
ALTEX 36(3), 2019       353

Received October 18, 2018; Accepted January 13, 2019;  
Epub January 13, 2019; © The Authors, 2019.

ALTEX 36(3), 353-362. doi:10.14573/altex.1810181 

Correspondence: Christy Foran,  
US Army Engineer Research & Development Center,  
Duty Station: New England District, 696 Virginia Road, Concord MA 01742, USA 
(Christy.M.Foran@usace.army.mil)

tive AOP (Conolly et al., 2017). Development and validation of 
these models generally require extensive data and labor. 

Given the potentially large number of AOPs needed to de-
scribe known toxicological pathways, the limited availability 
of relevant mechanistic data, and the extensive time required to 
develop mechanistic AOP models, a complementary approach 
is needed to utilize existing data to develop easy-to-assemble, 
modular, quantitative AOPs (qAOPs). Such an approach could 
be developed from a current understanding of the responses 
of biological pathways that are perturbed, and relate the lev-
el of “activation” quantitatively with the anticipated degree or  
probability of the adverse outcome. The ideal approach would al-
low construction of different AOPs from an assortment of mod-
ules describing response relationships between KEs (Fig. 1). This 
modular approach, although coarser and more uncertain (Fig. 1), 
would facilitate rapid prototyping and updating of both modules 
and complete AOP models, making it better-suited for screening 
and prioritization than the more detailed and resource-intensive 

1  Introduction

Adverse outcome pathways, or AOPs, are pragmatic descriptions 
of a biological pathway leading to an outcome of regulatory con-
cern that have the potential to inform chemical risk management 
decisions (Ankley and Giesy, 1998; OECD, 2017, 2018; Perkins 
et al., 2019). An AOP characterizes the biological impact of a 
stressor across multiple levels of organization by describing how 
the stressor triggers a molecular initiating event (MIE) at the pro-
tein, DNA, or other molecular level that causes subsequent mea-
surable key events (KE) resulting in an adverse outcome (AO) of 
regulatory concern. A number of efforts have developed quanti-
tative, predictive AOPs; these efforts include Bayesian network 
models (Jaworska et al., 2013; Pirone et al., 2014) and mechanis-
tic models that represent the complexity of a biological pathway 
(Shoemaker et al., 2010; Nichols et al., 2011; Breen et al., 2013). 
Recent work coupled hypothalamic-pituitary-gonadal-liver, oo-
cyte growth, and population models into a quantitative, predic-
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becomes whether a set of baseline data relevant to an AOP can 
be identified to allow one to derive quantitative KERs (qKERs) 
between subsequent KEs using published literature. Here we 
describe an approach to develop qKER modules that can be 
chained together to develop qAOP models that can be used in a 
screening or prioritization context. One benefit of this approach 
is that it allows for development of many simple qAOP models 

mechanistic models referenced above. Additional modeling and 
testing could augment screening-level models derived using this 
modular approach in order to fulfill regulatory needs as described 
by Wittwehr et al. (2017).

One difficulty in developing quantitative biological models 
is the simulation of complex, adaptive, dynamic, and interac-
tive mechanisms underlying responses that can be expected at 
every level of the system. Unfortunately, the extensive datasets 
and mechanistic understanding required to develop models with 
high biological fidelity are often limited to a few responses, mak-
ing highly quantitative modeling challenging. In the absence of 
large datasets and mechanistic understanding, we can utilize the 
existing information to develop correlational or probabilistic re-
lationships between the key events in a specific biological path-
way. Conolly et al. (2017) describe a process for developing a 
response-response (R-R) relationship linking KEs. Combining 
these R-R relationships or KER in a chain represents an explicit 
hypothesis about the biological pathway that leads to an endpoint 
of concern, specifically an adverse outcome at the organ, indi-
vidual, or population level (Fig. 2). Development of a quantita-
tive KER can be based on empirical and literature-derived val-
ues, which are necessarily a simplification of the systems they 
describe. 

