and solid tumor cell lines can be propagat-
ed in hPL (Fazzina et al., 2016; Rauch et al., 2011; Baik et al., 
2014; Bernardi et al., 2013). This also holds true for primary hu-
man and rodent cells (adipocytes, amniotic fluid stem cells, bone 
marrow stromal cells, chondrocytes, corneal cells, endothelial  
cells, keratinocytes, mesenchymal stem cells, monocytes, osteo-
blasts) (Barsotti et al., 2013; Doucet et al., 2005; Glovinski et al., 
2017). These cell types maintain functionality and signaling in 
various assays, and some reports even show a better cell prolifer-
ation in hPL than in FCS (Bernardi et al., 2013; Glovinski et al., 

1  Introduction

Cell culture experiments can replace a large number of animal 
experiments. However, FCS, a very frequently used additive 
in cell culture experiments (Gstraunthaler, 2003; Gstraunthal-
er et al., 2014), is drawn from unborn calves older than three 
months gestation and its collection represents a massive burden 
for the animals. A needle is inserted into the heart of the fetus 
to obtain blood and, since the animals are not under anesthesia, 
they may suffer pain and discomfort. Additional problems aris-
ing from the use of FCS are its potential to be a source of con-
taminations and the commonly observed variations in its quality, 
which make FCS an unreliable growth stimulator (Gstraunthaler, 
2003; Gstraunthaler et al., 2014). Moreover, the addition of bo-
vine proteins to human or mouse cell cultures, which are the cell 
types most frequently used in biomedical research, can lead to 
artifacts. For example, FCS can blur the identity of freshly iso-
lated pancreatic cancer cells by its ability to excessively trigger 
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Abstract
Experiments with cultured mammalian cells represent an in vitro alternative to animal experiments. Fetal calf serum (FCS) 
is the most commonly used medium supplement worldwide. FCS contains a variable mixture of growth factors and cyto-
kines that support cell proliferation. This undefined nature of FCS is a source of experimental variation, undesired immune 
responses, possible contaminations and, because of the way it is obtained, an ethical concern. Thus, alternative, defined, 
valid, and reliable medium supplements should be characterized in a large number of experiments. Human platelet lysate 
(hPL) is increasingly appreciated as an alternative to FCS. Since it is unclear whether cells respond differentially to clin-
ically relevant chemotherapeutics inducing replicative stress and DNA damage (hydroxyurea, irinotecan), induction of 
reactive oxygen species (ROS), the tyrosine kinase inhibitor (TKi) imatinib, and novel epigenetic modifiers belonging 
to the group of histone deacetylase inhibitors (HDACi), we investigated these issues. Here we show that cancer cells 
derived from leukemia and colon cancer grow very similarly in culture media supplemented with FCS or outdated hPL. 
Notably, cells have practically identical proteomes under both culture conditions. Moreover, cells grown with FCS or hPL 
responded equally to all types of drugs and stress conditions that we tested. In addition, the transfection of blood cells by 
electroporation can be achieved under both conditions. Furthermore, we reveal that class I HDACs, but not HDAC6, are 
required for the expression of the pan-leukemic marker WT1 under various culture conditions. Hence, hPL is a moderately 
priced substitute for FCS in various experimental settings.
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covered depth that the proteomes of leukemic cells cultured in 
hPL or FCS are practically identical. Moreover, both cell types 
responded equally to all stress conditions that we tested and the 
growth in hPL renders even hard-to-transfect hematopoietic cells 
suitable transfection hosts for siRNAs.

The use of hPL follows the principles of the 3Rs (Replacement, 
Reduction, Refinement) in order to provide alternatives to animal 
experiments. Our data suggest that hPL represents a reliable al-
ternative for FCS in cell culture experiments. This could reduce 
or even replace FCS and thereby the collection of blood from un-
born fetuses. 

2  Materials and methods

Generation of hPL
Outdated human platelet concentrates in human plasma (2-4 x 
1011/unit; unit = 200-250 ml) were the source of hPL. They were 
received from healthy donors at the Transfusion Centre of the Uni-
versity Medical Center Mainz with sterile instruments. Samples 
were tested negative for hepatitis B, C and E, HIV, CMV, parvovi-
rus B19, and Treponema pallidum. The concentrates had been man-
ufactured by apheresis (aPC), and were no more than 3 days too 
old to be given to patients. Manufacturing and specifications of the 
aPC were in accordance with the German law (BMJV, 2005) and 
German guidelines (Bundesärztekammer, 2017). The concentrates 
were stored at -80°C. We worked with four independent pools of 
hPL generated by combining at least 3 platelet units each from a 
different donor. This strategy was chosen to reduce donor-depen-
dent variations. Platelets were disrupted by freezing (-80°C) and 
thawing (37°C) cycles to generate platelet lysate. The lysates were 
centrifuged twice at 2600xg for 20 min to remove larger cell frag-
ments, then sterile-filtered through a 0.22 µM membrane. 

