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to identify candidate drugs, but also to test compounds for off- 
target toxicity (Whitebread et al., 2005). Recently, the Interna-
tional Agency for Research on Cancer (IARC) has started using 
diverse, high-throughput in vitro data to provide evidence for 
certain cancer mechanisms (Chiu et al., 2018). In the environ-
mental chemical toxicity space, these efforts are exemplified 
by the U.S. ToxCast and Tox21 programs (Judson et al., 2010;  
Kavlock et al., 2012; Tice et al., 2013; Attene-Ramos et al., 
2015), and follow ideas discussed in the U.S. National Research 
Council’s report Toxicity Testing in the 21st Century (NRC, 
2007). The growing use of the adverse outcome pathway (AOP) 

1  Introduction

There is increased interest in using high-throughput, in vitro bio-
assays to generate data for predictive toxicology models. Uses 
of these models range from prioritization of chemicals for more 
detailed studies to the replacement of current in vivo tests. In  
vitro assays have long been used for genotoxicity testing, includ-
ing regulatory purposes, but are now being employed in numer-
ous other areas. A recent example of regulatory use is screening 
compounds for endocrine effects1,2 (U.S. EPA 2013; Judson et 
al., 2015). Assays for pharmacological targets are widely used 
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Abstract
Instilling confidence in use of in vitro assays for predictive toxicology requires evaluation of assay performance. Per-
formance is typically assessed using reference chemicals – compounds with defined activity against the test system 
target. However, developing reference chemical lists has historically been very resource-intensive. We developed 
a semi-automated process for selecting and annotating reference chemicals across many targets in a standardized 
format and demonstrate the workflow here. A series of required fields defines the potential reference chemical: the in 
vitro molecular target, pathway, or phenotype affected; and the chemical’s mode (e.g. agonist, antagonist, inhibitor). 
Activity information was computationally extracted into a database from multiple public sources including non-curated 
scientific literature and curated chemical-biological databases, resulting in the identification of chemical activity in 
2995 biological targets. Sample data from literature sources covering 54 molecular targets ranging from data-poor 
to data-rich was manually checked for accuracy. Precision rates were 82.7% from curated data sources and 39.5% 
from automated literature extraction. We applied the final reference chemical lists to evaluating performance of EPA’s 
ToxCast program in vitro bioassays. The level of support, i.e., the number of independent reports in the database linking 
a chemical to a target, was found to strongly correlate with likelihood of positive results in the ToxCast assays, although 
individual assay performance had considerable variation. This overall approach allows rapid development of can-
didate reference chemical lists for a wide variety of targets that can facilitate performance evaluation of in vitro assays 
as a critical step in imparting confidence in alternative approaches. 
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which permits unrestricted use, distribution and reproduction in any medium, provi-
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1 EPA Endocrine Disruptor Screening Program (EDSP). http://www.epa.gov/endo/ (accessed 08.08.2008).
2 FIFRA SAP Meeting held January 29-31, 2013 on the Scientific Issues Associated with Prioritizing the Universe of Endocrine 
Disruptor Screening Program (EDSP) Chemicals Using Computational Toxicology Tools.  
http://ntp.niehs.nih.gov/NTP/About_NTP/SACATM/2013/September/SAPMtgRpt_Jan2013_508BE.pdf (accessed 28.10.2013).
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gives consistent results (active vs. inactive) across multiple dif-
ferent assays (usually run in different laboratories) that measure 
activity against a target or molecular mechanism, for a specified 
mode. For detailed analysis, we focused on assays that we could 
readily link to Entrez Gene IDs and we refer to generically as 
biological targets or just “targets”. This definition allows one to 
start with a collection of chemicals that have been tested in a 
suite of assays against a specified biological target and extract 
reference chemicals from that data set. For example, we could 
evaluate chemicals tested in assays measuring agonist-mode 
binding to the estrogen receptor. All chemicals that were consis-
tently active would then be denoted as positive reference chem-
icals, and those consistently inactive would be considered nega-
tive reference compounds. Ideally, the assays would vary in cell 
background, detection technology and other parameters, so that 
the consistent activity would clearly reflect the underlying biolo-
gy and not be an artifact of a specific assay type. 

This operational definition raises two questions: (1) Does 
“consistent” activity mean 100% of observations? We say no 
for two reasons. First, a chemical that is active, but only weakly 
so, may be negative in an assay because it was not tested to a 
high enough concentration, as different assays can have different 
sensitivities. Second, a true inactive chemical might be active in 
one assay but inactive in a second (or the converse) because of 
interference with the detection technology in one of the assays.  
(2) Can a novel target have reference chemicals? In our defi-
nition, until there are multiple assays available against which 
chemicals can be tested, there can be no reference chemicals 
for a novel target because there is no way to test consistency.  
Apparent exceptions would be a single laboratory that, through a 
variety of tests, proves that a chemical acts on a specific biolog-
ical target. However, this is just a special case of using multiple 
assays that give consistent results. 

In the in vitro toxicology field, there have been few targets for 
which large sets of reference chemicals have been compiled. The 
estrogen receptor (ER) is one such target where a large set of ref-
erence chemicals has been developed through extensive efforts 
over years of work with input from various international bodies3. 
Despite many years of effort, this list still generates controversy, 
for instance about whether a chemical that is a positive refer-
ence for agonism can automatically serve as a positive control 
for binding assays (binding is a requisite precursor to agonism) 
or whether effects observed at relatively high concentrations or 
in specific cell/tissue types are broadly relevant. Given that there 
are many biological targets and mechanisms being explored for 
use in in vitro screening of chemicals for potential toxicity, it 
is impractical to take a decade to generate the reference chem-
icals for each target to evaluate assay performance. Here we ex-
plored a semi-automated approach to the development of refer-
ence chemical lists. In our approach, we automatically extract-
ed chemical-target-mode-activity call data from several public 
online sources to find chemicals with multiple lines of evidence 

concept to represent the mechanistic events leading to an ad-
verse outcome in an animal or population emphasizes the impor-
tance of in vitro approaches targeting molecular initiating events 
(MIEs) or key events (KEs). As the goal of this strategy is to 
develop alternative methods to replace animal testing, validation 
of the performance of the assays targeting the MIEs and KEs will 
be critical to regulatory acceptance (Vinken, 2013).

Appropriate use of in vitro data generated from high-through-
put screening assays requires both statistical and biological  
confidence in the results. Methods for appropriate statistical 
evaluation and metrics to ensure robust operational performance 
of high-throughput screening approaches in support of drug dis-
covery have been developed (Zhang et al., 1999; Bleicher et al., 
2003; Malo et al., 2006). Typically, these rely on the use of a sin-
gle substance as a positive control and a corresponding neutral 
(solvent) control. While this is important for assay development 
efforts, a single chemical is rarely representative of the diver-
sity of chemical compounds to be screened in the assay. Large 
and diverse compound libraries are likely to include active com-
pounds with a range of potency and, possibly, efficacy values; 
compounds that may modulate the target through both direct and 
indirect mechanisms; compounds that interfere with the assay 
yielding false positive or false negative results; and truly inac-
tive compounds (Feng and Shoichet, 2006; Thorne et al., 2010; 
Bruns and Watson, 2012). By testing a larger set of chemicals 
with known expected outcomes on biological targets, i.e., ref-
erence chemicals, the sensitivity and specificity of the assay can 
be assessed. 

With a large and diverse set of reference chemicals, one can 
also assess the domain of applicability (DOA) of an assay. DOA 
is a concept from quantitative structure-activity relationship 
(QSAR) modeling (Jaworska et al., 2005) that defines the chem-
ical universe for which predictions can be considered relevant by 
comparing the structural similarity of a new chemical to those 
used in the development of the model. For in vitro assay evalu-
ation, assessing the DOA involves testing reference chemicals 
that cover the range of possible mechanisms capable of mod-
ulating the biological target. The ability to measure modula-
tion of the biological target will define the DOA rather than the  
chemical structure as in a QSAR. Reference chemicals that tar-
get the mechanism(s) being interrogated will be needed to prove 
that a given assay endpoint is responsive when particular mech-
anisms are affected and establish the limits of an assay’s DOA. 
In addition, the physicochemical properties of a chemical will 
also define if it can be successfully tested in an assay, e.g., the 
solvent and aqueous solubility of the chemical, its volatility,  
stability under assay conditions, potential to interfere with assay 
detection technology, etc., and hence contribute to defining the 
assay DOA. 

Here we use the following operational definition of a reference 
chemical for a specific biological target and activity mode (e.g., 
agonist, antagonist, inhibitor): a reference chemical is one that 

3 NICEATM DRAFT ED BRD: BG1Luc ER TA Test Method – Section 3.0. http://iccvam.niehs.nih.gov/methods/endocrine/BG1Luc/
Section3-24Jan2011.pdf (accessed 21.03.2011).
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target or mode of action classes (e.g., antibacterial, antiviral) 
without specific target information. These target types are not 
further described in the present work. The contents of the data-
base, linking 40,897 chemicals and 1,395,852 target summaries 
(assigned to gene ID’s), are provided in Table S24.