To support qAOP development, modules are needed that quan-
tify KER R-R functions. The condition or state of a KE, as well 
as the uncertainty surrounding that measurement, must be cal-
culated and propagated along the qAOP. The key question then 

Fig. 1: The structure of an AOP displays the biological activity from a molecular initiating event (MIE), to subsequent key events 
(KE) derived from MIE activation, and a resulting adverse outcome (AO) 
Development of quantitative relationships for each key event relationship (KER) allows the rapid prototyping of predictive AOP models. 
A modular approach allows for development of simple qAOP models using modular, quantitative KERs (qKERs) as pieces. However, the 
resulting models would be coarse, screening-level representations of more complex relationships and processes.

Fig. 2: A quantitative relationship between key events (KE), 
such as a response-response (R-R) function relating one key 
event (KEn) to the subsequent one (KEn+1) can be used as  
a piece of a model to chain together the activity of a biological 
pathway into a simple qAOP model
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can lead to population decline. The seven KERs that connect the 
MIE to the AO are well-supported and thoroughly described in 
the literature (Becker et al., 2015), so they will only be summa-
rized here, as follows: 
–	 KER #1: Inhibition of aromatase activity results in decreased 

ovarian production of 17β-estradiol (E2)
–	 KER #2: Decreased ovarian production of E2 results in re-

duced plasma concentration of E2
–	 KER #3: Reduced plasma concentration of E2 results in de-

pressed vitellogenin (Vtg) production in the liver
–	 KER #4: Depressed Vtg production in the liver results in de-

creased plasma Vtg concentrations
–	 KER #5: Decreased plasma Vtg concentrations results in im-

paired oocyte development
–	 KER #6: Impaired oocyte development results in reduced fe-

cundity
–	 KER #7: Reduced fecundity leads to decrease in population of 

fish species
The second AOP describes “binding of agonists to ionotropic 
glutamate receptors in adult brain causes excitotoxicity that me-
diates neuronal cell death, contributing to learning and memo-
ry impairment” (Sachana et al., 2016). As shown in Figure 3B, 
binding of glutamate agonists results in over-activation of the 
N-methyl-D-aspartate receptor (NMDAR), and subsequently 
results in an influx of calcium into neurons. Intracellular calci-
um causes mitochondrial dysfunction and leads to excitotoxicity. 
Excitotoxic neuronal cell death from over-activation refers to the 
hippocampus and cortex. The resulting damage can impair mem-

from the existing literature (OECD, 2018), enabling the prioriti-
zation of pathways for future development of highly predictive, 
representative and mechanistic, quantitative models.

2  Methods

Target AOPs for demonstration
The first step in the development of a modular qAOP model is 
the same as in the development of any AOP, namely the robust 
identification and documentation of the MIE, KE, and AO nodes 
that will comprise the model, independent of a specific chemi-
cal(s) of interest (OECD, 2017, 2018). Current efforts are under-
way to standardize the development of AOPs in a way that would 
support the development of modular nodes and inter-nodal rela-
tionships (OECD, 2018). Villeneuve et al. (2014a,b) suggest that 
AOPs be developed such that each KE is a module that can be 
used in many pathways, and that the pathways can be combined 
to form a network. Characterization of KER provides the basis 
for modules that can be used together to form a qAOP. 

Here we consider two AOPs for demonstration of this modu-
lar, quantitative approach (Fig. 3). First is the AOP linking the 
inhibition of cytochrome P450 aromatase (“aromatase inhibi-
tion,” the MIE) to reproductive dysfunction in fish (the AO) as 
reported in the AOP-wiki (Villeneuve, 2016). In this pathway 
(Fig. 3A), a key enzyme is blocked, resulting in reduced hepatic 
production of proteins critical to the proper development of oo-
cytes. Impairment of oocytes leads to reduced fecundity, which 

Fig. 3: Two established AOPs for demonstration
(A) The pathway for aromatase inhibition leading to reproductive dysfunction in fish (from Villeneuve, 2016) and (B) the pathway for 
excitation of NMDA receptors leading to impairment of memory (from Sachana et al., 2016).
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used as a surrogate in the absence of empirical data (Keeney and 
Raiffa, 1976; Belton and Stewart, 2002; Wood et al., 2012). The 
application of any approach to derive a qKER should involve a 
comprehensive review and a transparent documentation of the in-
formation that contributed to its development.

