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gies to extrapolate toxicity testing results obtained with animals 
to humans struggle with predictivity and, in some cases, lack 
physiological relevance for humans (Blaauboer and Andersen, 
2007). There is a particularly acute need, especially in the area 
of biokinetics, for viable alternatives to animal testing in risk as-
sessment.

Physiologically-based biokinetic (PBK) modeling applies 
quantitative in vitro-to-in vivo extrapolation (IVIVE) to estimate 
in vivo exposure of a xenobiotic using data obtained from in vi-
tro assays. This approach is commonly described as bottom-up 
PBK modelling (Tan et al., 2018). It has found broad application 
in the pharmaceutical industry to predict drug-drug interactions, 
model systemic exposure in diseases, or predict pharmacokinet-
ics in special populations (Rowland et al., 2011; Shebley et al., 
2018). In such situations, the middle-out approach is typically 
applied by empirically fitting selected in vitro data to observed 

1  Introduction

The replacement, refinement, and reduction of animal use in re-
search (3R) was first established in 1959 (Russell and Burch, 
1959), with growing efforts in recent times to establish alter-
natives to animal testing in the risk assessment of xenobiotics 
(Chapman et al., 2013; Paini et al., 2017). In 2006, the REACH 
Regulation implemented in the EU demanded that testing on an-
imals be done only as a last resort (EU, 2006). In 2009, an in-
ternational association of validation bodies and agencies repre-
senting the USA, EU, Japan, and Canada adopted a memoran-
dum to cooperate on reducing animal toxicity testing (ICATM;  
EURL ECVAM, 2009). Finally, under the EU Cosmetics Regu-
lation (EU, 2009; Creton et al., 2009), a complete ban on testing 
of cosmetic products and ingredients in animals in the EU was 
imposed in 2013. Despite intensive efforts, the current strate-
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Abstract
There is a growing need to develop alternatives to animal testing to derive biokinetic data for evaluating both efficacy and 
safety of chemicals. One such alternative is bottom-up physiologically-based biokinetic (PBK) modeling, which requires 
only in vitro data. The primary objective of this study was to develop and validate bottom-up PBK models of 3 HMG-CoA 
reductase inhibitors: rosuvastatin, fluvastatin, and pitavastatin. Bottom-up PBK models were built using the Simcyp® sim-
ulator by incorporating in vitro transporter and metabolism data (Vmax, Jmax, Km, CLint) obtained from the literature and 
proteomics-based scaling factors to account for differences in transporter expression between in vitro systems and in 
vivo organs. Simulations were performed for single intravenous, single oral, and multiple oral doses of these chemicals. 
The results showed that our bottom-up models predicted systemic exposure (AUC0h-t), maximum plasma concentration 
(Cmax), plasma clearance, and time to reach Cmax (Tmax) within two-fold of the observed data, with the exception of 
parameters associated with multiple oral pitavastatin dosing and single oral fluvastatin dosing. Additional middle-out 
simulations were performed using animal distribution data to inform tissue-to-plasma equilibrium distribution ratios for 
rosuvastatin and pitavastatin. This improved the predicted plasma-concentration time profiles but did not significantly alter 
the predicted biokinetic parameters. Our study demonstrates that quantitative proteomics-based mechanistic in vitro-to-in 
vivo extrapolation (IVIVE) can account for downregulation of transporters in culture and predict whole organ clearance 
without empirical scaling. Hence, bottom-up PBK modeling incorporating mechanistic IVIVE could be a viable alternative 
to animal testing in predicting human biokinetics.

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 
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2  Methods

2.1  General PBK model structure and assumptions 
All PBK models were developed using a population-based absorp-
tion, distribution, metabolism, and excretion (ADME) Simcyp®  
simulator (Simcyp Ltd, version 17 release 1, Sheffield, UK). 
The design qualification and the quality assurance framework of 
Simcyp has been previously described (Jamei et al., 2013). An 
in-depth description of the sub-models in Simcyp has been pre-
viously published (Neuhoff et al., 2013; Jamei et al., 2014). 

Briefly, the advanced dissolution, absorption, and metabolism 
(ADAM) model (Jamei et al., 2009) was used to describe the in-
testinal absorption process. Distribution was described using the 
full PBK distribution model to account for permeability-limited 
distribution in several organs (Jamei et al., 2014). We assumed 
that perfusion-limited distribution describes the distribution of 
the statin to all organs in the body except the intestine, liver, and 
kidney; and that there is instantaneous distribution of the statin 
between the intracellular and extracellular space. Where suitable 
in vitro data indicated that a statin was the substrate of one or 
more transporters, the relevant organ was converted to a permea-
bility-limited distribution model. For the intestine, the permeabil-
ity-limited distribution model was used for pitavastatin only. For 
the liver, the permeability-limited liver (PerL) model (Jamei et 
al., 2014) was used for all 3 statins. For the kidney, a permeability- 
limited mechanistic kidney model (Mech KiM) (Steffansen  
et al., 2013) was used for rosuvastatin and pitavastatin. This per-
mitted us to incorporate transporter kinetics when modeling the 
distribution and disposition of the statins. The volume of distri-
bution (Vss) was estimated using tissue-to-plasma equilibrium 
distribution ratios (Kp) calculated using the method of Rodgers 
and Rowland (2007). We also assumed that for statins that under-
go transporter-mediated biliary excretion, enterohepatic recircu-
lation (EHC) occurs and that 100% of the biliary excreted drug 
is available for reabsorption in the intestine. Renal clearance was 
estimated from kidney transporter kinetics using the Mech KiM 
model. 