Information is compiled from the following sources: 
− ChEMBL6 (Gaulton et al., 2012): This is a large repository 

of in vitro assay activity manually curated from the open lit-
erature. In our database, ChEMBL was divided into two sets 
called ChEMBL and ChEMBL Drug. The first is taken from 
the literature records in ChEMBL, while the second is from 
the drug target annotation in that database. We used ChEMBL 
version 23. Modes and PMIDs are provided. 

− CTD – Comparative Toxicogenomics Database7 (Mattingly 
et al., 2006; Davis et al., 2009; Wiegers et al., 2009): CTD 
contains information on chemical activity including target in-
teractions and gene expression data, manually curated from 
the open literature. Modes of action from this source were not 
standard compared to those of other sources (e.g., affects^ac-
tivity|affects^binding). A dictionary mapping from CTD to 
RefChemDB modes was created by checking a set of PMIDs 
with both sets of terms. The mapping is available in Table 
S34. PMIDs are provided. 

− DrugBank8 (Wishart et al., 2006, 2008): DrugBank contains 
information on drugs (both approved and experimental), in-
cluding the intended targets. Modes of action were inferred 
using a search for certain keywords, first from drug category 
and, if not provided there, from the drug description, pharma-
cology, or MOA fields. PMIDs are provided. 

− Eurofins9: Eurofins is a company that provides in vitro 
screening contract services, and has compiled a set of refer-
ence chemicals for their assays. These reference chemicals 
and assays are divided into biochemical and functional class-
es. Modes are provided but PMIDs are not. 

− Iuphar/BPS10: Iuphar/BPS is a resource developed by the In-
ternational Union of Basic and Clinical Pharmacology and 
provides information on drugs and their targets. Modes are 
provided but PMIDs are not. 

− KEGG Drug11 (Kanehisa et al., 2006, 2008): KEGG Drug is 
another source of drug/target interactions. Neither modes nor 
PMIDs are provided. 

− KIDB – Ki Database12,13: KIDB is a database of affinity in-
formation on drugs and drug candidates, focused on GPCRs. 
Neither modes nor PMIDs are provided. 

of interaction with a given target. We populated a database we  
call RefChemDB with these data and manually reviewed a sub-
set of the source documents to assess the reliability of the data  
(i.e., chemical, target, mode, activity) extracted from the online 
sources and check for correctness of the original data. The manual  
review process was carried out for 54 targets that ranged from 
data-poor to data-rich. Next, from our resulting reference chemi-
cal database, we proposed lists of candidate reference chemicals 
for 50 molecular targets, based on their having sufficient exper-
imental supporting data. Additionally, we evaluated a subset of 
these targets and candidate reference chemicals against a set of 
in vitro assays run as part of the ToxCast and Tox21 screening 
programs. 

2  Methods

Initial database construction
To provide reference chemical lists for use in evaluating in vitro 
assay performance, we developed a system that captures rele-
vant information describing the link between chemicals and po-
tential biological targets in vitro. Information is extracted from 
the data sources and compiled into two key database tables in 
RefChemDB: source_chemical and target_summary (Fig. 1). 
The source_chemical table contains the name and Chemical 
Abstracts Registry Number (CASRN) from the source database 
record along with chemical structure information (SMILES, in-
chy_key, pubchem_cid), while the target table contains informa-
tion on data source, the biological target (gene name, symbol, 
Entrez gene identifier (geneid)), the mode (e.g., agonist, an-
tagonist; full list of modes available in Tab. S14), whether the 
chemical was active or inactive, and reference information such 
as a PubMed ID (pmid). Data in these tables are then summa-
rized into a chemical table with one unique record per chemical, 
linked to the EPA DSSTox5 (Richard et al., 2006) record which 
provides curated chemical identity and chemical structure infor-
mation. The target_summary table contains the individual re-
cords from the literature linking a chemical to a target. It also 
contains mode information (e.g., agonist, antagonist, inhibitor), 
the source of the record, and whether the chemical was active 
or inactive (activity_class) for the target. For the current work, 
we focus primarily on gene-based biological targets (e.g., specif-
ic receptors, enzymes, ion channels, etc.), although the database  
also contains information on chemicals with other types of tar-
gets (e.g., mitochondria, cell membranes) as well as broader  

4 doi:10.14573/altex.1809281s1
5 https://comptox.epa.gov
6 https://www.ebi.ac.uk/chembl/
7 http://ctdbase.org/
8 https://www.drugbank.ca/
9 https://www.eurofinsdiscoveryservices.com/cms/cms-content/resources/
10 http://www.guidetopharmacology.org/
11 https://www.genome.jp/kegg/drug/
12 https://kidbdev.med.unc.edu/databases/kidb.php
13 PDSP Ki Database. http://pdsp.med.unc.edu/kidb.php (accessed 08.08.2008).
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− ProDrug: This is a collection of prodrugs (drugs that require 
metabolic activation) taken from Casida (2017). Neither 
modes nor PMIDs are provided. 

− Repurposing Hub17 (Corsello et al., 2017): This is a data-
base of drugs and potential new targets they could be active 
against. Modes are provided but PMIDs are not. 

− ToxCast18 (Dix et al., 2007; Kavlock et al., 2012; Judson et 
al., 2014): The ToxCast/Tox21 project is a collaboration be-
tween the US EPA, NIH and FDA to screen thousands of 
chemicals against hundreds of in vitro assays. The ToxCast 
database contains detailed information on the assays, chem-
icals and activity. Data was extracted from invitrodb V2  
(August 2018) in the form of chemical-assay activity calls 
(activity=1 if the chemical assay pair was considered active, 
=0 otherwise). The only assays considered were those with a 
specific biological target, i.e., excluding assays such as those 
for mitochondrial disruption. Modes are provided but PMIDs 
are not. 

− KinaseDB14: This is a dataset of reference kinase inhibitors 
provided by the commercial assay vendor Eidogen Sertanty 
(Sharma et al., 2016). Neither modes nor PMIDs are provided. 

− LitDB: LitDB is the EPA’s database of MeSH term annota-
tions extracted from Medline (Baker and Hemminger, 2010). 
For RefChemDB, records were extracted from LitDB that 
contained annotations for chemicals and activity on targets 
(antagonism or agonism). Modes and PMIDs are provided. 
A more detailed description of methods used to create LitDB 
and extract from it for inclusion in RefChemDB can be found 
in supplementary data S415.

− NCCT Web Curation: This is a collection of chemical, target 
and mode information manually curated from public web re-
sources other than the open literature by the authors, focused 
on compounds in the ToxCast library (see below). Neither 
modes nor PMIDs are provided. 

− Open Targets16: This is a public database of drugs and their 
targets. Modes are provided but PMIDs are not. 

Fig. 1: RefChemDB Database Schema
Data sources and fields in RefChemDB. Data from various sources are collected and categorized into chemical information and target 
information, which are then reorganized into target_summary and chemical. Each row in the target_summary table summarizes  
a record from the literature – source, PMID if given, target, chemical ID, mode, etc. Each row in the chemical table contains information  
on a chemical mentioned in the literature – name, CASRN, and DSSTox Substance ID. The table at the right defines key terms.

14 http://www.eidogen-sertanty.com/kinasednld.php
15 doi:10.14573/altex.1809281s2
16 https://www.targetvalidation.org/
17 https://clue.io/repurposing
18 https://actor.epa.gov/dashboard
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calculated as the sum of the individual support values. The rules 
for matching reference chemical modes and assay modes were: 
reference chemical mode (binder) matches assay mode (binder); 
reference chemical agonist mode (agonist) matches assay modes 
(agonist, binder); reference chemical modes (antagonist, inhibi-
tor) match assay modes (antagonist, inhibitor, binder). 

Targets selected for manual analysis 
A total of 54 molecular targets, listed in Table S64, were select-
ed for the manual curation analysis with a total of 1375 chem-
icals associated with them. These are either nuclear receptors, 
GPCRs, transporters or enzymes. Four of the 54 targets lacked 
chemicals with a sufficient level of support to be included result-
ing in the 50 targets included in Table S64. Sufficient support was 
considered to be at least five references listing a target-chemical 
interaction with a particular mode.