Cell lines and adaptation process
We adapted three human leukemia cell lines (K562, NB4, and 
MV4-11) as well as HCT116 colon cancer cells to culture media 
(RPMI for K562, NB4, and MV4-11 and DMEM for HCT116 
(media from Sigma-Aldrich)) containing 10% FCS, 5% FCS, 1% 
FCS (Gibco), 5% hPL or 1% hPL. To block coagulation, 2 U/ml 
heparin were added to the media containing hPL for K562, NB4 
and MV4-11 cells and 4 U/ml were added for HCT116 cells. All 
media contained 1% penicillin/streptomycin (Gibco); RPMI me-
dium was additionally supplemented with 2% L-glutamine. Cells 
were adapted for at least 3 weeks before the first experiments. Ev-
ery 3-4 days, cells were suspended firmly, passaged in a ratio of 
1:15-1:20, and fresh medium was added. Adherent HCT116 cells 
were washed with phosphate buffered saline (PBS), detached 
from the culture flasks by trypsin/EDTA (0.5 g/l), and also pas-
saged in a ratio of 1:15-1:20. We analyzed cell morphology by 
light microscopy (Axiovert 35, Carl Zeiss). Growth kinetics were 
examined by counting. Cell cycle distributions were investigated 
by flow cytometry (FACS Canto II, BD Biosciences). To assess 
whether cells grown with hPL can be frozen and thawed for con-
tinuous propagation, we froze cells in culture media containing 
5% hPL and 10% DMSO at -80°C overnight and then in liquid 
nitrogen for up to about one year. Thawed cells grew similarly to 

2017; Barsotti et al., 2013). Assessment of DNA methylation pat-
terns and the transcriptomes of mesenchymal stromal cells grown 
in hPL or FCS revealed very similar gene expression patterns un-
der these conditions (Fernandez-Rebollo et al., 2017). 

Furthermore, cells grown in xenogeneic-free hPL are therapeu-
tically useful (Sergeeva et al., 2016; Riis et al., 2016; Thieme et 
al., 2017). They could be used for bone regeneration, osteoarthritis, 
the therapy of stroke, wound healing, and other applications (Tan 
et al., 2016; Sergeeva et al., 2016; Altaie et al., 2016; Martinelli et 
al., 2016; Riis et al., 2016; Lykov et al., 2017; Thieme et al., 2017; 
Leijs et al., 2017). Indeed, bone marrow stromal cells cultured in 
hPL are currently being tested in a phase I study involving patients 
with acute ischemic stroke (Shichinohe et al., 2017). Furthermore, 
primary cells grown in hPL maintain their genomic integrity and 
do not form tumors in vivo, a key requisite for clinical applications 
(Tan et al., 2016; Altaie et al., 2016; Martinelli et al., 2016). 

Since fresh hPL is required for clinical use, it has been investigat-
ed whether outdated hPL could be a valid additive to cultivate adi-
pose stem cells. Promisingly, outdated hPL is useful for this purpose 
(Rauch et al., 2011; Glovinski et al., 2017) and microarray analyses 
revealed no significant differences in gene expression profiles of 
cells cultured in fresh or outdated hPL (Glovinski et al., 2017).

As DNA-damaging chemotherapy is a mainstay of tumor ther-
apy, the question was raised whether cells grown in hPL respond 
to such agents. The reactions of leukemic cells (KG-1a, HL60, 
Jurkat) to the DNA-damaging agent adriamycin in the presence 
of hPL or FCS are equal (Fazzina et al., 2016). However, it has 
not been clarified whether FCS and hPL differentially affect the 
DNA damage response that is triggered by a more diverse array 
of stimuli and in various cell types.

We assessed whether the reactions of leukemic cells to imati-
nib, hydroxyurea, and HDACi are affected variably by hPL and 
FCS. We carried out the same tests with colon cancer cells that 
we treated with irinotecan or the ROS inducer t-BOOH. Irino-
tecan inhibits topoisomerase-1 and is a standard drug for colon 
cancer (Tomicic and Kaina, 2013; Rauch et al., 2018). We chose 
these agents based on their clinical relevance and on the fact that 
inducers of ROS and inhibitors of HDACs occur endogenously 
(Krämer, 2009; Newman and Verdin, 2014) and may hence be 
differentially contained in FCS and hPL. Hydroxyurea inhibits 
ribonucleotide reductase and can be used to reduce leukemic cell 
counts (Eklund et al., 2001; Nazha and Gerds, 2016), imatinib 
is used to treat BCR-ABL-positive chronic myeloid leukemia 
(CML) (Lamontanara et al., 2013). HDACi are more and more 
frequently used for leukemia patients and these agents are being 
considered for the therapy of further forms of cancer (Ceccacci 
and Minucci, 2016; Krämer et al., 2014). To assess cellular re-
sponses at the molecular level, we assessed how hydroxyurea, 
imatinib, and HDACi affect cancer-relevant molecules. These 
include the transcription factor Wilms tumor-1 (WT1), which 
is a marker for rapidly proliferating cells and cancer stem cells 
(Svensson et al., 2007; Makki et al., 2008; Ruan et al., 2018; Pons 
et al., 2018), and p53, which is seen as the guardian of the ge-
nome (Hofseth et al., 2004).