2.2  Model development 
Bottom-up models were constructed using in vitro experimen-
tal data obtained from the literature or predicted using quantita-
tive structure-activity relationship (QSAR) models. Where more 
than one source of in vitro data was available for a certain param-
eter, an iterative simulate-and-refine approach was used to select 
the optimal value that provides the biokinetic parameter with-
in the two-fold criterion described subsequently. For transporter 
and metabolism kinetics, two forms of in vitro data were avail-
able, i.e., intrinsic clearance (CLint) or maximal transport/meta-
bolic rate (Jmax/Vmax) and Michaelis-Menten constant (Km) val-

in vivo data. The role of PBK modeling as an integrated testing 
strategy to assess xenobiotic exposure is increasingly recognized 
(Hartung et al., 2013; Tan et al., 2018). The major challenges for 
the bottom-up approach are the considerable uncertainties due 
to suboptimal predictions via IVIVE, especially for transporter 
kinetics (Margolskee et al., 2017; Shebley et al., 2018). Earlier 
studies reported that IVIVE using data obtained from human he-
patocyte (HHEP) assays underestimated hepatic intrinsic clear-
ance (Kotani et al., 2011; Menochet et al., 2012). It was proposed 
that this might be due to a reduced expression of hepatic trans-
porters in isolated hepatocytes, as compared to that in the liver 
(Vildhede et al., 2015). We realized that quantitative proteomics 
could be used to account for the differential expression of meta-
bolic enzymes and transporters between in vitro systems and in 
vivo organs and could be applied as mechanistic scaling factors 
to improve IVIVE in bottom-up PBK modeling. Hence, the pri-
mary objective of this study was to develop a bottom-up PBK 
model using mechanistic scaling factors based on quantitative 
proteomics measurements of transporter and metabolic enzyme 
expression levels for IVIVE to predict the in vivo exposure of 
xenobiotics in humans. This effort is part of an Organisation for 
Economic Co-operation and Development (OECD) case study to 
provide guidance on PBK modeling as an alternative to animal 
testing in the regulatory assessment of chemicals.

We chose three 3-hydroxy-3-methylglutaryl-CoA (HMG-
CoA) reductase inhibitors: rosuvastatin, fluvastatin, and pitavas-
tatin as substantial in vitro and in vivo data is available on them 
for our bottom-up PBK modeling. Importantly, the statins are 
differentially eliminated: rosuvastatin’s elimination is transport-
er-dependent, fluvastatin’s elimination is metabolism-dependent, 
while pitavastatin’s elimination is dependent on both processes. 
Using only in vitro data from the literature, bottom-up models 
were built to simulate intravenous (IV) single, and repeated oral 
administration of each of the statins. While PBK models of these 
three statins have been previously published (Bosgra et al., 2014; 
Jamei et al., 2014; Zhang, 2015; Vildhede et al., 2016; Duan et 
al., 2017; Wang et al., 2017; Mitra et al., 2018), these were de-
veloped based on empirical scaling and the middle-out approach. 
By leveraging recent developments in transporter kinetics and 
quantitative proteomics that were not available at the time of de-
velopment of the published models, we demonstrate the utility 
of mechanistic scaling factors for IVIVE via bottom-up PBK 
modeling. Additionally, we recognize that animal biokinetic da-
ta may be available or routinely generated in some settings and 
that it is advantageous to incorporate all available data including 
in vivo animal data to improve model accuracy. To demonstrate 
this middle-out approach option, we have used data from animal 
distribution studies to improve the prediction of the distribution 
profiles of rosuvastatin and pitavastatin.

 

Abbreviations 
ADME, absorption, distribution, metabolism and excretion; AUC0h-∞, area under plasma concentration-time curve; BCRP, breast cancer resistant protein; Caco-2, colorectal 
adenocarcinoma; CL, plasma clearance; CLint, intrinsic clearance; Cmax, maximum plasma concentration; EHC, enterohepatic recirculation; Jmax, maximal transport rate;  
Km, Michaelis-Menten constant; Kp, tissue-to-plasma equilibrium distribution ratio; PBK, physiologically-based biokinetic; QSAR, quantitative structural activity relationship; 
HEK-293, human embryonic kidney 293; HHEP, human hepatocyte; HLM, human liver microsome; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; ISEF, intersystem extrapola-
tion factor; IV, intravenous; IVIVE, In vitro-to-in vivo extrapolation; MDCKII, Madin-Darby canine kidney; OAT, organic anion transporter; OATP, organic anion-transporting po-
lypeptide; REF, relative expression factor; rhCYP, recombinant human CYP450; SCHH, sandwich-cultured human hepatocyte; SF, scaling factor; Tmax, time to reach maximal 
plasma concentration; UGT, UDP-glucuronosyltransferase; Vmax, maximal metabolism rate; Vss, volume of distribution at steady state
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ues. Wherever possible, Jmax/Vmax and Km were used as they al-
low modeling of saturation of enzyme/transporter kinetics. CLint 
was used when appropriate Jmax/Vmax and Km values were un-
available. Additionally, middle-out simulations were performed 
with data from distribution studies conducted with Sprague 
Dawley rats to optimize the prediction of Kp for rosuvastatin and 
pitavastatin (Kimata et al., 1998; Nezasa et al., 2002). 

2.3  Drug-specific model parameters
Rosuvastatin model parameters
Rosuvastatin’s physicochemical characteristics, ADME param-
eters, and source are provided in Table S11. Absorption of rosu-
vastatin is suggested to be mediated by various uptake and ef-
flux transporters found on the apical membrane of the entero-
cyte (Huang et al., 2006; Varma et al., 2011). However, suitable 
in vitro data defining the transporter kinetics of rosuvastatin in 
the enterocyte were unavailable. Therefore, we used an apparent 
permeability value from the colorectal adenocarcinoma (Caco-2) 
cell transwell assay to define its passive and active permeability 
across the intestinal wall.

It is well-established that multiple sinusoidal uptake and efflux 
transporters are involved in the hepatic disposition of rosuvasta-
tin (Fujino et al., 2004a; Jones et al., 2012). Such uptake trans-
porters include the organic-anion transporting polypeptides 1B1, 
1B3, and 2B1 (OATP1B1, OATP1B3, and OATP2B1) and sodi-
um-taurocholate co-transporting polypeptide (NTCP) (Ho et al., 
2006; Kitamura et al., 2008; Shitara et al., 2013; Bosgra et al., 
2014; Izumi et al., 2018). We have included transporter kinet-
ics for OATP1B1, OATP1B3, and OATP2B1 performed in hu-
man embryonic kidney 293 (HEK-293) cells expressing the rel-
evant transporter (Shitara et al., 2013; Izumi et al., 2018) and 
for NTCP performed in suspension hepatocytes (Bi et al., 2013). 
The multidrug resistance-associated proteins 3 and 4 (MRP3 and 
MRP4) were postulated to mediate the sinusoidal efflux of rosu-
vastatin (Pfeifer et al., 2013; Kanda et al., 2018). However, suit-
able transporter kinetic data for MRP3 was lacking in the liter-
ature. Moreover, there was no significantly higher ATP-depen-
dent uptake of rosuvastatin with membrane vesicles from cells 
over-expressing MRP3 versus non-transfected cells (Pfeifer 
et al., 2013). Thus, we decided to assign MRP4 as our sole ef-
flux transporter along the sinusoidal membrane using data from 
experiments conducted with membrane vesicles (Pfeifer et al., 
2013).