Manual curation process
Three curators were assigned the manual curation process. Each 
had a degree in biological science and familiarity with chemi-
cal and gene nomenclature. To start the curation process, a query 
was run to extract target-chemical pairs that potentially had suf-
ficient support (see above) to be considered reference chemicals. 
For each target in Table S64, candidate chemicals were export-
ed as Microsoft Excel files, and were manually curated to as-
sess the accuracy of the raw database information. The follow-
ing information was extracted from the paper: chemical identity, 
target, mode, activity, potency and units, quality control status, 
and additional notes. Up to ten records were analyzed for each 
chemical-target pair for the quality control protocol. In devel-
oping a final reference chemical set for any specific target, such 
a limit would not be used, but in this case, the limit allowed us 
to estimate the scope of quality issues across many targets while 
limiting the resources required. Only records with PMIDs were 
searched. Some database sources (e.g., TTD) do not provide 
PMIDs, so they were not included in this step. The paper for 
each record was downloaded based on the PMID. The mode was 
recorded as agonist, pan agonist (active against most/all targets 
in a protein family), antagonist, inverse agonist, inhibitor, mod-
ulator or binder, based on the paper. To identify the mode, the 
chemical for each record was searched in the paper in relation to 
its gene target. When the preferred chemical or gene name was 
not listed in the paper, synonymous names were then searched 
on the EPA CompTox Chemicals Dashboard database20 and on 
NCBI’s Gene database21, respectively. The activity of the chemi-
cal was recorded as active or inactive based on whether the paper 
confirmed the action of the chemical. To determine the potency, 
the quantitative potency values (e.g., AC50, IC50, ED50, Ki or 
Kd) were extracted and the units were recorded as molar con-
centrations or units of mass/volume. The quality control status 
was determined as yes or no based on whether the chemical was 

− TTD19 (Therapeutic Target Database) (Li et al., 2017): TTD 
contains information on known therapeutic targets of drugs. 
Modes are provided but PMIDs are not. 

For nonstandard target symbols, a dictionary was created to stan-
dardize them and associate a gene ID. For example, 5-HT5B be-
came symbol HTR5B and gene ID of 15564. This dictionary file 
is available in Tab. S54. When a given gene target was ambigu-
ous (e.g., HTR5) or unable to be associated with a gene ID, the 
information was excluded. Non-gene targets such as mitochon-
dria were included without IDs in RefChemDB, but were ex-
cluded from subsequent analyses which focused on gene-based 
biological targets. 

Comparison with ToxCast/Tox21 data
Candidate reference chemical activity was evaluated against 
a large collection of in-house in vitro data from the ToxCast 
and Tox21 projects (Judson et al., 2010; Kavlock et al., 2012;  
Attene-Ramos et al., 2013; Tice et al., 2013). These programs 
have generated data on hundreds of in vitro assays for up to 9000 
chemicals, and produce both activity calls (i.e., active/inactive) 
as well as potency estimates (i.e., AC50 values). For this evalu-
ation, the ToxCast and Tox21 data in the RefChemDB database 
for the intended biological target was excluded. Data from the 
sources LitDB, ProDrug, and Repurposing Hub were also ex-
cluded (see “Creation of Candidate Reference Chemical Col-
lection”). We compared the activity (active/inactive) for every 
pair of reference chemicals and assays that matched on target 
and mode. Candidate reference chemicals could have literature 
support for more than one mode per target (e.g., some referenc-
es might indicate agonist activity and others antagonist activi-
ty). For comparison with the ToxCast/Tox21 data, a single mode 
was selected, usually the one with the largest support. Support 
is defined as the number of unique references (papers) docu-
menting that a chemical interacts with a given target through a 
given mode (e.g., agonist, antagonist) and activity call (active, 
inactive). The exceptions were cases where the default mode 
was “binder”, in which case the second most supported mode 
was selected. For the case of receptors, binding is a prerequi-
site for both agonists and antagonists. Because most receptor as-
says have a specific mode (agonism/antagonism), more specific 
reference chemical modes are more informative. Assay modes 
were agonist, antagonist, binder, and inhibitor. For this compar-
ison, several uncommon modes were mapped to more common 
variants: agonist, activator, stimulator, positive allosteric mod-
ulator, positive modulator, partial agonist, inducer, enhancer 
were mapped to “agonist”; antagonist, allosteric antagonist were 
mapped to “antagonist”; negative modulator, inactivator, inhib-
itor covalent, inhibitor reversible, blockade, blocker, channel 
blocker, negative allosteric modulator, gating inhibitor, suppres-
sor, uptake inhibitor, inhibitor were mapped to “inhibitor”. After 
mapping original modes to the standard modes, the support was 

19 http://bidd.nus.edu.sg/group/cjttd/
20 https://comptox.epa.gov
21 https://www.ncbi.nlm.nih.gov/gene

http://bidd.nus.edu.sg/group/cjttd/
https://comptox.epa.gov
https://www.ncbi.nlm.nih.gov/gene


Judson et al.

ALTEX 36(2), 2019       266

chemical-target-mode-activity call combination. Modes were 
consolidated into “positive” (e.g., “activator”, “agonist”, “stim-
ulator), “negative” (e.g., “inhibitor”, “antagonist”, “blocker”), or 
“unspecified” (e.g., “binder”, “modulator”, “stabilizer”), and the 
amount of support for each chemical-target-mode-activity call 
combination were re-tallied. The mode consolidation decisions 
are given in Table S14. The contents of the database after map-
ping all modes along with target symbols and gene IDs are avail-
able in Table S74.

Software
All software for this project is written in R (Ihaka and Gentle-
man, 1996). Data is stored in a custom MySQL database. Input 
files, code and the database are available22.

3  Results

3.1  Summary of RefChemDB database
Table 1 summarizes the size and diversity of the database and 
information from the different sources. ChEMBL has the largest 
number of unique chemicals, while CTD has the largest number 
of individual targets. ToxCast/Tox21 has the largest number of 
unique chemical-target-mode-activity call combinations. Most 
chemical-target-mode-activity call combinations show up in 
the database only once, with an average support (average num-
ber of times the combination appears in the database) of only  
1.2. The median support for each source was 1, except for Drug-
Bank, which had median support of 3 records. LitDB and Drug-
Bank had the highest median support. Although most combina-
tions have only a few references, there are combinations with 
support of up to 286. 

3.2  Analysis of ToxCast/Tox21 data activity  
calls vs. other sources
A comparison of candidate reference chemicals curated from 
public sources and ToxCast/Tox21 in vitro data was performed 
to help quantify reliability of both the reference chemicals and 
the ToxCast/Tox21 assays. The first comparison examines the 
performance of the assays, assuming the reference chemicals 
are correct, as a function of the reference chemical support, 
calculated excluding ToxCast/Tox21 data. See Methods for the 
rules on matching chemical and assay modes. Full results by 
assay and chemical are given in Table S84. The results are sum-
marized in Figure 2A (data from Tab. S94). One can see that 
the assay performance (fraction of correct matches between 
the assay result and the putative reference chemical activity) 
increases with support, indicating that chemicals with greater 
support are more likely to be correctly assigned their target and 
mode. There were 92 assays with at least one candidate refer-
ence chemical with support ≥ 5. Of those, 63 assays demon-
strated expected activity for ≥ 80% of the reference chemicals. 
The lower performing assays are listed in Table 2. There are 

reported in the paper to act on the target listed in the database 
source. Information not available in the literature was marked as 
unspecified. 

A blind cross-validation was also performed to compare judg-
ments of curators. Two of the three curators took part in this 
effort. Previously completed records across the targets were 
compiled for review. Data entered by the original curator were 
removed, while the second curator extracted and entered infor-
mation for each record as listed above. A total of either 33 or 34 
records initially completed by one of the original three curators 
were re-reviewed by a second curator. The reviewing curator’s 
quality control status entries were then compared to the origi-
nal curator’s quality control determination. Inter-rater reliability 
between the two reviewing curators was assessed via Cohen’s 
Kappa test. 

Creation of candidate reference chemical collection 
For the subsequent analyses, we defined four categories of  
information: (1) Records manually curated by the authors  
(all have PMIDs); (2) other curated records with PMIDs  
(ChEMBL, CTD, DrugBank, LitDB); (3) other records with-
out PMIDs (Eurofins, Iuphar/BPS, KEGG Drug, KIDB,  
KinaseDB, NCCT Web Curation, Open Targets, ProDrug, Re-
purposing Hub, TTD); (4) data points from ToxCast/Tox21 
assays. A key parameter determining reference chemical iden-
tification is the “support” value, which is the number of in-
dependent records across the subset of these categories being 
analyzed. For sources with PMIDs, it is the number of unique 
PMIDs across all sources matching a specified chemical-tar-
get-mode-activity call combination. For the non-PMID sources, 
each source added one to the support count. For ToxCast/Tox21 
data, each assay with matching chemical-target-mode-activity 
call added one to the support.