We show that leukemic cells and colon cancer cells grow in 
hPL equally well to slightly better than in FCS. Proteomics fol-
lowed by mass spectrometry demonstrates in a previously not 
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Raw files were processed with MaxQuant (1.5.2.8) (Cox and 
Mann, 2008) using standard settings, except “match between 
runs” and “LFQ quantitation” were activated. The search was 
performed against a human Uniprot database (81194 entries). 

LFQ normalized intensities were processed using R scripts, 
including filtering of contaminants and putative false positives. 
For experiments with replicates, imputation for missing values 
was performed using the bpca method (Stacklies et al., 2007) for 
proteins detected in at least one replicate. For non-quantified pro-
teins in any replicate, an arbitrary log2 intensity of 22 was as-
signed, which is the lowest value across the intensity distribution. 
Afterwards, mean values were computed for each condition per 
protein and plotted using the software “R”.

Transfection
1x106 K562 cells were transfected via electroporation according 
to the protocol for K562 cells (ATCC®) with the Ingenio kit solu-
tion (Mirus; 100 µl solution per sample). 2x106 NB4 cells were 
electroporated according to the protocol for NB4 cells (ATCC®) 
with the Ingenio kit solution (Mirus; 100 µl solution per sample) 
and MV4-11 cells according to the protocol for MV4-11 cells with 
the Amaxa® Cell Line Nucleofector® Kit V (Lonza). 100 pmol  
siRNA (nontargeting control siRNA-B/sc-44230 (Santa Cruz) 
or siRNA targeting HDAC6/LQ-003499-00-0002 (Dharmacon) 
were electroporated with the Amaxa® Nucleofector® II Device 
(Lonza) using program T-016 for K562 cells and Q-001 for NB4 
and MV4-11 cells. Directly after electroporation, cells were incu-
bated for 24 h in 2 ml fresh medium per well. Without any wash-
ing steps in between, 2 ml fresh medium were added. Cells were 
harvested after another 24 h. 

Alkaline comet assay (also known as single cell gel  
electrophoresis assay)
HCT116 cells were seeded at a density of 1x106 cells/10 cm dish. 
24 h later, cells were treated for 24 h with the topoisomerase-I in-
hibitor irinotecan or 10-100 µM t-BOOH 20 min before harvest-
ing. The slides were coated with 1.5% agarose in PBS and dried 
overnight. 10 µl of a cell suspension with 2x106 cells/ml were di-
luted in 120 µl of 0.5% in PBS low melting point agarose (37°C) 
and added to the coated slides, which were afterwards covered 
with cover slips and incubated for 5 min at 4°C. The cover slips 
were removed sideward, the slides were incubated for 60 min in 
precooled lysis buffer (pH 10, 2.5 M NaCl, 100 mM EDTA, 10 mM  
Tris, 1% sodium lauroylsarcosinate, plus 1% Triton X-100 
and 10% DMSO added immediately before use) at 4°C. 
Slides were placed in an electrophoresis chamber and incubat-
ed in precooled electrophoresis buffer (300 mM NaOH, 1 mM  
EDTA, pH > 13) at 4°C in the dark for 30 min to allow unwind-
ing of the DNA and the exposure of alkali-labile DNA dam-
age. Electrophoresis was performed for 20 min at 4°C at 23 V 
and 300 mA in the dark. Subsequently, the slides were covered  
3 times with neutralization buffer (0.4 M Tris pH 7.5) for 5 
min and briefly immersed in dH2O. They were then fixed 
in 100% ethanol for 5 min. The slides were dried at RT for at  
least 2 h. DNA was stained with 50 µl propidium iodide (stock 
solution: 50 µg/ml, diluted 1:20 in dH2O). The slides were cov-
ered with cover slips and directly measured on a fluorescence mi-

those that had been frozen with 10% FCS. All cells were in culture 
for no longer than three months and were tested monthly for my-
coplasma contamination. K562 and NB4 cells were provided by 
Dr Manuel Grez (Frankfurt, Germany), MV4-11 cells by Prof. Dr 
Frank-Dietmar Böhmer (Jena, Germany), and HCT116 cells by 
Prof. Dr. Bert Vogelstein (Maryland, USA). Moreover, cells were 
authenticated by DNA fingerprint as specified (Pons et al., 2018; 
Göder et al., 2018). 