In contrast, the role of canalicular efflux transporters is less 
well established. Using Madin-Darby canine kidney (MDCK II) 
cells expressing P-glycoprotein (P-gp) and membrane vesicles 
from mammalian cells expressing breast cancer resistant protein 
(BCRP), Huang et al. (2006) proposed that BCRP, but not P-gp, 
is important for the canalicular efflux of rosuvastatin. However, 
upon using double-transfected MDCK II cells, Kitamaru et al. 
(2008) demonstrated that P-gp is involved. His findings corrob-
orated the results of Li et al. (2011) based on transporter knock-
down Caco-2 cells. To circumvent the lack of precise, transport-

er-specific data for canalicular efflux, we used an overall intrin-
sic clearance (CLint) from sandwich-cultured human hepatocyte 
(SCHH) experiments to define the biliary excretion of rosuvas-
tatin (Jones et al., 2012), as the SCHH model is able to delineate 
between overall sinusoidal uptake and canalicular efflux.

For renal transport, it has been found that organic anion trans-
porter 3 (OAT3) is likely to be the main transporter responsi-
ble for the uptake of rosuvastatin into renal proximal tubu-
lar cells (PTC) at the basolateral membrane (Windass et al., 
2007). Hence, transporter kinetics (Jmax and Km) obtained from 
OAT3-expressing oocytes were used (Windass et al., 2007). On 
the other hand, BCRP, MRP2, and MRP4 are the transporters re-
sponsible for the efflux of rosuvastatin from the renal PTC at 
the apical membrane (Verhulst et al., 2008). Using a mixed cul-
ture of human PTC and distal tubular cells (DTC), the uptake 
of rosuvastatin at the basolateral membrane was found to be the 
rate-limiting process of renal clearance (Verhulst et al., 2008). 
Hence, we assumed that uptake transporter kinetics (OAT3) 
were equal to the efflux transporter kinetics in PTC cells. As 
BCRP and MRP2 are not included in Simcyp, the efflux kinetics 
were assigned to MRP4 in the model.

While postulated to be minor, metabolism of rosuvastatin by 
cytochrome P450 3A4 (CYP3A4), UDP-glucuronosyltransfer-
ase 1A1 (UGT1A1), and UGT1A3 were included (Fujino et al., 
2004a; Schirris et al., 2015). 

Fluvastatin model parameters
Fluvastatin’s physicochemical characteristics, drug parameters, 
and source are provided in Table S21. Compared to rosuvasta-
tin, the passive permeability of fluvastatin in the Caco-2 assay is 
high (16.236 x 10-6 cm/s) (Lindahl et al., 2004). While transport-
ers could be involved in the intestinal uptake of fluvastatin, in-
sufficient in vitro data is available in the literature.

In contrast to rosuvastatin, the major route of elimination is 
metabolism, involving mainly CYP2C9 (largest contribution), 
CYP3A4, and CYP2C8, while CYP2D6 and CYP1A1 play  
minor roles (Fischer et al., 1999). The use of CLint values from 
recombinant human CYP450 (rhCYP) permits simultaneous 
modelling of enzyme activities in multiple organs (e.g., intestine, 
liver, and kidney). However, the sum of CLint from rhCYP does 
not correspond to that obtained from human liver microsomes 
(HLM). Therefore, CLint values obtained from rhCYP (Fischer 
et al., 1999) were further scaled to CLint from HLM experiments 
(Watanabe et al., 2010) using CYP abundance data in HLM  
(Nakamura et al., 2016). 
OATP1B1, OATP1B3, OATP2B1, NTCP, and MRP2 were found 
to be involved in the hepatic transport of fluvastatin (Kopplow et 
al., 2005; Noé et al., 2007; Bi et al., 2013; Ellis et al., 2013). Due 
to the lack of sufficient good-quality in vitro data for each specific 
transporter, CLint from SCHH experiments was used to inform the 
sinusoidal uptake and canalicular efflux in the PerL model (Jones 
et al., 2012; Izumi et al., 2018). Renal clearance was set as zero 
due to the lack of in vitro renal transporter data.
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Following the latest modeling recommendations (Shebley et al., 
2018), we evaluated our model by overlaying our simulations 
on the corresponding observed clinical data. The biokinetic pa-
rameters obtained from our simulations, such as area under the 
plasma concentration-time curve (AUC0h-t), maximum plasma 
concentration (Cmax), plasma clearance (CL), and time to reach 
Cmax (Tmax), were compared against those derived from clini-
cal studies. The goodness-of-fit between simulated and observed 
biokinetic parameters was judged based on a two-fold difference 
success criterion.

2.5  Derivation of IVIVE scaling factors 
IVIVE for hepatic transporters
Typically, in vitro Jmax is scaled to in vivo Jmax using a relative 
expression or activity scalar to account for differences in trans-
porter expression or activity between the in vitro expression sys-
tem and primary HHEP (Hirano et al., 2004; Jamei et al., 2014). 
This is important as Jmax is affected by transporter protein ex-
pression and its scaling allows for accurate IVIVE. However, 
this fails to account for the decreased expression of transporters 
in isolated HHEP compared to human liver tissue that has been 
observed (Vildhede et al., 2014), and thus an additional scaling 
factor is required. Therefore, we defined a new relative expres-
sion factor (REF) as follows:

(1)
where 

(2)
or 

(3)
and 

 (4)

SF1 accounts for the difference in abundance or activity of the jth 

transporter between the isolated HHEP and the expression sys-
tem, while SF2 accounts for the difference in abundance of the 
jth transporter between hepatocytes in liver tissue and in isolated 
HHEP (Fig. 1).