Results of the manual curation step were used to inform ad-
ditional curation of the raw data extracted in the initial phase 
of database construction using a series of automated scripts. To 
create the final list of reference chemicals, data without a target 
name or without a DSSTox substance ID were removed. Data 
from LitDB were excluded due to weak precision rates in the 
manual curation process. ProDrug was excluded because it con-
tains chemicals requiring metabolic activation, which is not a 
property of most of the assays to be validated although may be 
a valuable resource for applications requiring knowledge of as-
say xenobiotic metabolism capacity. Repurposing Hub was ex-
cluded because most of the activities reported are hypothesized 
based on target similarity rather than on experimental evidence. 
Independent records were curated in the following manner to ac-
count for potential duplicates: If the same record was repeated 
across multiple sources (same chemical, target, mode, activity 
status, and PMID), only the first instance was recorded. The in-
formation in records without PMIDs was counted once per da-
ta source (same chemical, target, mode, activity status). Finally, 
support was determined by tallying the number of records for the 

22 ftp://newftp.epa.gov/COMPTOX/NCCT_Publication_Data/Judson/Reference_Chemicals_for_In_Vitro_Assays/

ftp://newftp.epa.gov/COMPTOX/NCCT_Publication_Data/Judson/Reference_Chemicals_for_In_Vitro_Assays/
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structure used as a drug scaffold with sub-micromolar potency 
(Huong et al., 2017). Decitabine, the only other inhibitor with 
more than two supporting references, was inactive against 
HDAC1, but review of the literature showed it was a synergist 
with HDAC inhibitors but acting as a hypomethylating agent 
independent of direct effects on the HDAC enzyme (Kalac et 
al., 2011). This underscores a need for careful examination of 
potency values as well as subject matter expert review before 
finalizing candidate reference chemical lists for assay perfor-
mance validation.

The second comparison examines the performance of the ref-
erence chemicals, assuming that the assays perform well, again 
as a function of support. This is summarized in Figure 2B (from 
Tab. S104). Here one can also see that the performance increases 
with support. Strikingly, the candidate reference chemicals with 
a single report are inactive in the corresponding assays most of 
the time, indicating that chemicals with limited support should 
generally not be considered as candidate reference chemicals. 
For chemicals with high support, there are several cases where 
the automated assignment of mode is incorrect. These include 
raloxifene and tamoxifen for ESR1 and nilutamide for AR, each 

several targets where multiple assays show this performance, 
including HDAC inhibitors (3/3 assays ≤ 80%), NR1I3 / 
CAR (3/3 assays ≤ 80%), PPARG agonist (4/5 assays ≤ 80%), 
PPARD agonist (2/2 assays ≤ 80%). In a number of these cas-
es, there are only 1 or 2 reference chemicals. In the case of the 
HDAC assays, there were three targets, HDAC1, HDAC3 and 
HDAC6, tested with 41, 2 and 3 reference chemicals, respec-
tively. For HDAC1, 32 chemicals had only one reference and 
four had two. Suberoylanilide hydroxamic acid, a pharmaceu-
tical with nM potency against multiple HDAC’s, had 206 ref-
erences and was active against HDAC1. However, valproic ac-
id, with at least 6 references for each of the three HDAC’s, was 
inactive in each. Its potency (IC50) is in the hundreds-of-mi-
cromolar range and thus expected to be inactive in the ToxCast 
biochemical HDAC assays where the upper testing concentra-
tion was less than 100 µM (Huber et al., 2011). Butanoic acid, 
with four references for HDAC1, was inactive against HDAC1 
in ToxCast (not tested in the others) and, like valproate, had an 
IC50 in the hundreds of micromolar range (Huber et al., 2011). 
N-hydroxybenzamide, with four references, was active against 
HDAC1 (not tested against HDAC3 or HDAC6) and is also a 

Tab. 1: Summary statistics for the RefChemDB database  
ChEMBL provides the largest number of unique chemicals, while CTD has the largest number of individual targets. ToxCast has  
the largest number of unique chemical-target-mode-activity combinations. Most combinations show up in the database only  
once from each source, with an average support (number of times in the database) per source of only 1.2. LitDB and DrugBank  
have higher multiplicities.

Source Chemicals Targets Chemical-target-mode- Mean multiplicity PMIDs 
   activity combinations

ChEMBL 28,832 2,238 310,984 1.16 11,520

ChEMBL Drug 1,187 738 4,099 1 0

CTD 2,317 7,904 25,606 1.22 5,280

DrugBank 1,630 1,169 3,623 3.41 6,274

Eurofins Biochemical 206 570 925 1 0

Eurofins Functional 211 239 706 1 0

Iuphar BPS 1,860 941 5,081 1 0

KEGG Drug 661 263 1,201 1 0

KIDB 535 450 6,532 1 0

KInaseDB 133 168 676 1 1

LitDB 2,654 88 8,348 4.94 27,909

Open Targets 1,031 820 3,973 1 0

Prodrug 41 33 41 1 1

Repurposing Hub 2,279 2,172 10,209 1 0

ToxCast 9,136 343 852,470 1.03 0

TTD 3,916 1,575 11,557 1.00 0

Web Curation 3,940 1,059 5,617 1.01 0

Total 37,301 11,055 123,4580 1.02 49,883
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subject matter expertise is beneficial during the curation step.  
Also, for ESR1 and AR, there are several correct reference chem-
icals known to have weak potency, which causes less potent as-
says to report negative results. These chemicals include kepone,  
o,p-’-DDT and butylparaben (ESR1 agonist), and linuron and 
methoxychlor (AR antagonist) (Judson et al., 2015; Kleinstreuer 
et al., 2017). 

of which were assigned agonist, when the true mode is most of-
ten considered to be antagonist. Raloxifene and tamoxifen are 
both examples of complicated pharmacology as they are de-
fined as selective estrogen receptor modulators (SERMs) (Shang 
and Brown, 2002). SERMs can behave as either agonists or an-
tagonists depending on the details of the assay such as the cell 
type or assay mode (agonist versus antagonist design). Again, 

Fig. 2: Performance of the candidate 
reference chemicals against the 
ToxCast/Tox21 assays
In all cases, support is calculated excluding 
ToxCast/Tox21 data. (A) Performance at 
the assay level, matching on both target 
and mode. The boxplots show the fraction 
of reference chemicals that are active in an 
assay for the matching target and mode. 
The X-axis gives the minimum support, or 
independent references linking a chemical 
to a target, for the bin. The numbers over 
the boxplot are the numbers of chemical-
assay pairs in the bin. Note that a given 
assay might contribute to multiple bins. 
(B) Performance at the chemical level, 
matching on both target and mode. The 
boxplots show the fraction of assays that 
the candidate reference chemical was 
active in for assays matching the chemical’s 
target and mode. The numbers over the 
boxplot are the numbers of chemicals in 
the bin. A chemical will only contribute to a 
single bin. 

Fig. 3: Relationship between potency 
and support in ToxCast assays
Each boxplot summarizes -log(AC50) 
values, which measure potency (larger 
values are more potent, i.e., chemicals 
interact with the target at lower 
concentrations), for chemical-target-mode 
combinations with the specified support 
range. The X-axis gives the minimum level 
of support for the data in each boxplot. 
Support is defined as the number of 
unique literature records linking a target 
to a chemical. Inactive compounds were 
excluded. The number of chemical-target-
mode combinations within each support 
range are shown above the bar.
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The basis of this observation is that chemicals with low potency 
(only active at relatively high concentrations) will only be ac-
tive in the most sensitive assays, and in situations where they 
are tested to high concentrations. Since typical screening cam-
paigns limit testing to 10 or 100 µM, these weaker compounds 
will more often be missed.

We also observe a trend that chemical-target pairs with great-
er support tend to be more potent. These data are summarized 
in Figure 3. A linear model fit between the continuous sup-
port and -log(AC50) for ToxCast assay-chemical pairs that are  
active gives an adjusted R2 value of 0.18 with p-value < 2x10-16. 
A similar trend was seen with a large data set of estrogen recep-
tor actives extracted from public data (Mansouri et al., 2016). 

Tab. 2: ToxCast/Tox21 assays showing activity in ≤ 80% of reference chemicals with support ≥ 5, where support is the  
number of independent reports linking a target to a chemical  
The assay name, biological target in the assay, and the mode of action of the reference chemical(s) on the target are shown. The pass 
rate, or the rate with which the reference chemicals showed the same activity as seen in the literature is calculated and displayed along 
with the number of reference chemicals tested for each assay. For example, in the NVS_NR_hPXR assay, the assay had a 0.33 pass  
rate because only one of the three reference chemicals was observed to have an agonist mode of action.