Drugs and chemicals
Romidepsin (stock solution: 1 mM in DMSO), entinostat (stock 
solution: 5 mM in DMSO), and irinotecan (stock solution: 10 mM  
in DMSO) were from Selleckchem; hydroxyurea (stock solution: 
100 mM in PBS) was from Sigma-Aldrich; and imatinib (stock 
solution: 1 mM in DMSO) and marbostat-100 (stock solution: 
10 mM in DMSO) were synthesized by A. Sellmer and S. Mah-
boobi. Marbostat-100 is patented as Mahboobi, Siavosh et al., 
Preperation of fused heterocyclic compunds as HDAC6 inhibi-
tors and their uses; WO2016020369A1. Except for hydroxyurea, 
which was always freshly prepared right before treatment, all 
stock solutions were stored at -80°C. All drugs were diluted in 
PBS before treatment. Purity of all drugs from Selleckchem and 
Sigma-Aldrich was ≥98% (HPLC). Imatinib and Marbostat-100  
also had purities of at least 98% (imatinib: 1H-NMR; mar-
bostat-100: 1H-NMR and elemental analysis).

Western blot
Antibodies were from Santa Cruz Biotechnology: p53 (sc-81168);  
Cell signaling: E-Cadherin (cs-3195), HDAC6 (cs-7558), phos-
pho-Ser15-p53 (cs-9284), γH2AX (cs-9718); Abcam: WT1 
(ab89901; ab201948); Enzo: HSP90 (ADI-SPA-830-F); Millipore:  
ac-H3 (06-599); Sigma: ac-Tubulin (T7451); BD Biosciences: 
β-Catenin (610153), RAC1 (610650); Pharmingen: Poly (ADP- 
Ribose) Polymerase (PARP1) (556362). Western blot procedure 
was done as described (Pons et al., 2018).

Flow cytometry
For cell cycle analysis, cells were fixed with ice cold 80% ethanol  
for 1 h to 1 week at -20°C. After centrifugation, cells were in-
cubated with RNase A (Sigma-Aldrich) in PBS for 1 h at room 
temperature and then stained with propidium iodide (Sigma- 
Aldrich). Samples were measured and analyzed by flow cytome-
try in a FACSCanto™ II as described (Pons et al., 2018). 

Proteomics
Protein expression patterns were determined by global scale pro-
teomics. Sample preparation and mass spectrometry were done 
as described (Kiweler et al., 2018). In short, proteins were sepa-
rated on a NOVEX NuPage 10% gel, proteins were reduced with 
DTT and subsequently alkylated with iodoacetamide (Sigma). 
In-gel digestion was done with trypsin (Sigma). Peptides were 
eluted from the gel with acetonitrile, which was removed in a 
concentrator (Eppendorf) prior to loading on a C18 StageTip. The 
measurement was performed on a Q Exactive Plus (Thermo), op-
erated in data-dependent acquisition mode with a top10 method. 
During the 240 min measurement, peptides were eluted with a 
2-40% acetonitrile/water gradient. 
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ditions in RPMI containing 5% hPL or 5% FCS. We performed 
the same experiment with colorectal cancer cells (HCT116) 
grown in DMEM with 10% FCS, 5% hPL, or 5% FCS.

After 3 weeks of growth in 5% FCS or 5% hPL, all four cell 
lines were morphologically indistinguishable from cells grown in 
10% FCS (Fig. S1A1). Furthermore, K562 cells and HCT116 cells 
grew equally well under the three different conditions (Fig. 2A, 
S1B1). NB4 cells grew best with 10% FCS and slightly slower 
with 5% FCS and 5% hPL. MV4-11 cells cultured with 5% hPL 
grew as well as those with 10% FCS, both better than with 5% 
FCS (Fig. 2A). 

We tested whether cells grown in hPL can be frozen and thawed 
for continuous propagation. Indeed, cells that had been frozen in 
medium containing 5% hPL started to grow similarly to cells that 
had been frozen with 10% FCS (Fig. S1B1 and data not shown).

Assessment of the cell cycle distributions of leukemic cells and 
colon cancer cells showed a trend towards fewer dead cells in 
cultures grown with 5% hPL (Fig. 2B).

Since HCT116 cells are driven by mutant β-catenin (Morin et 
al., 1997), we also assessed β-catenin expression in HCT116 cells 
cultured with hPL or FCS. We found no differences in β-catenin 
levels under the two culture conditions (Fig. S1C1). We addition-
ally assessed the levels of the adhesion molecule and epithelial 
marker protein E-cadherin, which contributes to the regulation 
of β-catenin, and of RAC1, which controls epithelial phenotypes 
(Kimura et al., 2006; Sander and Collard, 1999). These proteins 
were expressed equally well in HCT116 cells grown with FCS or 
hPL (Fig. S1C1). 

croscope (Nikon Instruments). DNA damage (measured as tail 
intensities) was evaluated with Comet IV software (Perceptive 
Imaging).

Statistics
All results were tested for statistical significance with GraphPad 
Prism 6. When two groups were analyzed, the unpaired, two-tailed 
Student’s t-test was used. With more than two groups, a two-way 
ANOVA test was performed with Bonferroni’s multiple compari-
sons and 95% confidence interval.