The units for transporter abundance in the liver and in HHEP 
are identical (pmol/mg membrane protein). Hence, SF2 is dimen-
sionless. Expression of uptake and efflux transporters in pooled 
samples of fresh liver tissue and isolated hepatocyte membrane 
were obtained from the literature (Ohtsuki et al., 2011; Vildhede 
et al., 2015, 2016). For SF1, depending on the expression system 
used, the units of transporter abundances differed and additional 
scaling factors were required. If membrane vesicles were used:

(5)

where transporterj abundanceHHEP is the abundance of the jth 
transporter in HHEP (pmol/mg protein), transporterj abun-
dancevesicles is the abundance of the jth transporter in the mem-
brane vesicles (pmol/mg vesicular protein), fmembrane is the frac-

Pitavastatin model parameters
Pitavastatin’s physicochemical characteristics, drug parame-
ters, and source are shown in Table S31. For the intestine, active 
transporter uptake kinetics measured using Caco-2 monolay-
ers were allocated to OATP2B1, the major transporter involved 
in the active intestinal uptake of pitavastatin (Ölander et al., 
2016). In the liver, sinusoidal uptake is mediated by OATP1B1,  
OATP1B3, OATP2B1, and NTCP (Fujino et al., 2004b, 2005; 
Hirano et al., 2004, 2006; Vildhede et al., 2016; Izumi et al., 
2018). Data from experiments performed with HEK-293 cells 
expressing OATP1B1, OATP1B3, and OATP2B1 were includ-
ed in our model (Hirano et al., 2004, 2006). For NTCP, data from 
experiments conducted with hepatocyte suspensions were used 
(Bi et al., 2013). Similarly, sinusoidal efflux involves MRP3 and 
canalicular efflux involves BCRP and P-gp (Fujino et al., 2005; 
Hirano et al., 2005; Vildhede et al., 2016), hence data from ex-
periments conducted using inverted membrane vesicles express-
ing MRP3, BCRP, and P-gp were included in our model (Vild-
hede et al., 2016). 

Lactonization of pitavastatin by UGT1A3 and UGT2B7 is the 
major metabolic pathway of pitavastatin (Fujino et al., 2003). 
It is a reversible process, where ring-opening occurs non-enzy-
matically (Yamada et al., 2003; Fujino et al., 2004a). Metabolic 
data of the lactonization of pitavastatin by supersomes derived 
from insect cells infected with baculovirus-expressing human 
UGT1A3 and UGT2B7 were included in our model (Schirris 
et al., 2015). Pitavastatin is also metabolized by CYP2C9 and 
CYP2C8. Due to the lack of appropriate rhCYP metabolism da-
ta, CLint values from metabolism by HLM were used. To allow 
for the modelling of metabolism in organs other than the liver 
(intestine), we allocated the CLint value to CYP2C9, the major 
CYP450 enzyme involved (Fujino et al., 2003). This is because 
the model allows CYP450-specific kinetic data to be incorpo-
rated in multiple organs where that enzyme is expressed, while 
HLM kinetic data is confined to the liver. 

Similar to rosuvastatin, active secretion of pitavastatin in the 
kidneys is mediated by OAT3 (Fujino et al., 2005). In vitro da-
ta from experiments conducted with kidney slices were used to  
inform the CLint for active renal uptake (Watanabe et al., 2011). 
As the Km for OAT3 (3.3 µM) was previously determined  
(Fujino et al., 2005), Jmax of OAT3 was back-calculated and in-
cluded in our model (Results S11). Similar to our approach for 
rosuvastatin, the same kinetic parameters used for OAT3 were 
applied to MRP4 efflux along the apical membrane as basolat-
eral uptake is the rate-limiting process in renal clearance (Wata-
nabe et al., 2011).

2.4  Bottom-up model simulation and evaluation
Bottom-up simulations were performed for single IV and oral as 
well as repeated oral administration of all three statins. Clinical 
trial parameters, population characteristics, dose, and regimen 
were matched to the clinical studies. Details of the clinical stud-
ies are summarized in Table S41. For each simulation performed, 
10 trials were conducted. Dissolution characteristics of Crestor® 
tablets were included for oral dosing simulations of rosuvastatin 
(Tab. S5 and S61). A solution formulation was used for fluvasta-
tin and pitavastatin simulations. 
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 (9)

where HPPGL represents the number of hepatocytes per gram 
of liver and LiverWt is the liver weight of an individual (g). 
Post-scaling, in vivo Jmax has a unit of pmol/min. If Equation 
6 was used to obtain SF1, in vitro Jmax should be expressed as 
pmol/min/106 cells, while SF1 and SF2 are dimensionless. If 
Equation 5, 7, or 8 was used, in vitro Jmax should be expressed 
as pmol/min/mg protein, while SF1 has a unit of mg protein/106 
HHEP and SF2 is dimensionless. If necessary, in vitro Jmax  
must be converted to the correct units using the total amount of 
protein per million HEK-293 cells (worked example in Results 
S21). Correct application of the scaling factors would result in 
the final unit of in vivo Jmax being pmol/min. Equation 9 was per-
formed directly within Simcyp.

IVIVE for intestinal transporters
Similar to hepatic transporters, there is a different expression of 
transporters between the expression system and enterocytes. In our 
model, only the Caco-2 cell system was used to inform the kinetics 
of intestinal uptake transporters. To account for expression differ-
ences, Equation 10 was used:

 (10)

where transportern abundanceJejunal enterocytes, the abundance of 
the nth transporter in the jejunal enterocyte (pmol/mg protein), was 
compared with transportern abundanceCaco-2 cells, the abundance of 
the nth transporter in the Caco-2 cells (pmol/mg protein). Finally, 
to scale the Jmax of an uptake transporter from Caco-2 cells to in 
vivo intestinal CLint, the following equations were used2. Firstly, 
Jmax and Km were converted to in vitro transporter-mediated appar-

tion of membrane protein among total protein in a hepatocyte, 
fprotein is the amount of total protein per million HHEP (mg pro-
tein/106 cells), and finverted is the fraction of membrane vesicles 
that are active (inverted). Both fmembrane and finverted are assumed 
to be one-third and cancel out, while fprotein is calculated to be 
0.3235 mg protein/106 HHEP using data from Vildhede et al. 
(2016).
When transfected HEK-293 cells were used, SF1 was obtained from  
Equation 6, 7, or 8 depending on whether relative expression (6), (7),  
or relative activity (8) was considered:

(6)
or

(7)

or
 

(8)

where transporterj abundanceHHEP is the abundance of the jth 
transporter in HHEP (pmol/106 HHEP), transporterj abun- 
danceHEK-293 cells is the abundance of the j th transporter in the 
transfected HEK-293 cells normalized to total number of 
HEK-293 cells (pmol/106 HEK-293 cells), transporterj abun- 
danceHEK-293 protein is the abundance of the j th transporter in the 
transfected HEK-293 cells normalized to the total amount of 
protein (pmol/mg protein), CLint,HHEP is the intrinsic transport-
er clearance in HHEP (µL/min/106 HHEP) and CLint,HEK-293 is 
the intrinsic transporter clearance in HEK-293 cells (µL/min/mg 
protein).