Assay Target Mode Pass rate Reference chemicals

ATG_CAR_TRANS_up NR1I3 agonist 0 2

ATG_RARb_TRANS_up RARB agonist 0 2

NVS_ADME_hCYP2C9 CYP2C9 inhibitor 0 1

NVS_ENZ_hHDAC3 HDAC3 inhibitor 0 1

NVS_ENZ_hHDAC6 HDAC6 inhibitor 0 1

NVS_IC_hKhERGCh KCNH2 inhibitor 0 1

OT_NURR1_NURR1RXRa_0480 RXRA agonist 0 1

TOX21_CAR_Antagonist NR1I3 inhibitor 0 1

NVS_NR_hPXR NR1I2 agonist 0.33 3

TOX21_CAR_Agonist NR1I3 agonist 0.33 3

NVS_NR_hPPARa PPARA agonist 0.4 5

ATG_PBREM_CIS_up NR1I3 agonist 0.5 2

ATG_RARg_TRANS_up RARG agonist 0.5 2

NVS_ADME_hCYP3A4 CYP3A4 inhibitor 0.5 2

NVS_IC_rNaCh_site2 SCN1A inhibitor 0.5 2

OT_AR_ARELUC_AG_1440 AR agonist 0.5 16

TOX21_FXR_BLA_agonist_ratio NR1H4 agonist 0.5 2

TOX21_HDAC_Inhibition HDAC1 inhibitor 0.5 2

NVS_NR_hPPARg PPARG agonist 0.6 5

OT_PPARg_PPARgSRC1_0480 PPARG agonist 0.6 5

OT_PPARg_PPARgSRC1_1440 PPARG agonist 0.6 5

TOX21_PPARd_BLA_agonist_ratio PPARD agonist 0.6 5

TOX21_Aromatase_Inhibition CYP19A1 inhibitor 0.66 6

ATG_GRE_CIS_up NR3C1 agonist 0.75 8

ATG_PPARd_TRANS_up PPARD agonist 0.75 4

TOX21_AChE_Inhibition_Fluor ACHE inhibitor 0.77 9

TOX21_ERb_BLA_Agonist_ratio ESR2 agonist 0.77 9

TOX21_ERa_BLA_Agonist_ratio ESR1 agonist 0.79 24

TOX21_PPARg_BLA_Agonist_ratio PPARG agonist 0.8 10
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9. The paper was not in English. 
10. The provided version of the paper was illegible, i.e., the pa-

per was so old that only a poorly photocopied version was 
available. 

11. Multiple chemicals were tested together, but not individual-
ly.

12. Other issues that were seen, but which did not necessarily 
lead to a QC fail include: 
a. Records from multiple sources pointed to the same PMID, 

but the sources recorded different modes or activities. In 
these cases, the paper was reexamined for alternative 
modes

b. The chemical had a different form or chirality (e.g., en-
antiomers, salts, hydrates) than was listed in the source 
database

Data from the manual curation step were analyzed to deter-
mine the reliability of the data from each source (Tab. S11.24). 
Two-sample tests for equality of proportions were performed 
across all source-averaged pass rates. The rates of positive QC 
results were compared in pairwise proportion tests across sourc-
es (Tab. S11.34). There were statistical differences between all 
sources except ChEMBL and CTD, which also had the highest 
rates of agreement. Two trends are immediately clear: (1) sourc-
es ChEMBL, CTD and DrugBank had significantly higher preci-
sion rates than LitDB (~40% higher); and (2) curator B had sig-
nificantly lower accuracy rates than curators A and C. For further 
analyses, the results of curator B were excluded. Upon excluding 
results from curator B, statistical differences between the curated 
sources ChEMBL/CTD and CTD/DrugBank were no longer ob-
served (Tab. S11.44), though precision rates of all curated sourc-
es maintained statistical differences from LitDB, the source that 
had undergone no previous manual curation. Because of this rel-
atively low rate of precision, LitDB references were excluded 
from further analyses. Next, assuming that our curators were no 
more or less perfect than the initial curators for the source da-
tabases, we had a second reviewing curator check a subset of 
records. From the references evaluated in Tab. S11.24, review-
ing curator A checked 33 of curator C’s records and 17 of cura-
tor B’s records. Reviewing curator C checked 33 of curator A’s 
records and 17 of curator B’s records. These records were ran-
domly chosen to be about half QC passes and half QC fails. The 
matching percentage was calculated by comparing the reviewing 
curator’s QC status with the original curator’s. Reviewing cura-
tors were not statistically different in their judgement (p = 0.8).  
The results in Table S11.44 show a matching percentage of ap-
proximately 75-80% for the curators A and C, which was mar-
ginally below the precision rates in Table S11.24 (excluding 
curator B and source LitDB) but not statistically significant  
(p = 0.227). Inter-rater agreement between curator A and C was 
moderate (ĸ = 0.54). From these results, we conclude that any 
given result in the RefChemDB database that was curated from 
the literature is correct with a frequency between approximately 
75-90% of the time. One consequence of this is that a single re-
port of a chemical-target-mode-activity combination is not im-
mediately trustworthy, but multiple independent reports of the 
same combination are more reliable. 

3.3  Analysis of manually curated target set 
Manual curation is a time-consuming process. Because it was not 
feasible to manually curate the entire database of ~50,000 PMIDs 
plus other source data, we selected a sample of data from which 
to estimate the rate of correct and incorrect annotations of chemi-
cal-target-mode-activity combinations. For this effort, we selected 
54 gene targets including nuclear receptors (NRs), G-protein cou-
ple receptors (GPCRs), transporters and enzymes, listed in Table 
S64. Some of these are well-studied (e.g., dopamine and histamine 
receptors) while others are targets that are relatively poorly ex-
plored, but for which in vitro assays are currently being developed 
for chemical toxicology screening at the EPA. For each target, we 
queried RefChemDB for the number of chemicals that had 1, 2, 
3, … 10 or more reports in the target_summary table. For the cur-
rent effort, we then selected chemicals with 5 or more reports as 
candidate reference chemicals for manual curation. Counts for all 
targets are given in Table S11.14. Out of a larger initial set of 106 
targets, 72 had at least 5 chemicals with at least 5 reports. At the 
high end, several targets had more than a hundred candidate ref-
erence chemicals (AR, ESR1, HRH1, DRD2, OPRM1, HRH2), 
while at the low end, 5 targets had no reports in any of the sources 
(DIO, DIO3, NR2A2, SLC16A2, SRD5A3). For the current exer-
cise, we selected targets from the middle range of data size. Note 
that this process was limited to the sources that provided PMIDs 
(i.e., ChEMBL, CTD, DrugBank, and LitDB).

Each of the three individual curators read a set of papers. Most 
papers were read by a single curator, but a subset was read by 
two (see below). The different data sources providing links to 
the literature (PMIDs) were not assumed to be of equal quality. 
Data in some of the sources have already passed through a level 
of manual curation. DrugBank, for instance, is a curated source 
of chemical target information and we therefore assumed it to 
be definitive. On the other hand, LitDB is a collection of MeSH 
keywords assigned to articles to aid lookup, not to delineate a 
specific relationship between a chemical and target; it is likely 
to have a higher rate of records not appropriate for RefChemDB 
(i.e., false positives). Here we describe some of the specific find-
ings of the manual curation effort and provide overall statistics 
below. Common issues that led to QC failure were:
1. The target or chemical of interest was not listed in the paper.
2. Only a CASRN and not the chemical name was listed, and 

the CASRN appeared to be invalid based on an EPA Comp-
Tox Dashboard database search. 

3. Both the chemical and the gene target were described in the 
paper, but the specific chemical-target interaction was not.

4. The specific interaction between chemical and target was 
mentioned in the paper, but the paper lacked sufficient evi-
dence to confirm details of the interaction.

5. The Entrez Gene ID number from the source database was 
incorrect. 

6. The chemical only indirectly interacted with the target
7. The target indirectly regulated the level of the chemical, e.g., 

the chemical was a second messenger (e.g., cAMP increases 
as a result of ADRB2 activation)

8. The gene target was a different subtype from the one listed in 
the source database (e.g., ADRB2 vs. ADRB1). 
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and uptake inhibitor. The complete set of modes and mappings 
is given in Table S14. Table 3 shows the number of candidate  
reference chemicals from the final RefChemDB database for 
the 20 targets with the largest number of candidate reference 
chemicals and their corresponding cumulative support totals. 
Only chemicals having support values of ≥ 5 are shown. The  
final candidate reference chemicals by gene target are included 
in Table S124. The distribution of support for each chemical- 
target-mode-activity combination is summarized in Figure 4. 