The AOP for aromatase inhibition was utilized to develop an 
example of how qKERs could be developed, following the same 
pathway utilized by Conolly et al. (2017). Data utilized for this 
example comes from studies in fathead minnows (Pimephales 
promelas); however, these KERs have a relatively broad bio-
logical domain of applicability that extends beyond fish to other 
oviparous vertebrates. Data linking non-adjacent events was used 
for this example because analogous data, resulting from similar 
exposure, species and tissues, for each key event could not be 
found. All R-R relationships and best-fit functions were deter-
mined using the U.S. Environmental Protection Agency’s (EPA) 
Benchmark Dose Software (BMDS) version 2.6.0 and Microsoft 
Excel 2013 for simplicity. Select studies were utilized in the de-
velopment of these qKERs and therefore no attempt was made 
to quantify the uncertainty in the relationships. Data linking the 
MIE to KE #2 (non-adjacent events) were utilized from a study 
observing the effects of aromatase inhibiting chemicals on fe-
male fathead minnows (Ankley et al., 2002). The data relating 
plasma E2 concentration to aromatase activity was limited to two 
data points, which is insufficient to plot an R-R relationship. The 
representation in Figure 4A, therefore, serves only as an example 
relationship. The best fit R-R curve was plotted in Excel and de-
termined to be quadratic (Equation 1).

Best-fit quadratic function for qKER: MIE → KE #2 
Equation 1

Quantitative R-R data linking KE #2 to KE #4 (non-adjacent 
events) were utilized from a study observing the impacts of sex 
steroid status on the reproductive success of female fathead min-
nows (Ankley et al., 2008). The data relating plasma Vtg concen-
tration to plasma E2 concentration was sufficient to plot an R-R 
relationship using BMDS (Fig. 4B). Plasma Vtg concentration 
and plasma E2 concentration are shown on a relative basis to de-
pict changes relative to the experimental control. The curve with 
the lowest Akaike Information Criterion (AIC) value was accept-
ed as the best fit and is represented by the Hill model (Equation 
2). The best-fit curve illustrates that a given reduction in plasma 
E2 concentration leads to a non-linear reduction in plasma Vtg 
concentration that follows a sigmoidal trend.

Best-fit Hill model for qKER: KE #2 → KE #4 

Equation 2

Data linking KE #4 to KE #6 (non-adjacent events) were utilized 
from the same study used for the previous relationship (Ank-
ley et al., 2008) because quantitative data characterizing KER 
#5 and KER #6 were unavailable. The data relating fecundity to 
plasma Vtg concentration was sufficient to plot an R-R relation-

ory function. The eight KERs that connect the MIE to the AO are 
described in the AOP-wiki. They are as follows:
–	 KER #1: Binding of agonists to ionotropic glutamate receptors 

results in the over-activation of the NMDA receptor
–	 KER #2: Over-activation of the NMDA receptor causes an 

overload of intracellular calcium
–	 KER #3: Intracellular calcium overload leads to mitochondrial 

dysfunction
–	 KER #4: Mitochondrial dysfunction leads to neuronal cell 

death
–	 KER #5 and #6: Neuronal cell death results in both neuro-in-

flammation and neurodegeneration 
–	 KER #7: Neurodegeneration causes a decrease in the function-

al network in the cortex and hippocampus
–	 KER #8: Decreased functionality of the hippocampal and cor-

tical neural network leads to impairment of memory and learn-
ing 

Characterization of qKERs
The approach we are proposing requires the characterization of 
an R-R function at each KER (Fig. 2). When a change of a cer-
tain amount is detected in the MIE or any KE in the pathway, the 
anticipated change in the subsequent KE needs to be estimated. 
In this approach it is necessary to develop KERs for each pair 
of KEs that capture the current understanding of how one event 
leads to the next and the full range of potential responses. The 
response transfer is represented by the successful transition from 
one KE to the next KE. In their approach, Conolly et al. (2017) 
linked together models through an R-R function at the interaction 
points of the three models they used. They suggest that a regres-
sion could be used where information is limited, but that qKERs 
should reflect dose-response and time course dynamics. 