3  Results

3.1  Generation and characterization of hPL
Figure 1A shows how we generated hPL stocks (Fig. 1A). When 
we determined the protein concentrations of batches of FCS and 
hPL, we found that our hPL batch had a slightly higher protein 
content than the FCS batch (Fig. 1B). The FCS batch that we had 
chosen was used by us in previous experiments and gave immac-
ulate results regarding pathogen-free cell proliferation (data not 
shown).                       

3.2  Adaptation of cancer cells to media with hPL 
To find out whether leukemic cells (K562, NB4, MV4-11) grow 
in hPL, we compared the morphology and proliferation of cells 
that we propagated in RPMI containing 10% FCS to growth con-

1 doi:10.14573/altex.1809211s

Fig. 1: Process of human platelet  
lysate production
A) A minimum of 3 units of enriched 
platelets were pooled. Platelets were 
frozen at -80°C and thawed at 37°C thrice. 
Two centrifugation steps (2600xg, 20 min) 
removed larger cell debris. The lysate was 
filtered through a 0.22 µM filter to remove 
smaller debris. To avoid coagulation,  
2 U/ml heparin for suspension cells and  
4 U/ml for adherent cells were added. 
B) The protein concentrations of three 
independent stocks of FCS and hPL were 
compared using the Bradford assay, n = 3; 
mean ± SD; unpaired, two-tailed Student’s 
t-test, p = 0.0008.

https://doi.org/10.14573/altex.1809211s
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Fig. 2: Cultivation of leukemic and 
colorectal cells with FCS or hPL
A) K562, NB4, MV4-11, and HCT116  
cells were adapted to media containing  
10% FCS, 5% FCS, or 5% hPL. 
Experiments started earliest after  
3 weeks adaption time. Growth curves  
of K562, NB4, MV4-11, and HCT116 cells 
are shown. Cells were seeded on day 1 
at 0.2 x 104 cells/ml (K562, NB4, and  
MV4-11) or 0.1 x 105 cells/well (HCT116)  
in a 12-well plate and counted after every 
24 h until day 5. ANOVA: K562 grew  
slower in 10% FCS than in 5% FCS  
(****p ≤ 0.0001) or 5% hPL (**p ≤ 0.01) on 
day 4. NB4 cells grew faster in 10% FCS 
than in 5% FCS or 5% hPL (day 3,  
*p ≤ 0.05; day 4, ****p ≤ 0.0001). MV4-11 
cells grew slower in 5% FCS than in 10% 
FCS (day 3, *p ≤ 0.05; day 4, ***p ≤ 0.001; 
day 5, ****p ≤ 0.0001) and 5% hPL (day 4, 
***p ≤ 0.001; day 5, ****p ≤ 0.0001).  
HCT116 cells grew slower on day 4 and  
5 in 5% FCS than in 10% FCS (**p ≤ 0.01) 
and 5% hPL (*p ≤ 0.05). B) Cells were 
analyzed for cell cycle distributions via 
flow cytometry assessing DNA contents 
of fixed and PI-stained cells; n = 3; mean 
± SD; ANOVA: K562 cells have less cells 
in S-phase when cultured in 10% FCS 
than in 5% FCS or 5% hPL (**p ≤ 0.01). All 
other differences did not reach statistical 
significance. 

Fig. 3: Global scale proteomics of  
K562 cells cultivated with FCS or hPL
A) Three independent replicates of 
untreated K562 cells cultured in medium 
containing 10% FCS or 5% hPL were 
analyzed for global protein expression by 
label-free quantification (LFQ) via mass 
spectrometry (MS); n = 3; mean ± SD; 
1% false discovery rate (FDR). Heatmap 
shows changes in LFQ expression levels 
of proteins. Color gradient represents 
(log/relative) enrichment of proteins 
found by MS. B) Correlation plot shows 
protein abundances (MaxLFQ intensities) 
from single shot mass spectrometry 
measurements. All replicate correlation 
values were greater than 0.98, and 
correlation between different culture 
conditions was at least 0.98.
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BCR-ABL-positive K562 cells cultured in FCS or hPL respond 
to this drug. Irrespective of culture conditions in 5 or 10% FCS  
or 5% hPL, imatinib reduced the numbers of BCR-ABL-positive 
K562 cells in the S and G2/M phases and augmented the numbers 
of cells in G1 phase (Fig. 4A).

Imatinib has been shown to attenuate the expression of WT1 in  
BCR-ABL-positive leukemic cells (Svensson et al., 2007). We 
could verify this finding and found an equal reduction of WT1 
in K562 cells that were grown in 5 or 10% FCS or 5% hPL and 
imatinib (Fig. 4B).

Hence, culture conditions in FCS and hPL equally allow an as-
sessment of the pharmacological effects of imatinib.   