4  Discussion 

The use of in vitro assays to evaluate chemical safety is becom-
ing more prominent due to potential regulatory uses, increased 
relevance to human biology, cost and testing efficiencies, and an-

3.4  Candidate reference chemicals
After extracting from the database, consolidating modes, and  
tallying support for chemical-target-mode-activity combina-
tions, those chemical-target-mode combinations with support 
values ≥ 5 were chosen as candidate reference chemicals. The 
list of support tallies is available in Table S124. Because of the 
large number of alternate mode terms used across different types 
of assays, we have consolidated the different terms to “positive”, 
“negative” and “unspecified” for the mode mapping. The modes 
mapped to the positive class are activator, agonist, enhancer, 
inducer, opener, partial agonist, positive allosteric modulator, 
positive modulator, releasing agent and stimulator. The modes 
mapped to the negative class are allosteric antagonist, antagonist, 
blockade, blocker, channel blocker, gating inhibitor, inactivator, 
inhibitor, inhibitor covalent, inhibitor reversible, inverse agonist, 
negative allosteric modulator, negative modulator, suppressor 

Fig. 4: Histogram of support where “count” is the number of target-chemical-mode-activity combinations
The x-axis shows the amount of support, defined as literature records linking a chemical to a target, and the y-axis shows the frequency, 
or number of target-chemical combinations, with that support level. Data is shown across four categories: Category 1 (manually curated 
records), Category 2 (non-curated records with PMIDs), Category 3 (records without PMIDs), and Category 4 (ToxCast/Tox21 records).  
A “record” is a data point represented by one database record. Groups (A), (B), (C), and (D) each include different categories of data:  
(A) Category 1, or just curated data; (B) Category 1 + Category 2, or just data with PMIDs; (C) Category 1 + Category 2 + Category 3, or 
all data except in vitro ToxCast/Tox21 data; (D) Category 1 + Category 2 + Category 3 + Category 4, or all data. The vertical dashed line 
shows the cutoff at a support value of 5, the minimum threshold for candidate reference chemicals for a target with a given mode and 
activity call. Only chemicals with support value > 1 and < 61 are shown for ease of visualization.
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was manually checked. Reliability of expert-curated data sourc-
es (ChEMBL, CTD, and DrugBank) ranges from ~75% to ~90% 
according to hand curation of active/inactive assignments under-
taken in this effort. This is consistent with bioactivity database 
assessment values reported in the literature, such as for ChEMBL  
version 14, which had an error rate estimate of approximately 
13.6% (Tiikkainen et al., 2013). 

The manual validation step revealed that sources varied in 
their reliability. For example, sources like ChEMBL that al-
ready comprise manually curated data have higher accuracy than 
LitDB, a source with no previous expert curation. Given that ex-
tracting from LitDB is purely automated, easy, and yields many 
candidate chemical-target pairs, it could function as a supporting 
or exploratory step in identifying candidate reference chemicals. 
A data file with LitDB’s contents is provided in Table S134 and a 
document detailing the processing of the automated data is given 
in supplementary data S415. Manual curation of the entire cur-
rent database is unrealistic given time and resource constraints 
(413,248 records, excluding ToxCast/Tox21). However, our rec-
ommendations for developing reference chemical lists for spe-
cific targets (see below) do involve a manual curation step. We 

imal welfare concerns. To increase scientific confidence in the 
use of alternatives for regulatory decisions, evaluation frame-
works propose that the reliability and performance of the in vitro 
assays be evaluated using reference chemicals (National Toxi-
cology Program, 2018). The goal of this current work is to as-
sess how well a semi-automated approach works for identifying 
candidate reference chemicals for use in evaluating the perfor-
mance of in vitro assays, and how many reference chemicals one 
can find for a range of biological targets of interest. In this pa-
per, we introduced a method for identifying candidate reference 
chemicals and annotating them in a standardized way. To work 
through our proposed methodology, we created a database by ex-
tracting information from multiple data sources and parsing it 
into relevant tables. A first evaluation compared the candidate 
reference chemicals’ targets and modes against a large database 
of in vitro assay data from the ToxCast database. This analysis 
showed that for chemical-target-mode-activity combinations 
with ≥ 5 non-ToxCast references (support), the activity mostly 
matched with the in vitro ToxCast data, indicating that these can-
didate reference chemicals are largely trustworthy. In a second 
evaluation of this method, a subset of the data containing PMIDs 

Tab. 3: The 20 most data-rich targets based on counts of Category 1, 2, and 3 data (all data excluding ToxCast/Tox21) for 
chemicals with support ≥ 5, where support is the number of independent reports in the database linking a chemical to a target 
The total support for those chemicals is also shown; sorted in descending order of support value.

Target symbol Target name Chemicals Support

CA2 Carbonic Anhydrase 2 106 2453

CA1 Carbonic Anhydrase 1 105 1981

ESR1 Estrogen Receptor 1 85 1371

DRD2 Dopamine Receptor D2 81 952

AR Androgen Receptor 63 750

ESR2 Estrogen Receptor 2 41 664

PTGS2 Prostaglandin-Endoperoxide Synthase 2 46 646

OPRM1 Opioid Receptor Mu 1 48 638

CA9 Carbonic Anhydrase 9 23 512

PPARA Peroxisome Proliferator-Activated Receptor Alpha 27 511

PPARG Peroxisome Proliferator-Activated Receptor Gamma 26 486

NR3C1 Nuclear Receptor Subfamily 3 Group C Member 1 37 482

HTR2A 5-Hydroxytryptamine Receptor 2A (Serotonin Receptor 2A) 43 476

ADRB2 Beta-2 Adrenergic Receptor 44 472

ACHE Acetylcholinesterase 28 470

SLC6A4 Solute Carrier Family 6 Member 4 40 423

ABCB1 ATP Binding Cassette Subfamily B Member 1 35 418

KCNH2 Potassium Voltage-Gated Channel Subfamily H Member 2 48 412

HRH1 Histamine Receptor H1 45 399

HDAC1 Histone Deacetylase 1 12 387
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ics, affecting how much chemical gets into the cells. Factors that 
can drive this are the cell type and number, plate format (e.g., 
96- vs. 384-well), the concentration of protein in the medium, 
the type of plastic used, etc. Recent work has demonstrated that 
incorporating such factors into reference chemical comparisons 
allows for quantitative in vitro to in vivo extrapolation and estab-
lishes scientific confidence in using in vitro approaches for risk 
assessment (Casey et al., 2018). 

The current database provides an indication of the limit of 
availability of possible reference chemical data across many tar-
gets. We have incorporated data from all known public sourc-
es except for the large screening libraries in PubChem. These 
were excluded for two reasons. First, there are few cases where 
a given target has been probed with multiple assays from differ-
ent labs. Second, these large libraries are primarily experimen-
tal compounds (drug screening libraries), where the compounds 
would not be widely available from commercial vendors. From 
a practical standpoint, a reference chemical should be widely 
available at a reasonable cost. With our current database, there 
are 451 gene targets with at least 2 candidate reference chemi-
cals with support ≥ 5. This analysis excluded information from 
the automated LitDB process. Note that, despite the relative-
ly low precision rates from the manual reviewers for LitDB 
(~40%), it is still high enough to be of practical use in compiling 
candidate reference chemical information for specific new tar-
gets. This is especially true given that most targets will have on-
ly a small number of good reference chemicals. From Figure 4, 
we see that the modal number of reference chemicals for a target 
where support ≥ 5 is a single reference chemical, as illustrated 
in Figure 5. 

Given all this information, we recommend the following tiered 
approach for developing a set of reference chemicals for a new 
target/assay:
− Using the gene identifier of the target of interest, query Ref-

ChemDB (including ToxCast/Tox21) to select records for that 
target and the desired mode or modes (antagonist, agonist). 
The chemicals that are returned are candidate reference chem-
icals. This candidate set can be evaluated in two ways: 1) The 
total count of records for each chemical provides one measure 
of support. 2) The occurrence of a chemical in a highly accu-
rate source like DrugBank is another measure. The chemicals 
should be roughly ranked by their level of support. Chemicals 
with at least 5 supporting records, for instance, could be pri-
oritized for follow-up. 

− Next, the actual data for each chemical should be manual-
ly investigated for its appropriateness to the specific assay 
in question. This step requires reading the publications. Use 
the PubMed IDs provided to look up the article and extract 
the chemical, mode, potency metrics, and specific assay in-
formation, potentially from the cited literature as well. Assay 
metadata would include cell line and assay technology at a 
minimum. We recommend manual curation with at least two 
reviewers per reference and a focus on the consensus data be-
tween them. 

A second phase of literature examination may be useful to iden-
tify more definitive information about the interaction of a chem-

saw variation between reviewer designations of the same source 
documents. A second reviewer agreed with an initial quality con-
trol status designation a mean of 79% of the time. This indicates 
that an element of human judgement is involved in interpreta-
tion of information found in papers. In addition, some QC fail-
ures occurred due to an inability to find the chemical listed or 
interpreting different names for the same chemical. For instance, 
there were papers that did not state the chemical name in text and 
only contained an image of the chemical structure or a chart with 
assigned R-groups linked to an image of a chemical substruc-
ture. To minimize differences in judgement, curators should ad-
here to the check-list developed from experience with manually 
curating large numbers of documents. The issues observed here 
with respect to the accuracy of online chemical-target databas-
es have been documented previously (Tiikkainen et al., 2013). 
These authors assessed 3 sources: ChEMBL (version 14), Licep-
tor, and WOMBAT, and looked at inconsistencies of overlapping 
data extracted from same source documents. They hypothesized 
when 2 of 3 had identical data, the discrepant 3rd was assumed 
to be incorrect, but this proved false (82.2% of the time the  
2 matching data values were correct, in 6.7% of instances the 3rd 

discrepant data value was correct, and in 11.1% the source article 
was ambiguous). These authors speculated that estimated error 
rates are likely to be even higher than reported because only er-
rors from ligand (chemical), target, activity value, and activity 
type were taken into account. 