Using the scaling factors obtained from Equations 1 to 8, in vivo 
Jmax was obtained from the following equation:

 

Fig. 1: Scaling of transporter expression using SF1 and SF2
Jmax in the liver is estimated by (1) scaling from the in vitro expression system (membrane vesicles or HEK-293 cells) to isolated HHEP 
systems (SCHH or suspension hepatocytes) using SF1 and (2) scaling from isolated HHEP systems to hepatocytes in liver tissue using SF2.

2 https://www.certara.com/wp-content/uploads/Resources/Posters/Harwood_2017_NA-ISSX_2017_Scaling_Strategy.pdf
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resents the unbound intrinsic metabolic clearances for i metabolic 
pathways mediated by j isoforms of rhCYP (µL/min/pmol CYPj), 
and CYPj abundanceHLM represents the abundance of the jth CYP 
in HLM (pmol CYPj/mg protein). A single ISEF was calculated for 
fluvastatin metabolism and applied to CYP3A4, 2C9 and 2C8. For 
rosuvastatin and pitavastatin, default ISEF values from the Simcyp  
database were used. Finally, application of ISEF to scale in vitro 
metabolic kinetics to in vivo levels was performed in Simcyp and 
the equation is as follows:

 (16)

Where CLint represents the in vivo intrinsic metabolic clearance in 
the liver (L/h), Vmax,i(rhCYPj) represents the maximal metabolic  
rate for i metabolic pathways mediated by j isoforms of rhCYP  
(pmol/min/pmol CYP), Km,i(rhCYPj) represents the Michaelis- 
Menten constant for i metabolic pathways mediated by j isoforms 
of rhCYP (µM) and MPPGL represents the amount of microsomal 
protein per gram of liver.  

2.6  Optimization of Kp and middle-out simulations
Initial bottom-up simulations using the method of Rodgers and 
Rowland (2007) to estimate Kp resulted in poor predictions of 
the Vss and suboptimal distribution profiles for rosuvastatin and 
pitavastatin. Therefore, we optimized organ Kp values with data 
obtained from distribution experiments conducted with Sprague 
Dawley rats (Kimata et al., 1998; Nezasa et al., 2002). Subse-
quently, middle-out simulations were performed to compare the 
results with the bottom-up simulations to evaluate the degree to 
which simulations are improved by judicious incorporation of in 
vivo data.

This was performed for rosuvastatin and pitavastatin but not 
for fluvastatin, as the tissue concentration (based on radioactiv-
ity) could not be accurately attributed to unchanged fluvastatin 
owing to its extensive metabolism. Conversely, rosuvastatin un-
dergoes minimal metabolism, while we assumed pitavastatin 
metabolism was confined to the liver and gut. Hence, Kp values 
were calculated for both compounds by using the ratio of drug 
concentration between a particular tissue and plasma. Where 
multiple Kp values were computed because of multiple sampling 
times, we chose to use the largest Kp value.

3  Results

3.1  REF for the hepatic transport of rosuvastatin,  
fluvastatin, and pitavastatin
The exact values, derivation, and references used for SF1, SF2, 
and REF are summarized in Tables S7-S131. For uptake trans-
porters expressed in transfected HEK-293, SF1 varied from 
1.571-121 for rosuvastatin (Tab. S71) and 0.155-1.790 for pi-
tavastatin (Tab. S81). For the same transporter, a large varia-
tion in the relative expression of uptake transporters in HEK-
293 cells versus hepatocytes was observed, leading to high-
ly variable SF1 values. Among the uptake transporters, SF1 for  

ent permeability for each ith segment of the intestine:

 
(11)

where Papp,trans,n,i represents apparent permeability contributed by 
the nth transporter in the ith segment of the intestine (10-6 cm/s), 
Jmax is the maximal transport rate of the nth transporter (pmol/min), 
A represents the transwell surface area (cm2), Km is the Michaelis- 
Menten constant (µM), fuinc represents the unbound fraction in the 
incubation system and Clumen,i represents the concentration of sub-
strate in the lumen of the ith segment (µM). If Jmax is normalized to 
the total amount of protein (we refer to as Jmax’), an additional unit 
conversion was applied to express it as pmol/min:   

 (12)
 
where Jmax’ (pmol/min/mg protein) is multiplied by the total protein 
per transwell filter (mg) to obtain Jmax. 

Next, in vitro Papp,trans,n,i is converted to in vivo effective active 
permeability via a regression equation obtained from Loc-I-Gut  
jejunal permeability and Caco-2 studies (Sun et al., 2002):

 (13)

where Peff,trans,n,i represents in vivo effective active permeabili-
ty contributed by the nth transporter in the ith segment (10-4 cm/s), 
while the regression coefficients are A = 0.939 and B = -0.8787 (de-
fault values in Simcyp). Finally, Peff,trans,n,i is converted to uptake 
clearance for each nth transporter in the ith segment:

 (14)

where CLint,T,i represents the uptake clearance for each ith seg-
ment of the intestine (L/h), SAi represents the surface area of the 
ith segment (m2), RSAn represents the relative segmental abun-
dance of the nth transporter compared to that of the jejunum I 
segment. In ADAM, the intestines are segregated into 8 seg-
ments: duodenum I, jejunum I and II, ileum I, II, III and IV, and 
colon. Each segment has its own CLint, depending on the particu-
lar transporter expression level and surface area within each seg-
ment. Equations 11, 13, and 14 were performed within Simcyp.

IVIVE for metabolism
To account for differences in the intrinsic activity of enzymes be-
tween rhCYP and that measured in liver microsomes, we adapted  
the intersystem extrapolation factor (ISEF) from Procter et al. (2004)  
to obtain Equation 15: 

(15)

where CLint,u(HLM) represents the unbound intrinsic metabol-
ic clearance in HLM (µL/min/mg protein), CLint,i,u(rhCYPj) rep-
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OATP2B1 exhibited the greatest variability, with a value of 121 
(for rosuvastatin) from Bosgra et al. (2014) compared to 0.155 (for 
pitavastatin) from Hirano et al. (2006). In other words, there is sig-
nificant inter-lab variability in the degree of transporter expression 
in transfected cells. In contrast, for efflux transporters expressed in 
membrane vesicles, a clear overexpression in the membrane vesi-
cles compared to the isolated hepatocytes was observed, with SF1 
ranging from 0.000327 to 0.0105 (Tab. S7, S81). 