In order to develop qKERs for use in a modular qAOP, litera-
ture can be surveyed for data that illustrate a relationship between 
two KEs. Where quantitative data are discovered, R-R relation-
ships can be established to depict the influence that each KE in the 
series has on its dependent KE. For example, in order to develop 
a simplistic qAOP for the aromatase AOP (Fig. 3A), a series of 
R-R functions were derived from the models used by Conolly et 
al. (2017) in the development of their qAOP approach. As they 
suggest, a simple regression analysis could be used to correlate 
existing data for each of the KEs over the range that has been 
documented. Estimating and aligning exposures using reference 
doses or reference concentrations could improve the quality of 
the R-R curve calculations. Miller et al. (2007) documented a lin-
ear relationship between Vtg and fecundity in fathead minnows 
over a variety of exposures. A representation of the confidence in 
the relationship developed for each pair of KEs can be included 
as either a confidence interval or a probability distribution, data 
permitting. This relationship can alternatively be characterized as 
a transition matrix, such as in a Bayesian network. The matrix 
would demonstrate the probability of each of the possible states 
of the successor KE (conditional on reaching any of the possible 
states of the predecessor KE). These functions or matrices would 
be derived from the literature and the parameters documented. 
Where data for qKERs do not exist, R-R data linking non-adja-
cent KEs could be used. Alternatively, expert judgment could be 
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blocking the loss of neurons in the cortex in response to 
NMDA (Chen et al., 1992). The data relating NMDA exposure 
with the loss of cortical neurons is limited to two control points 
(solvent and 50 μM NMDA) and therefore insufficient to plot 
an R-R relationship. The representation in Figure 6B is only an 
example of this relationship. The best fit R-R line was plotted 
in Excel (Equation 5).

Best-fit line for qKER: MIE→ KE #4
Equation 5

Quantitative R-R data linking KE #4 to the AO (non-adjacent 
events) were utilized from a study of brain injury from mild lat-
eral fluid percussion on memory in rats (Hicks et al., 1993). The 
performance of rats in a Morris water maze test was measured 42 
h after injury and compared to a sham treatment group. Following 
testing, the loss of neurons in specific regions of the hippocampus 
was quantified. The relationship between memory score and neu-
ronal loss was captured from these data, and normalized between 
0 (lowest) and 1 (highest; Fig. 6C). The data relating normalized 
memory score and the loss of hilar neurons is limited to three 
points and therefore insufficient to plot a complete R-R relation-
ship. An example of this relationship is represented in Figure 6C. 
The best fit R-R line was plotted in Excel (Equation 6).

Best-fit line for qKER: KE #4→ AO
Equation 6

In order to examine the predictive capacity of this chained mod-
el, an additional relationship was needed. A study was utilized 
that compiles observations on amnesiac shellfish poisoning from  
human ingestion of shellfish containing domoic acid, which 
acts as a glutamate agonist (Lefebvre and Robertson, 2010). 
Data linking the MIE to KE #2 (non-adjacent events) were uti-
lized to develop an R-R function between domoic acid and cal-
cium influx in neurons (Berman et al., 2002). The monitored 
influx of calcium in cerebellar granule neurons upon exposure 
to domoic acid was reported across a range of concentrations. 
From these data, a best fit curve was calculated using the expo-
nential continuous model (Equation 7). The best-fit curve illus-
trates the influx of calcium in response to a specified exposure 
to domoic acid (Fig. 6D).

Best-fit exponential continuous model for qKER: MIE→ KE #2 
Equation 7

Domoic acid can be related to calcium influx through this equa-
tion. Based on the calcium influx, we can estimate the NMDA 
“equivalents” of that exposure. The impact of the estimated 
NMDA “equivalents” on neuronal cell death can then be derived 
from the R-R function represented by Equation 5. The level of 
neuronal cell death can then be used to predict the relative mem-
ory impairment. The chain of these estimations is depicted in 
Figure 7. 

ship using BMDS (Fig. 4C). Fecundity (measured in eggs/fe-
male/day) and plasma Vtg concentration are shown on a relative 
basis to depict changes relative to the experimental control. The 
curve with the lowest AIC value was accepted as the best fit and 
is represented by the Hill model (Equation 3). The curve illus-
trates that a given reduction in plasma Vtg concentration leads to 
a nearly-linear reduction in fecundity.