With only a few exceptions, the publicly available sourc-
es (excluding ToxCast/Tox21) provide only positive reference 
chemicals. Ideally, during assay validation, one would also test 
a set of negative reference compounds to assess assay specific-
ity (positive reference compounds help assess sensitivity) and 
help define the chemical domain of applicability. The ToxCast 
and Tox21 databases provide a large number of negative com-
pounds, because for each assay, between 1000 and 8000 unique 
chemicals were tested. As a result, for targets where ToxCast and 
Tox21 contain multiple assays (e.g., nuclear receptors), chemi-
cals that are negative in all corresponding assays or within dif-
ferent technology platforms (e.g., cellular reporter assays, bio-
chemical binding assays) are good candidates to be negative ref-
erence chemicals. Another important aspect of assay evaluation 
is seeing what kinds of chemical treatment (chemical, dose) will 
lead to potential false positive activity. We have documented the 
degree of false activity that occurs, especially at high concen-
tration, due to a variety of cell stress mechanisms (Judson et al., 
2016). This is just an extension of the idea of pan-active assay 
interference compounds or PAINs (Baell and Holloway, 2010; 
Bruns and Watson, 2012). Some of this false positive activity is 
specific to the assay technology (cell type, readout). An active 
area of research is the development of assay interference refer-
ence chemicals specific to assay technology types. The databases 
we use will contain false positive and false negative results for 
reasons beyond what has already been mentioned. Different lab-
oratories may run assays to different maximum concentrations, 
so weakly potent compounds may be active in one but not the 
other (one explanation for the trend seen in Fig. 3). Different as-
says for the same target can also have different chemical kinet-
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from screening libraries and for their exclusion in bioassays.  
J Med Chem 53, 2719-2740. doi:10.1021/jm901137j

Baker, N. C. and Hemminger, B. M. (2010). Mining connec-
tions between chemicals, proteins, and diseases extracted 
from Medline annotations. J Biomed Inform 43, 510-519. 
doi:10.1016/j.jbi.2010.03.008

Baker, N., Knudsen, T. and Williams, A. (2017). Abstract sifter: 
A comprehensive front-end system to PubMed. F1000Res 6. 
doi:10.12688/f1000research.12865.1

Bleicher, K. H., Bohm, H. J. Muller, K. and Alanine, A. I. (2003). 
Hit and lead generation: Beyond high-throughput screening. 
Nat Rev Drug Discov 2, 369-378. doi:10.1038/nrd1086

Bruns, R. F. and Watson, I. A. (2012). Rules for identifying po-
tentially reactive or promiscuous compounds. J Med Chem 55, 
9763-9772. doi:10.1021/jm301008n

Casey, W. M., Chang, X., Allen, D. G. et al. (2018). Evaluation 
and optimization of pharmacokinetic models for in vitro to in 
vivo extrapolation of estrogenic activity for environmental 
chemicals. Environ Health Perspect 126, 97001. doi:10.1289/
EHP1655

Casida, J. E. (2017). Why prodrugs and propesticides succeed. 
Chem Res Toxicol 30, 1117-1126. doi:10.1021/acs.chemrestox. 
7b00030

Chiu, W. A., Guyton, K. Z., Martin, M. T. et al. (2018). Use of 
high-throughput in vitro toxicity screening data in cancer 
hazard evaluations by IARC Monograph Working Groups.  
ALTEX 35, 51-64. doi:10.14573/altex.1703231

Corsello, S. M., Bittker, J. A., Liu, Z. et al. (2017). The drug re-
purposing hub: A next-generation drug library and informa-
tion resource. Nat Med 23, 405-408. doi:10.1038/nm.4306

ical and a target. For this deeper dive, the articles identified by 
LitDB may be useful. One tool we use is the EPA’s PubMed Ab-
stract Sifter either in the Excel version or the implementation 
on the EPA Comptox Chemicals Dashboard (Baker et al., 2017; 
Williams et al., 2017).

Reference chemicals are critical for evaluating the perfor-
mance of in vitro assays, predictive models, and other next-gen-
eration methods to generate confidence in these approaches in 
the eyes of the regulatory community and other end-users. The 
diverse and large number of targets and pathways required to im-
plement Toxicity Testing in the 21st Century makes reliance on 
past methods for defining reference chemicals impractical. The 
approach described here provides a rapid means of producing 
initial lists of reference chemicals on large numbers of targets 
based on the accumulated knowledge available in public data-
bases and the scientific literature.

References
Attene-Ramos, M. S., Miller, N., Huang, R. et al. (2013). The 

Tox21 robotic platform for the assessment of environmental 
chemicals – From vision to reality. Drug Discov Today 18, 
716-723. doi:10.1016/j.drudis.2013.05.015

Attene-Ramos, M. S., Huang, R., Michael, S. et al. (2015). Pro-
filing of the Tox21 chemical collection for mitochondrial func-
tion to identify compounds that acutely decrease mitochondri-
al membrane potential. Environ Health Perspect 123, 49-56. 
doi:10.1289/ehp.1408642

Baell, J. B. and Holloway, G. A. (2010). New substructure filters 
for removal of pan assay interference compounds (PAINS) 

Fig. 5: Summary of overall process of 
developing a final reference chemical 
list

https://doi.org/10.1021/jm901137j
https://doi.org/10.1016/j.jbi.2010.03.008
https://doi.org/10.12688/f1000research.12865.1
https://doi.org/10.1038/nrd1086
https://doi.org/10.1021/jm301008n
https://doi.org/10.1289/EHP1655
https://doi.org/10.1289/EHP1655
https://doi.org/10.1021/acs.chemrestox.7b00030
https://doi.org/10.1021/acs.chemrestox.7b00030
https://doi.org/10.14573/altex.1703231
https://doi.org/10.1038/nm.4306
https://doi.org/10.1016/j.drudis.2013.05.015
https://doi.org/10.1289/ehp.1408642


Judson et al.

ALTEX 36(2), 2019       275

Acids Res 34 (Database issue), D354-357. doi:10.1093/nar/
gkj102

Kanehisa, M., Araki, M., Goto, S. et al. (2008). KEGG for link-
ing genomes to life and the environment. Nucleic Acids Res 36 
(Database issue), D480-484.

Kavlock, R., Chandler, K. Houck, K. et al. (2012). Update on 
EPA’s ToxCast program: Providing high throughput decision 
support tools for chemical risk management. Chem Res Toxi-
col 25, 1287-1302. doi:10.1021/tx3000939

Kleinstreuer, N. C., Ceger, P., Watt, E. D. et al. (2017). Devel-
opment and validation of a computational model for androgen 
receptor activity. Chem Res Toxicol 30, 946-964. doi:10.1021/
acs.chemrestox.6b00347

Li, Y. H., Yu, C. Y., Li, X. X. et al. (2017). Therapeutic target da-
tabase update 2018: Enriched resource for facilitating bench-
to-clinic research of targeted therapeutics. Nucleic Acids Res 
46, D1121-1127.

Malo, N., Hanley, J. A., Cerquozzi, S. et al. (2006). Statistical 
practice in high-throughput screening data analysis. Nat Bio-
technol 24, 167-175. doi:10.1038/nbt1186

Mansouri, K., Abdelaziz, A., Rybacka, A. et al. (2016). CER-
APP: Collaborative estrogen receptor activity prediction proj-
ect. Environ Health Perspect 124, 1023-1033. doi:10.1289/
ehp.1510267

Mattingly, C. J., Rosenstein, M. C., Davis, A. P. et al. (2006). 
The comparative toxicogenomics database: A cross-species 
resource for building chemical-gene interaction networks.  
Toxicol Sci 92, 587-595. doi:10.1093/toxsci/kfl008

National Toxicology Program (2018). A Strategic Roadmap 
for Establishing New Approaches to Evaluate the Safety of 
Chemicals and Medical Products in the United States.

NRC (2007). Toxicity Testing in the 21st Century: A Vision and a 
Strategy. Washington D.C., USA: National Academies Press.

Richard, A. M., Gold, L. S. and Nicklaus, M. C. (2006). Chem-
ical structure indexing of toxicity data on the internet:  
Moving toward a flat world. Curr Opin Drug Discov Devel 9, 
314-325.