3.5  Reactions of leukemic cells to HDAC inhibition  
and regulation of WT1
Next, we tested whether cells cultured in media containing hPL or  
FCS respond differently to pharmacological inhibition of HDACs. 
 HDACi are becoming increasingly appreciated as novel an-
ti-cancer drugs. For our analyses we chose romidepsin, which is 
approved by the FDA for the treatment of a subset of hematolog-
ical malignancies (Ceccacci and Minucci, 2016). In addition, we 
used entinostat and marbostat-100. Like romidepsin, entinostat 
specifically inhibits class I HDACs HDAC1, -2, and -3 (Noack et 
al., 2017). Marbostat-100 is a novel agent that we have recently 
developed and characterized as the currently most selective in-
hibitor of HDAC6 (Sellmer et al., 2018; Leonhardt et al., 2018).

We treated K562 cells with romidepsin and marbostat-100 
and found that romidepsin led to G1 arrest and a loss of S phase 
cells in cultures growing with 10% FCS, 5% FCS, or 5% hPL 
(Fig. 5A). Marbostat-100 did not significantly change cell cycle  
distribution (Fig. 5A), which is consistent with previous data 
(Sellmer et al., 2018; Leonhardt et al., 2018). 

We found an equal inhibition of HDAC1, -2 and -3 by romide-
psin under all three incubation conditions by detection of the sur-
rogate marker acetylated Histone H3 (Krämer et al., 2014) using 
Western blot. Similarly, we could verify inhibition of HDAC6 by 
marbostat-100 (Krämer et al., 2014) in FCS- and hPL-based cul-
ture conditions by detection of acetylated tubulin using Western 
blot (Fig. 5B).

It has been found that class I HDACi decrease WT1 mRNA 
and protein expression (Makki et al., 2008) and it has been spec-
ulated that this inhibition may be mediated by inactivation of the 
chaperone HSP90 (Bansal et al., 2010). Western blot analyses re-
vealed that romidepsin significantly decreased WT1 and caused 
cleavage of PARP1 in K562 cells cultured in FCS or hPL. Mar-
bostat-100 led to a slight stabilization of WT1 (Fig. 5B,C).

To corroborate that leukemia cells respond equally to structur-
ally diverse HDACi in FCS and hPL, we used MV4-11 cells as 
an additional system and treated them with entinostat as a further 
HDACi. PI-staining showed a comparable cell cycle distribution 
following treatment, independent of culture conditions in FCS or 
hPL (Fig. S3A1). As MV4-11 cells react very sensitively to this 
agent, we had a closer look at the amount of subG1 fractions, 
which did also not vary significantly under different culture con-
ditions (Fig. S3B1). As expected from our data in K562 cells treat-
ed with Romidepsin (Fig. 5B), we could observe a loss of WT1  
in MV4-11 cells treated with entinostat (data not shown).

We conclude that cell morphology and cell cycle distribution 
patterns are comparable during growth in FCS or hPL.   

3.3  Global protein expression of K562 cells 
grown in medium with FCS or hPL
Although we saw no obvious differences between cells cultured 
in media with 10% FCS or 5% hPL, there could still be alter-
ations at the molecular level. To clarify whether such differences 
exist, we compared triplicates of K562 cells grown with media 
plus FCS or hPL with an unbiased proteomic assay. We detected  
4562 proteins with this approach and the heatmap resulting from  
these analyses shows very similar protein expression patterns 
(Fig. 3A). Differences that we noted between the two culture 
conditions were not significantly higher than differences that 
we noted among the triplicates. Via a correlation plot, we could 
show that all samples were at least 98% identical (Fig. 3B). Not a 
single protein was expressed differentially under the two culture 
conditions (Fig. S21).              

3.4  Reactions of CML cells to imatinib 
Since imatinib is a standard drug for the treatment of CML carrying 
BCR-ABL (t9;21) (Lamontanara et al., 2013), we assessed how 

Fig. 4: TKi imatinib equally affects K562 cells cultured  
with FCS or hPL
A) K562 cells cultivated with 10% FCS, 5% FCS, or 5% hPL were 
treated with 0.1 µM imatinib for 24 h. Cell cycle distributions of  
PI-stained, fixed cells were analyzed via flow cytometry; n = 3;  
mean ± SD; ANOVA: Changes caused by imatinib reached 
statistical significance within each of the three culture conditions 
(*p ≤ 0.5). B) Immunoblot showing expression of WT1 in K562 cells 
treated as in (a); HSP90, loading control. 
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led to an accumulation of acetylated tubulin (Fig. 5D, S3C,D1). 
The levels of WT1 remained constant under such conditions, 
which supports our data illustrating that a pharmacological inhi-
bition of HDAC6 does not attenuate WT1 expression (Fig. 5B-D). 
   These data demonstrate that cells grown in hPL or FCS can be 
transfected with siRNAs and that WT1 is not a target of HDAC6. 