Best-fit Hill model for qKER: KE #4 → KE #6 

Equation 3

Empirical data characterizing KER #7 were unavailable, how-
ever in silico data were available from a study that developed 
a predictive model to translate changes in fecundity of the fat-
head minnow to alterations in population growth rate (Miller at 
al., 2007). These modeled data depict relative population size as 
a proportion of carrying capacity over time under five scenarios 
(A-E) in which plasma Vtg concentrations of female minnows 
is altered (Fig. 4D). Note that alterations in plasma Vtg concen-
trations from Miller et al. (2007) were translated to alterations in 
fecundity here: 
–	 Scenario A:  9% reduction in fecundity
–	 Scenario B:  33% reduction in fecundity
–	 Scenario C:  57% reduction in fecundity
–	 Scenario D:  80% reduction in fecundity
–	 Scenario E:  100% reduction in fecundity
Combining the four qKERs developed for aromatase inhibition 
as depicted in Figure 5, the level of “activation” can be tracked 
for hypothetical exposure scenarios, which can be used to esti-
mate declines in a fathead minnow population.

The AOP for glutamate receptor agonism, described in “Bind-
ing of agonists to ionotropic glutamate receptors in adult brain 
causes excitotoxicity that mediates neuronal cell death, contrib-
uting to learning and memory impairment,” was also used to de-
velop simplistic qKERs that could be linked together to estimate 
relative memory impairment. For this case, select mammalian 
studies centered on the hippocampus and the cortex were utilized 
to develop R-R functions along the AOP. When data from dif-
ferent species was utilized, the responses were normalized from 
highest (1) to lowest (0) in order to chain the R-R function. Da-
ta linking non-adjacent events were also used for this example, 
and R-R relationships and best-fit functions were similarly deter-
mined. The relationship between NMDA (MIE) and the influx of 
calcium (KE#2; non-adjacent events) was captured from Alano et 
al. (2002). Data from this paper on the influx of calcium in striatal 
neurons incubated with NMDA was fitted using the Hill model in 
BMDS (Fig. 6A). 

Best-fit Hill model for qKER: MIE→ KE #2

Equation 4

Data linking the MIE to KE #4 (non-adjacent events) was 
found in a study on the efficacy of NMDA antagonists in 
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duction in plasma E2 concentration will lead to a 53% reduction 
in plasma Vtg concentration, which will, in turn, lead to a 57% 
reduction in fecundity. According to the qKER in Figure 4D, a 
57% reduction in fecundity (curve C) is projected to result in an 
80% reduction in population size after 5 years. The outcomes cal-
culated from this simple chain of modular qKERs are similar to 
the results from the linked systemic models developed by Conol-
ly et al. (2017). Estimating the outcome of a 25% reduction in 
aromatase activity from the Conolly model results in a calculated 
plasma Vtg level of 70 μM and average fecundity of 15 eggs/
f/d; the estimated population size would be approximately 50% 

3  Results 

The utility of these simplistic, chained models for quantitative-
ly estimating adverse outcomes is considered using these two 
AOPs. By combining the four qKERs developed for aromatase 
inhibition as depicted in Figure 5, the level of activation of spe-
cific nodes can be tracked for a hypothetical scenario in which a 
fathead minnow population is exposed to a chemical that reduc-
es aromatase activity by 25%. From the R-R functions, it can be 
determined that such an exposure would lead to a 44% reduction 
in plasma E2 concentration. It can then be verified that a 44% re-

Fig. 5: Four modular response-response (R-R) relationships shown in Fig. 4 were used to transfer “activation” along the AOP for 
aromatase inhibition leading to reproductive dysfunction in fish, resulting in a prediction of the change in fish population 
The order of the calculations corresponds to the schematics of functions shown above the AOP; the R-R relationship from Fig. 4A was 
used to estimate the change in plasma E2 concentration from the reported aromatase inhibition. That level of E2 was used with the 
function in Fig. 4B to estimate plasma VTG concentration. Plasma VTG was related to change in fecundity through the R-R relationship in 
Fig. 4C. Using the curves in Fig. 4D, the change in fecundity was used to estimate the change in population.