Separately, the values of SF2 varied from 1.230 to 5.114, in-
dicating a consistent underexpression of both uptake and efflux 
transporters in isolated hepatocytes compared to liver tissue 
(Tab. S9, S101). Upon multiplying SF1 by SF2, REF varied from 
0.190-148.830 for uptake transporters and 0.00052 to 0.028 for 
efflux transporters (Tab. S11-S131), indicating that the direction-
ality of adjustment of Jmax values is transporter- and expression 
system-specific.

3.2  REF for the intestinal transport of pitavastatin
In contrast to the underexpression of hepatic uptake transporters 
in the in vitro systems used, Caco-2 cells exhibited an overex-
pression of OATP2B1 as compared with jejunal epithelial cells. 
A REF value of 0.0625 was obtained from the same study from 
which intestinal OATP2B1 kinetic data was obtained (Ölander et 
al., 2016). Detailed calculations are shown in Results S31.

3.3  ISEF for the metabolism of fluvastatin
ISEF for CYP3A4, 2C9, and 2C8 calculated using Equation 15 
indicated that metabolic clearance required additional scaling by 
2.444-fold. Detailed calculations are shown in Results S41. 

3.4  Effect of scaling factors on bottom-up IV simulations
To demonstrate the importance of the ISEF and REF (SF1 and 
SF2), IV infusions of rosuvastatin and pitavastatin were simu-
lated with and without scaling factors. In the absence of scaling 
factors, simulated AUC0h-t exhibited a fold difference of 10.25 
and 5.35 compared to the observed values for rosuvastatin and 
pitavastatin, respectively (Tab. 1). Significant underestimation 
of the CL was observed as well. Upon applying the relevant scal-
ing factors, simulated biokinetic parameters improved to within 
two-fold of the observed values for both simulations (Tab. 2). As 

Fig. 2: Plasma concentration-time profile of simulations 
performed without scaling factors (dashed line) and  
with scaling factors (continuous line) for IV infusions of  
(A) 8 mg rosuvastatin and (B) 2 mg pitavastatin
The blue boxes represent the observed rosuvastatin and 
pitavastatin concentration with error bars (SD) for observed data 
where available. 

Tab. 1: Simulated versus observed biokinetic parameters and the fold difference (simulated/observed) for IV infusion of 
rosuvastatin and pitavastatin without the use of REF and ISEF 

 Rosuvastatin 8 mg    Pitavastatin 2 mg   
 IV infusion   IV infusion

Biokinetic parameter (unit) Observed Simulated Fold difference Observed Simulated Fold difference

Cmax (ng/ml) 37.10 334.32 9.01 59.83 197.64 3.30

Tmax (h) 4.00 4.00 1.00 0.97 0.99 1.03

AUC0h-t (ng.h/ml) 164.00 1681.59 10.25 76.07 407.14 5.35

AUC0h-∞ (ng.h/ml) - - - 83.9 409.02 4.88

CL (l/h) 48.90 4.76 0.097 23.67 4.89 0.21
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Tab. 2: Simulated versus observed biokinetic parameters and the fold difference (simulated/observed) after bottom-up 
simulations of rosuvastatin, fluvastatin, and pitavastatin

 Rosuvastatin 8 mg  Rosuvastatin 20 mg  Rosuvastatin 10 mg 
 IV infusion   single oral dose  once daily oral dose for 14 days

Biokinetic parameter Observed Simulated Fold Observed Simulated Fold Observed Simulated Fold 
(unit)   difference   difference   difference

Cmax (ng/ml) 37.10 52.90 1.43 7.60 8.68 1.14 4.58 5.03 1.10

Tmax (h) 4.00 3.98 1.00 3.00 1.93 0.64 3.00 1.95 0.65

AUC0h-t (ng.h/ml) 164.00 236.69 1.44 77.20 84.33 1.09 40.10 54.49 1.36

AUC0h-∞ (ng.h/ml) - - - 83.50 87.09 1.04 71.80 58.36 0.81

CL or CL/F (l/h) 48.90 33.80 0.69 239.50 229.65 0.96 139.28 171.35 1.23

 Fluvastatin 2 mg  Fluvastatin 10 mg  Fluvastatin 40 mg 
 IV infusion   single oral dose  once daily oral dose for 6 days

Biokinetic parameter Observed Simulated Fold Observed Simulated Fold Observed Simulated Fold 
(unit)   difference   difference   difference

Cmax (ng/ml) 118.80 166.80 1.40 88.20 84.12 0.95 438.00 395.61 0.90

Tmax (h) 0.33 0.33 1.00 0.40 0.94 2.35 0.50 0.95 1.90

AUC0h-t (ng.h/ml) 48.00 83.16 1.73 86.40 168.98 1.96 568.00 798.47 1.41

AUC0h-∞ (ng.h/ml) - - - - - - - - -

CL or CL/F (l/h) 37.72 24.05 0.64 115.74 59.18 0.51 70.42 50.10 0.71

 Pitavastatin 2 mg  Pitavastatin 2 mg  Pitavastatin 4 mg 
 IV infusion   single oral dose  once daily oral dose for 5 days

Biokinetic parameter Observed Simulated Fold Observed Simulated Fold Observed Simulated Fold 
(unit)   difference   difference   difference

Cmax (ng/ml) 59.83 102.95 1.72 18.58 21.43 1.15 62.39 40.68 0.65

Tmax (h) 0.97 0.99 1.02 0.75 0.96 1.28 0.50 1.06 2.12

AUC0h-t (ng.h/ml) 76.07 114.78 1.51 33.57 30.90 0.92 147.33 62.64 0.43

AUC0h-∞ (ng.h/ml) 83.9 114.78 1.37 42.95 30.91 0.72 - - -

CL or CL/F (l/h) 23.67 17.42 0.74 45.85 64.71 1.41 27.15 63.86 2.35

Fig. 3: Bottom-up simulated rosuvastatin model and observed plasma concentration-time profile of rosuvastatin after (A) 8 mg  
IV infusion, (B) 20 mg single oral dose, and (C) 10 mg once daily oral dosing for 14 days 
The continuous line represents the predicted mean concentration for the simulated population. The dotted and dashed lines represent  
the 5th and 95th percentile of the predicted mean concentration. The blue boxes represent the observed rosuvastatin concentration with 
error bars (SD) if available.
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(Martin et al., 2002, 2003). The simulated biokinetic parame-
ters with their geometric means overlaid with the observed data 
and the fold difference are listed in Table 2. For all 3 dosing sce-
narios, the Cmax, Tmax, AUC0h-t, AUC0h-∞, and CL were within 
1.5-fold of the observed data. However, the model was unable to 
recapitulate the triphasic decline observed in intravenous dosing 
of rosuvastatin (Fig. 3A).