Shang, Y. and Brown, M. (2002). Molecular determinants for 
the tissue specificity of SERMs. Science 295, 2465-2468. 
doi:10.1126/science.1068537

Sharma, R., Schurer, S. C. and Muskal, S. M. (2016). High 
quality, small molecule-activity datasets for kinase research. 
F1000Res 5. doi:10.12688/f1000research.8950.1

Thorne, N., Auld, D. S. and Inglese, J. (2010). Apparent activi-
ty in high-throughput screening: Origins of compound-depen-
dent assay interference. Curr Opin Chem Biol 14, 315-324. 
doi:10.1016/j.cbpa.2010.03.020

Tice, R. R., Austin, C. P., Kavlock, R. J. and Bucher, J. R. (2013). 
Improving the human hazard characterization of chemicals: 
A tox21 update. Environ Health Perspect 121, 756-765. 
doi:10.1289/ehp.1205784

Tiikkainen, P., Bellis, L., Light, Y. and Franke, L. (2013). Esti-
mating error rates in bioactivity databases. J Chem Inf Model 
53, 2499-2505. doi:10.1021/ci400099q

Vinken, M. (2013). The adverse outcome pathway concept: 

Davis, A. P., Murphy, C. G., Saraceni-Richards, C. A. et al. 
(2009). Comparative toxicogenomics database: A knowl-
edgebase and discovery tool for chemical-gene-disease net-
works. Nucleic Acids Res 37 (Database issue), D786-792. 
doi:10.1093/nar/gkn580

Dix, D. J., Houck, K. A., Martin, M. T. et al. (2007). The Tox-
Cast program for prioritizing toxicity testing of environmental 
chemicals. Toxicol Sci 95, 5-12. doi:10.1093/toxsci/kfl103

Feng, B. Y. and Shoichet, B. K. (2006). A detergent-based assay 
for the detection of promiscuous inhibitors. Nat Protoc 1, 550-
553. doi:10.1038/nprot.2006.77

Gaulton, A., Bellis, L. J., Bento, A. P. et al. (2012). ChEMBL: 
A large-scale bioactivity database for drug discovery. Nucleic 
Acids Res 40 (Database issue), D1100-1107. doi:10.1093/nar/
gkr777

Huber, K., Doyon, G., Plaks, J. et al. (2011). Inhibitors of histone 
deacetylases: Correlation between isoform specificity and re-
activation of HIV type 1 (HIV-1) from latently infected cells. J 
Biol Chem 286, 22211-22218. doi:10.1074/jbc.M110.180224

Huong, T. T., Dung, D. T., Huan, N. V. et al. (2017). Novel N- 
hydroxybenzamides incorporating 2-oxoindoline with unex-
pected potent histone deacetylase inhibitory effects and anti-
tumor cytotoxicity. Bioorg Chem 71, 160-169. doi:10.1016/j.
bioorg.2017.02.002

Ihaka, R. and Gentleman, R. (1996). R: A language for data anal-
ysis and graphics. J Comput and Graphical Statistics 5, 299-
314.

Jaworska, J., Nikolova-Jeliazkova, N. and Aldenberg, T. (2005). 
QSAR applicabilty domain estimation by projection of the 
training set descriptor space: A review. Altern Lab Anim 33, 
445-459.

Judson, R. S., Houck, K. A., Kavlock, R. J. et al. (2010). In vi-
tro screening of environmental chemicals for targeted testing 
prioritization: The ToxCast project. Environ Health Perspect 
118, 485-492. doi:10.1289/ehp.0901392

Judson, R., Houck, K., Martin, M. et al. (2014). In vitro and 
modelling approaches to risk assessment from the U.S. Envi-
ronmental Protection Agency ToxCast programme. Basic Clin 
Pharmacol Toxicol 115, 69-76. doi:10.1111/bcpt.12239

Judson, R. S., Magpantay, F. M., Chickarmane, V. et al. (2015). 
Integrated model of chemical perturbations of a biologi-
cal pathway using 18 in vitro high-throughput screening as-
says for the estrogen receptor. Toxicol Sci 148, 137-154. 
doi:10.1093/toxsci/kfv168

Judson, R., Houck, K., Martin, M. et al. (2016). Analysis of the 
effects of cell stress and cytotoxicity on in vitro assay activity 
across a diverse chemical and assay space. Toxicol Sci 152, 
323-339. doi:10.1093/toxsci/kfw092

Kalac, M., Scotto, L., Marchi, E. et al. (2011). HDAC inhibi-
tors and decitabine are highly synergistic and associat-
ed with unique gene-expression and epigenetic profiles in 
models of DLBCL. Blood 118, 5506-5516. doi:10.1182/
blood-2011-02-336891

Kanehisa, M., Goto, S., Hattori, M. et al. (2006). From genomics 
to chemical genomics: New developments in KEGG. Nucleic  

https://doi.org/10.1093/nar/gkj102
https://doi.org/10.1093/nar/gkj102
https://doi.org/10.1021/tx3000939
https://doi.org/10.1021/acs.chemrestox.6b00347
https://doi.org/10.1021/acs.chemrestox.6b00347
https://doi.org/10.1038/nbt1186
https://doi.org/10.1289/ehp.1510267
https://doi.org/10.1289/ehp.1510267
https://doi.org/10.1093/toxsci/kfl008
https://doi.org/10.1126/science.1068537
https://doi.org/10.12688/f1000research.8950.1
https://doi.org/10.1016/j.cbpa.2010.03.020
https://doi.org/10.1289/ehp.1205784
https://doi.org/10.1021/ci400099q
https://doi.org/10.1093/nar/gkn580
https://doi.org/10.1093/toxsci/kfl103
https://doi.org/10.1038/nprot.2006.77
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1074/jbc.M110.180224
https://doi.org/10.1016/j.bioorg.2017.02.002
https://doi.org/10.1016/j.bioorg.2017.02.002
https://doi.org/10.1289/ehp.0901392
https://doi.org/10.1111/bcpt.12239
https://doi.org/10.1093/toxsci/kfv168
https://doi.org/10.1093/toxsci/kfw092
https://doi.org/10.1182/blood-2011-02-336891
https://doi.org/10.1182/blood-2011-02-336891


Judson et al.

ALTEX 36(2), 2019       276

Wishart, D. S., Knox, C., Guo, A. C. et al. (2008). DrugBank:  
A knowledgebase for drugs, drug actions and drug targets.  
Nucleic Acids Res 36 (Database issue), D901-906. doi:10. 
1093/nar/gkm958

Zhang, J. H., Chung, T. D. and Oldenburg, K. R. (1999). A sim-
ple statistical parameter for use in evaluation and validation of 
high throughput screening assays. J Biomol Screen 4, 67-73. 
doi:10.1177/108705719900400206

Conflict of interest
The authors certify that they do not have any conflicts of interest 
to declare.

Acknowledgement
All funding for this research was provided by the US Environ-
mental Protection Agency.

A pragmatic tool in toxicology. Toxicology 312, 158-165. 
doi:10.1016/j.tox.2013.08.011

Whitebread, S., Hamon, J., Bojanic, D. and Urban, L. (2005). 
Keynote review: In vitro safety pharmacology profiling: An 
essential tool for successful drug development. Drug Discov 
Today 10, 1421-1433. doi:10.1016/S1359-6446(05)03632-9

Wiegers, T. C., Davis, A. P., Cohen, K. B. et al. (2009). Text min-
ing and manual curation of chemical-gene-disease networks 
for the comparative toxicogenomics database (CTD). BMC 
Bioinformatics 10, 326. doi:10.1186/1471-2105-10-326

Williams, A. J., Grulke, C. M., Edwards, J. et al. (2017). The 
CompTox Chemistry Dashboard: A community data re-
source for environmental chemistry. J Cheminform 9, 61. 
doi:10.1186/s13321-017-0247-6

Wishart, D. S., Knox, C., Guo, A. C. et al. (2006). DrugBank: A 
comprehensive resource for in silico drug discovery and ex-
ploration. Nucleic Acids Res 34 (Database issue), D668-672. 
doi:10.1093/nar/gkj067

3R und Ersatzmethoden 
- bessere Forschung, weniger Tierleid

Anmeldung

Schweizer Tierschutz STS
Geschäftsstelle
Dornacherstrasse 101, Postfach
4018 Basel

Tel. 0041-(0)61-365 99 99
www.tierschutz.com 

 

  
CHF 190.–
CHF   95.–

Hochdeutsch, Französisch, Englisch

Deutsch-Französisch-Englisch und 
Englisch-Französisch-Deutsch

Tagungsgebühr

(inkl Verpflegung und Tagungsunterlagen)
Vollzahler(in)
Student(in)

Tagungssprache:

Simultanübersetzung:

Donnerstag, 20. Juni 2019
Beginn: 09:00 Uhr

Kongresszentrum Hotel Arte
Riggenbachstrasse 10
4600 Olten12. Tierversuchstagung des Schweizer Tierschutz STS

Die Tagung wird von der Vereinigung der Schweizer Kantonstierärztinnen und Kantonstierärzte (VSKT) 
den zuständigen kantonalen Behörden zur Anerkennung im Rahmen der Aus- und Weiterbildung 
von Fachpersonal für Tierversuche empfohlen sowie von der Gesellschaft Schweizer Tierärztinnen und 
Tierärzte GST mit zwei Bildungspunkten anerkannt.

https://doi.org/10.1093/nar/gkm958
https://doi.org/10.1093/nar/gkm958
https://doi.org/10.1177/108705719900400206
https://doi.org/10.1016/j.tox.2013.08.011
https://doi.org/10.1016/S1359-6446(05)03632-9
https://doi.org/10.1186/1471-2105-10-326
https://doi.org/10.1186/s13321-017-0247-6
https://doi.org/10.1093/nar/gkj067