Fig. 4: Response-response (R-R) 
relationships used to establish 
qKERs describing the influence 
that each KE has on its dependent 
KE for the pathway from aromatase 
inhibition to the decline in fathead 
minnow population
(A) R-R relationship between relative 
plasma E2 concentration and relative 
aromatase activity in female fathead 
minnows. (B) R-R relationship between 
relative plasma VTG concentration 
and relative plasma E2 concentration 
in female fathead minnows. (C) R-R 
relationship between relative fecundity 
and relative plasma VTG concentration in 
female fathead minnows. (D) Population 
trajectories as a function of changes in 
fecundity of female fathead minnows 
(from Miller et al., 2007).
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Fig. 7: The modular R-R relationships shown in Fig. 6 were used to transfer “activation” along the AOP for glutamate agonism 
through activation of NMDAR, resulting in a loss of neurons and a prediction of relative memory impairment
The use of these functions corresponds to the schematics of functions shown above the AOP. The R-R relationship from Fig. 6A was 
used to estimate the calcium overload from glutamate binding. The loss of neurons from NMDA exposure was estimated from the R-R 
relationship in Fig. 6B. The relationship between neuron loss and memory was based on the function in Fig. 6C. In order to consider the 
impact of domoic acid, the R-R relationship in Fig. 6D was used to estimate the calcium overload associated with the reported human 
intake.

Fig. 6: Response-response (R-R) 
relationships estimating qKERs that 
reflect the influence that a KE has 
on its dependent KE for the pathway 
from glutamate agonism to impaired 
memory
(A) R-R relationship between relative 
NMDA concentration and calcium  
influx in neurons. (B) R-R relationship 
between NMDA concentration  
and the loss of cortical neurons.  
(C) R-R relationship between the loss  
of hilar neurons and relative memory 
score. (D) The relationship between 
domoic acid concentration and calcium 
influx in neurons in culture.
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ing individual KER1. The qKERs could represent a range of taxa 
or species. Since KERs depict relationships between biological 
events, they are chemical agnostic and could be used in the con-
text of many different chemicals (Villeneuve et al., 2014a,b). The 
analysis conducted in this case example can be applied to any AOP 
that has quantitative information associated with its KERs. Infor-
mation may only be available for specific species (e.g., rat or ze-
brafish), so qKER would need to be extrapolated for species-spe-
cific applications and the appropriate error factors applied. 

4  Discussion

Tens of thousands of chemicals are in use in the commercial and 
industrial markets today, yet for many we have little information 
on the potential hazards that they may cause. Here we describe 
a simple and rapid approach for predicting chemical hazards for 
screening and prioritization based on creation of qAOPs using 
qKERs derived from the literature. The approach differs from that 
proposed by others in that it requires less time and data and fo-
cuses on developing R-R relationships between KEs. Wittwehr et 
al. (2017) describe ambitious plans to engage the modeling com-
munity to advance the development of qAOP models in support 
of rapid characterization of chemical effects across a wide range 
of adverse outcomes and species using in vitro assays (Yoon and 
Clewell, 2016). However, the approaches described by Wittwehr 
et al. (2017) and Conolly et al. (2017) often require significant 
investment in data generation and model development. This effort 
would benefit from further efforts to archive qKERs in the exist-
ing section of the AOP-wiki to support input of R-R functions or 
the underlying empirical data. 

Effectopedia2 is an “open-knowledge and structured platform 
able to display quantitative information” on AOPs. It is being 
designed and released in part to allow for the input and sharing 
of data that support the generation of quantitate relationships 
between KEs. Effectopedia provides a platform on which these 
modular qAOPs can be applied and disseminated. On the one 
hand, the ease of creation and use of qAOPs made from a sim-
ple linking of qKERs could lead to greater use and adoption by 
the larger toxicological community. However, this is balanced by 
coarse modeling, resulting in a lower degree of biological fidelity, 
which must be considered when used for different applications. 
This approach does not aim to represent the complex and dynamic 
response of a KE with high biological fidelity, but does attempt to 
provide a rapid approach for developing qAOPs that can be used 
in situations where the certainty surrounding a model is sufficient 
to support decisions in areas such as prioritization. Various efforts 
have been made to develop methods to transparently and reliably 
assess when there is sufficient weight of evidence to support an 
AOP or a specific KER (Becker et al., 2015; Collier et al., 2016; 
Rycroft et al., 2018).