3.6  Bottom-up simulations of single and multiple dose  
biokinetics of fluvastatin
As shown in Table 2, the predicted Cmax, Tmax, AUC0h-t, 
AUC0h-∞, and CL for the 3 dosing scenarios fell within two-fold 

expected, the simulated plasma concentration-time profiles im-
proved upon application of the scaling factors (Fig. 2).

3.5  Bottom-up simulations of single and multiple  
dose biokinetics of rosuvastatin
Having established that the derivation and application of mech-
anistic scaling factors permitted reasonable IVIVE for transport-
er-dependent, metabolism-dependent and mixed-mode statins, 
we proceeded to simulate various dosing regimens for each com-
pound. Figure 3 shows the simulated plasma concentration-time 
profile of rosuvastatin after a single 8 mg IV infusion, a single  
20 mg oral dose, and a 10 mg once daily dosing for 14 days 

Fig. 4: Bottom-up simulated fluvastatin model and observed 
plasma concentration-time profile of fluvastatin after  
(A) 2 mg IV infusion, (B) 10 mg single oral dose, and  
(C) 40 mg once daily oral dosing for 6 days 
The continuous line represents the predicted mean concentration 
for the simulated population. The dotted and dashed lines 
represent the 5th and 95th percentile of the predicted mean 
concentration. The blue boxes represent the observed fluvastatin 
concentration with error bars (SD) if available.

Fig. 5: Bottom-up simulated pitavastatin model and observed 
plasma concentration-time profile of pitavastatin after  
(A) 2 mg IV infusion, (B) 2 mg single oral dose, and (C) 4 mg 
once daily oral dosing for 5 days 
The continuous line represents the predicted mean concentration 
for the simulated population. The dotted and dashed lines 
represent the 5th and 95th percentile of the predicted mean 
concentration. The blue boxes represent the observed pitavastatin 
concentration.
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eters within 2-fold of the observed data (FDA, 2012) (Tab. 2). 
However, the 5-day repeated dosing was sub-optimal. Simulat-
ed parameters fell outside the two-fold criterion, with Cmax and 
AUC0h-t being underpredicted while CL and Tmax were over- 
predicted. 

This is in contrast to the predicted concentration-time pro-
file, where the terminal gradients for all 3 dosing regimens were 
poorly predicted. The predicted terminal gradient was much 
steeper than the observed clinical data.     

3.8  Effect of rat Kp on rosuvastatin 
and pitavastatin simulations
To investigate the importance of rat Kp to our models, the same 
simulations mentioned previously were performed with and 
without the use of rat Kp data for rosuvastatin and pitavasta-
tin. Initially, the bottom-up model underestimated Vss with a 

of the observed parameters (FDA, 2012). Only the Tmax for the 
10 mg single oral dosing was beyond the two-fold criteria with a 
fold difference of 2.35 versus the observed value. Similarly, the 
plasma concentration-time profile (Fig. 4) shows that the simu-
lations are in close agreement with the observed profile. Further-
more, the nonlinear biokinetics observed during repeated 40 mg 
oral dosing of fluvastatin due to saturable first-pass elimination 
were recapitulated in our model (Tse et al., 1992). 

3.7  Bottom-up simulations of single and multiple dose  
biokinetics of pitavastatin
The plasma concentration-time profiles of pitavastatin after 
a 2 mg IV infusion over 1 hour, 2 mg single oral dosing and  
4 mg once daily dosing for 5 days are shown in Figure 5. Sim-
ulated biokinetic parameters for the IV infusion and single oral 
dose were well predicted, with the simulated biokinetic param-

Fig. 6: Middle-out simulated  
and observed plasma 
concentration-time profile for 
rosuvastatin after (A) 8 mg IV 
infusion, (B) 20 mg single oral 
dose, (C) 10 mg once daily oral 
dosing for 14 days, and for 
pitavastatin after (D) 2 mg IV 
infusion, (E) 2 mg single oral 
dose, and (F) 4 mg once daily 
oral dosing for 5 days
The continuous and dashed lines 
represent the predicted mean 
concentration for the simulated 
population using rat Kp and without 
using rat Kp, respectively. The 
blue boxes represent the observed 
rosuvastatin or pitavastatin 
concentration with error bars (SD) 
if available.
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of disposition processes remains a major barrier to its routine 
use in risk assessment (Wambaugh et al., 2018). Building upon 
the work by Lundquist, Vildhede and colleagues, we show that 
the key to greater accuracy in IVIVE of transporters lies in the 
use of quantitative proteomics to account for differential expres-
sion of transporters in in vitro systems compared with isolated 
hepatocytes and liver tissue (Kimoto et al., 2012; Lundquist et 
al., 2014; Vildhede et al., 2015, 2018). The inclusion of an ad-
ditional scaling factor (SF2) that accounted for this downregu-
lation permitted predictions of CL, AUC0h-t, and Cmax to with-
in two-fold of the observed data after an IV infusion or single 
oral administration of the 3 compounds. This is notable for the 
following reasons: Firstly, this demonstrates the ability of bot-
tom-up PBK modeling to accurately recapitulate biokinetics in 
humans when comprehensive in vitro data and accurate scaling 
factors are available. Secondly, our results confirm our previous 
hypothesis that the suboptimal IVIVE for transporter-mediated 
elimination is due to the downregulation of transporters when 
hepatocytes are isolated from liver tissue. Thirdly, we illustrate 
that this mechanistic scaling approach is sufficiently robust to 
accommodate data generated from a variety of in vitro systems 
across different laboratories, measured and reported using dif-
ferent approaches. Our promising findings fuel further simula-
tions using compounds with different biokinetic profiles to con-
firm their robustness.

In our derivation of SF2, data of transporter protein expression 
in liver and hepatocytes were obtained from three publications 
(Ohtsuki et al., 2011; Vildhede et al., 2015, 2016). However, there 
was an inter-laboratory fold difference of 1.8-90 in the predicted 

value of 0.12 l/kg and 0.091 l/kg compared to the observed 
values of 1.73 l/kg and 1.90 l/kg for rosuvastatin and pitavas-
tatin. Simulated values were underpredicted by more than ten-
fold compared to the observed values. Thus, optimizations of 
Kp using data from rat distribution studies were performed and 
their references are shown in Tables S14-S161. This led to an 
improved value of 0.62 l/kg and 0.45 l/kg for rosuvastatin and 
pitavastatin. 