3.7  Responses of leukemic and colon cancer cells  
to replicative stress
We next addressed whether leukemic cells and colon cancer cells 
grown in FCS or hPL respond equally to hydroxyurea. This drug is 
commonly used to cause replicative stress and to clinically reduce 
high leukemic blast counts (Eklund et al., 2001; Pons et al., 2018; 
Schäfer et al., 2017; Schneider et al., 2010; Göder et al., 2018).  

These data illustrate that cells grown in hPL or FCS respond 
equally to HDACi and that WT1 is attenuated by class I HDACi but  
not by inhibition of HDAC6.           

3.6  Transfection of cells in media containing hPL or FCS 
The genetic manipulation of cultured eukaryotic cells is a main-
stay in the search for molecular mechanisms. To assess whether 
culture conditions based on FCS or hPL have a differential effect 
on the transfection of leukemic cells with RNAi molecules, we 
electroporated siRNAs against HDAC6 in K562 (Fig. 5D), MV4-
11, and NB4 cells (Fig. S3C,D1). We could successfully reduce 
HDAC6 protein in all three cell lines under both culture condi-
tions (Fig. 5D, S3C,D1). As expected from HDAC6 being a tu-
bulin deacetylase (Krämer et al., 2014), the reduction of HDAC6  

Fig. 5: Influence of HDAC inhibition  
and knockdown on cell cycle 
distribution and WT1 protein level  
in K562 cells 
A) K562 cells were treated with 5 nM 
romidepsin or 500 nM marbostat-100 for 
24 h. For cell cycle distribution analyses, 
PI-stained, fixed cells were measured by 
flow cytometry; n = 3; mean ± SD; ANOVA: 
Changes caused by romidepsin reached 
statistical significance within each of  
the three culture conditions (p ≤ 0.05).  
No significant differences were observed 
after the treatment with marbostat-100  
(p ≥ 0.05). B) Levels of PARP1, WT1, 
ac-tubulin, and ac-H3 in such cells were 
analyzed via immunoblot; HSP90, loading 
control; cf., cleaved form. Since PARP1 
was measured with a separate blot, a 
loading control was also included for this 
immunoblot. C) Densitometric analysis of 
WT1 levels after treatment with 5 nM 
romidepsin or 500 nM marbostat-100 for  
24 h. Signal intensities were normalized 
to the respective loading control. Results 
display relative amount of WT1; n = 3; 
mean ± SD; t-test: Changes caused by 
marbostat-100 were not significant  
(p ≥ 0.05) and changes caused by 
romidepsin reached statistical significance 
under all culture conditions (**p ≤ 0.01). D) 
K562 cells cultivated with 10% FCS or  
5% hPL were transfected with HDAD6 
siRNA via electroporation and incubated 
for 48 h. Immunoblot shows expression 
of HDAC6, ac-tubulin, and WT1; HSP90, 
loading control. 
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pressor p53 and of the DNA damage marker γH2AX in HCT116 
cells (Göder et al., 2018). HCT116 cells in FCS or hPL equally 
accumulated these proteins in response to hydroxyurea (Fig. 6E).

We conclude that hydroxyurea evokes similar cellular respons-
es in cancer cells grown in FCS and hPL.     

3.8  Responses of colon cancer cells to irinotecan  
and t-BOOH
Since irinotecan is a standard drug for the treatment of colon can-
cer (Tomicic and Kaina, 2013), we treated HCT116 cells in medi-
um with 5 or 10% FCS or 5% hPL with 5 µM irinotecan for 24-48 
h and analyzed them by flow cytometry for cell cycle distribution 
and subG1 cells. 

After 24 h, irinotecan triggered a strong arrest of cells in the 
G2/M phase. This arrest was lost at 48 h and the portion of cells 

Consistent with our previous data (Pons et al., 2018; Göder et 
al., 2018), hydroxyurea causes replicative stress in HCT116 cells, 
and NB4 cells rapidly succumb to apoptosis when treated with 
hydroxyurea. Hydroxyurea induced the number of NB4 cells in 
subG1, with cells cultured with 10% FCS and 5% hPL respond-
ing very similarly to hydroxyurea. Cells cultured in 5% FCS re-
sponded slightly less strongly to hydroxyurea, but differences did 
not reach statistical significance (Fig. 6A,B). In HCT116 cells 
cultured with 10% FCS, hydroxyurea induced a 2.7-fold increase 
of cells in the S phase. A 2.5-fold increase of cells in S phase oc-
curred in HCT116 cells cultured with 5% hPL and an 2.9-fold in-
crease of cells in S phase was seen in HCT116 cells cultured with 
5% hPL (Fig. 6C,D). 