The approach demonstrated here meets the practical consider-
ations for qAOP construction outlined in Conolly et al. (2017). The 

of carrying capacity. The qKER approach foregoes the represen-
tations of biological complexity and dynamisms in the systemic 
models in exchange for utilization of empirical data sets to derive 
single node transitions. For example, the HPGL model predicts 
feedback responses that compensate for aromatase inhibition 
(Connolly et al., 2017). In this approach, the reduction in overall 
aromatase activity resulting from exposure must be estimated for 
use as a starting point for the calculations.

The qAOP represented in Figure 7 can be used to estimate the 
potential memory loss from domoic acid exposure in people as re-
viewed by Lefebvre and Robertson (2010). A reported oral dose 
between 0.2 and 0.3 mg domoic acid/kg body weight had no ob-
servable effect in humans. Using empirical observations of domoic 
acid reported by Preston and Hynie (1991), we can estimate the ex-
posure of the hippocampus from this oral dose (approximately 0.5 
μM). This neuronal dose corresponds to a level of 0.22 for relative 
calcium influx, which is the equivalent of 25 μM NMDA (Fig. 6). 
This level is associated with retention of 80% of cortical neurons, 
which corresponds to a memory score of 80%. An oral dose asso-
ciated with disorientation was reported to be 2.0 mg domoic acid/
kg body weight (Lefebvre and Robertson, 2010). This corresponds 
to a hippocampal exposure of approximately 6 μM, following the 
conversion derived from Preston and Hynie (1991). This neuro-
nal dose corresponds to a level of 0.90 for relative calcium influx, 
which is the equivalent of 100 μM NMDA (Fig. 6). This NMDA 
level is associated with retention of 17% of cortical neurons. The 
loss of 83% of neurons exceeds the reported range for hilar neurons 
and memory score and can be considered, therefore, to be predict-
ed to result in substantial memory impairment; however, if we ex-
tend the relationship in Figure 6C, the neuronal loss corresponds to 
a memory score of approximately 20%. For the example of amne-
siac shellfish poisoning from human ingestion of shellfish contain-
ing domoic acid, the simplistic model chaining qKER reflects the 
relative severity of the adverse outcome.

The qKERs depicted in these cases are intended to serve as ex-
amples and do not represent scientific consensus of the quantitative 
relationships between the KEs of the selected AOPs. A more robust 
analysis would require an uncertainty determination for each best-
fit R-R curve in order to establish 95% confidence intervals; statis-
tical methods such as bootstrapping may aid in this requirement. 
Additionally, the BMDS utilized here is specifically intended for 
dose-response modeling in order to estimate reference doses and 
reference concentrations, which are used by the EPA along with 
other scientific information to set standards for non-cancer human 
health effects (U.S. EPA, 2015). The BMDS was used here be-
cause of its ease-of-use; however, more advanced statistical pro-
gramming software may be preferable and better-suited for prob-
abilistic AOP development. Lastly, empirical data pooled from a 
comprehensive literature review would make the derived R-R 
function more representative of the relationship between the KEs. 

An important step in this process is the documentation of the 
data and literature that formed the basis of each qKER, which can 
be facilitated by archiving the sources in AOP-wiki pages describ-

1 OECD Series on Adverse Outcome Pathways. doi:10.1787/2415170X
2 Effectopedia (2018). https://www.effectopedia.org (accessed 10.17.2018).

https://doi.org/10.1787/2415170X
https://www.effectopedia.org
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Bayesian network analysis of systemic observations, and ongoing 
weight of evidence analyses in order to determine the utility of 
models developed using this methodology. Describing the trans-
fer of response to response at each KE in the chain leading to an 
adverse outcome can provide for the rapid development of screen-
ing-level qAOPs.
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