We have further reported that hydroxyurea could trigger an ac-
cumulation of phosphorylated and total forms of the tumor sup-

Fig. 6: Induction of replicative  
stress induced by hydroxyurea reveals 
no differences in cells grown with  
FCS or hPL
A) NB4 cells were treated with 0.5 mM  
hydroxyurea for 24 h. Cell cycle 
distributions were analyzed via flow 
cytometry. Representative histograms  
are shown. B) Induced subG1 levels that 
were determined by flow cytometry  
analysis of PI-stained, fixed NB4 cells 
treated as in (A); n = 3; mean ± SD; t-test: 
Changes caused by hydroxyurea reached 
statistical significance under all culture 
conditions (*p ≤ 0.05). C) HCT116 cells 
were treated with 1 mM hydroxyurea for 
24 h. Representative histograms of cell 
cycle distributions are shown. D) Cell cycle 
distributions of HCT116 cells treated as 
stated in (C) are shown; n = 3; mean ± SD; 
ANOVA: Changes caused by hydroxyurea 
reached statistical significance within  
the three culture conditions (**p ≤ 0.01),  
except for cells cultivated in 5% FCS,  
which showed no significant reduction of 
G2-phase cells (p ≥ 0.05). E) Immunoblot  
of hydroxyurea-treated HCT116 cells  
shows expression of p53, p-Ser15-p53,  
and γH2AX; HSP90, loading control.
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damage. In order to analyze ROS-induced DNA damage, we ap-
plied t-BOOH (Faust et al., 2017). We exposed cells in 5% hPL 
or 10% FCS to 20 µM irinotecan for 24 h or to 10 µM or 100 µM 
t-BOOH for 20 min. We found that irinotecan as well as t-BOOH 
evoked equal levels of DNA damage in HCT116 cells grown  
in FCS or hPL (Fig. 7C,D).

Taken together, these data show that HCT116 cells cultured in 
hPL or FCS react very similarly to irinotecan.      

4  Discussion

We report that cells can be adapted to hPL rapidly. Thus, concerns 
about a time-consuming adaptation of tumor cells to hPL instead 
of FCS appear unjustified. Data collected with various cell lines 

in subG1 phase increased (Fig. 7A). Lower levels of subG1 cells 
were seen in irinotecan-treated HCT116 cells that were grown 
with 5% hPL or 5% FCS compared to cells that were grown with 
10% FCS. However, this finding should be appreciated with the 
notion that the subG1 levels are also lower in resting cells that pro-
liferate with 5% hPL or 5% FCS (Fig. 7A). Furthermore, the fold 
induction of the subG1 populations in cells grown with 10% FCS 
was 2.5, 2.4 for cells grown with 5% FCS, and 2.9-fold in cultures  
grown with 5% hPL. 

Western blot analysis showed that irinotecan caused an about 
equal accumulation of p-p53 and p53 in HCT116 cells, irrespec-
tive of culture conditions in FCS or hPL (Fig. 7B).

Since irinotecan is a DNA-damaging agent, we tested with the 
single cell electrophoresis assay/comet assay for a potential im-
pact of the two culture conditions on irinotecan-induced DNA 

Fig. 7: Irinotecan equally causes  
DNA strand breaks and activates  
p53 in HCT116 cells cultivated with  
FCS and hPL
A) HCT116 cells were treated with 5 µM  
irinotecan for 24-48 h. Cell cycle 
distributions of PI-stained and fixed  
cells were determined via flow cytometry;  
n = 3; mean ± SD; t-test: Changes 
caused by irinotecan reached statistical 
significance after 24 h under all culture 
conditions (****p ≤ 0.0001). After 48 h 
changes caused by irinotecan reached 
statistical significance within the three 
conditions (**p ≤ 0.01), except for cells  
in the subG1 fraction, which were 
significantly higher in cells grown with 
10% FCS (****p ≤ 0.0001). However, 
the fold induction of cells in subG1 
fraction remained nearly the same under 
all conditions and without significant 
differences. B) The expression levels 
of p53, p-Ser15-p53, and ac-H3 were 
analyzed by immunoblot; HSP90, loading 
control. C) Representative pictures of 
an alkaline comet assay of HCT116 cells 
cultivated with 10% FCS or 5% hPL. Cells 
were treated with 20 µM irinotecan for  
24 h or with 10-100 µM t-BOOH for  
20 min. D) Tail intensities of HCT116 cells 
that were treated as indicated after alkaline 
comet assay; n = 3; mean ± SD; t-test: 
No significant differences were observed 
between FCS and hPL samples (p ≥ 0.05). 
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inhibited in pancreatic cancer cells (Schäfer et al., 2017; Sto-
janovic et al., 2017). Furthermore, our observation that inhib-
itors of class I HDACs reduce WT1 is in agreement with the 
reduction of WT1 mRNA and an increased proteasomal degra-
dation of WT1 in K562 cells when they are treated with the class 
I HDACi entinostat (Makki et al., 2008). Like PARP1, WT1 
is subject to caspase cleavage (Ruan et al., 2018; Pons et al., 
2018). Thus, apoptosis induced by romidepsin is likely linked to 
the reduction of WT1. 

Our findings demonstrate that hPL is a promising replacement 
for FCS. We will expand our analyses to further cell types and 
treatment schedules.
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