However, biokinetic parameters with and without using rat Kp 
were relatively similar and fell within two-fold of the observed 
data even without the use of rat Kp (Tab. 3). This is in contrast 
to the plasma concentration-time profile (Fig. 6). With the use 
of rat Kp, the terminal gradient for pitavastatin simulations was 
predicted accurately as compared to the simulated profile with-
out the use of rat Kp (Fig. 6D-F). Our simulations demonstrated 
a short and negligible distribution phase with the majority of the 
drug being cleared within 10 hours. Upon including rat Kp, the 
distribution profile for our simulations improved for pitavastatin. 
However, for rosuvastatin, the inclusion of rat Kp did not lead to 
a significant change in the simulated plasma concentration-time 
profile (Fig. 6A-C).
 
 
4  Discussion

In this study, we demonstrate the utility of bottom-up PBK mod-
eling as an alternative to animal testing to predict human bioki-
netic data. Bottom-up IVIVE is considered vital for prediction 
of chemical exposure, but the systematic suboptimal estimation 

Tab. 3: Simulated versus observed biokinetic parameters and the fold difference (simulated/observed) for rosuvastatin and 
pitavastatin simulations with the use of rat Kp

 Rosuvastatin 8 mg  Rosuvastatin 20 mg  Rosuvastatin 10 mg 
 IV infusion   single oral dose  once daily oral dose for 14 days

Biokinetic parameter Observed Simulated Fold Observed Simulated Fold Observed Simulated Fold 
(unit)   difference   difference   difference

Cmax (ng/ml) 37.10 47.56 1.28 7.60 7.09 0.93 4.58 4.36 0.95

Tmax (h) 4.00 3.99 1.00 3.00 2.26 0.75 3.00 2.24 0.75

AUC0h-t (ng.h/ml) 164.00 236.31 1.44 77.20 83.82 1.09 40.10 47.28 1.18

AUC0h-∞ (ng.h/ml) - - - 83.50 87.03 1.04 71.80 58.36 0.77

CL or CL/F (l/h) 48.90 33.85 0.69 239.50 229.79 0.96 139.28 179.96 1.29

 Pitavastatin 2 mg   Pitavastatin 2 mg   Pitavastatin 4 mg  
 IV infusion   single oral dose  once daily oral dose for 6 days

Biokinetic parameter Observed Simulated Fold Observed Simulated Fold Observed Simulated Fold 
(unit)   difference   difference   difference

Cmax (ng/ml) 59.83 70.37 1.18 18.58 14.33 0.77 62.39 27.50 0.44

Tmax (h) 0.97 1.00 1.03 0.75 0.96 1.28 0.50 1.08 2.15

AUC0h-t (ng.h/ml) 76.07 109.94 1.45 33.57 29.30 0.87 147.33 62.64 0.43

AUC0h-∞ (ng.h/ml) 83.9 114.78 1.37 42.95 30.90 0.72 - - -

CL or CL/F (l/h) 23.67 17.42 0.74 45.85 64.72 1.41 27.15 63.86 2.35
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quent reconversion of lactone to parent drug would increase sys-
temic pitavastatin exposure. Further studies to investigate this re-
conversion are needed to improve IVIVE for repeated dosing of 
pitavastatin. Secondly, a pitavastatin tablet was administered in 
the original clinical trial. However, we did not include any dis-
solution data and chose to use a solution formulation instead be-
cause appropriate dissolution data for pitavastatin are unavail-
able. Finally, in a clinical study that reported repeated dosing of 
2 mg pitavastatin over 6 days, the observed Vss and half-life (t1/2) 
increased two-fold compared to a single dose of pitavastatin (Luo 
et al., 2015). This was speculated by the authors to be a result of 
saturable distribution (in this case of the main peripheral tissue, 
the liver) during multiple dosing. This phenomenon was not in-
cluded in our model and could also contribute to the overpredic-
tion of CL.

While we have attempted to be as mechanistic as possible, we 
were unable to include active intestinal transporters in our mod-
els for rosuvastatin and fluvastatin due to a lack of appropriate in 
vitro data. Nonetheless, we were able to recapitulate the kinet-
ics of rosuvastatin without the inclusion of any active intestinal 
transport. This could indicate that active transport is not signifi-
cant in the oral absorption of rosuvastatin. However, for fluvas-
tatin, the Tmax after a single oral dosing was overestimated and 
above two-fold of the observed Tmax. To fully recover the absorp-
tion kinetics of fluvastatin, further improvements of our model 
could be made by including the kinetics of intestinal transporters. 
Moreover, in our use of the mechanistic kidney model, we did not 
consider the possible differences in expression of transporters be-
tween isolated human tubular epithelial cells and kidney tissue 
(Results S1 and S51). A phenomenon similar to the downregula-
tion observed in isolated hepatocytes leading to an underestima-
tion of the renal clearance may have occurred. This could explain 
the slight underprediction of CL for rosuvastatin and pitavastatin 
after IV infusion. 

Our simulations reveal that there is a need for better predic-
tions of Vss using in vitro data and physicochemical properties. 
When our rosuvastatin and pitavastatin bottom-up models incor-
porated rat Kp values to optimize distribution, this resulted in a 
clear improvement in the predicted Vss values. In contrast, the ef-
fects of rat Kp on the simulated plasma concentration-time profile 
were mixed. For rosuvastatin, the profiles for all 3 dosing regi-
mens did not differ much upon the inclusion of rat Kp, and were 
relatively well predicted even without the use of rat Kp. Notably, 
even with the use of rat Kp, our simulations were unable to fully 
recapitulate the triphasic decline of rosuvastatin observed after an 
IV infusion (Martin et al., 2003). This example demonstrates the 
challenges that current distribution models face when predicting 
more complex distribution scenarios. Interestingly, in the case of 
pitavastatin, although incorporating rat Kp allowed us to fully re-
cover the terminal gradient of the plasma concentration-time pro-
file for all 3 dosing regimens, this did not materially alter our pre-
diction of biokinetic parameters. In other words, where animal 
distribution data are available, distribution profiles can be further 
improved, but the absence of such data does not appear to hinder 
modelling reliability. 

Finally, even though active transport is involved in the tissue 
distribution of a compound (Grover and Benet, 2009), the Rod-

in vivo uptake clearance when measured protein levels from dif-
ferent laboratories were used for modeling (Wegler et al., 2017). 
Hence, there is a need for a comprehensive meta-analysis of all 
available transporter abundance data in the liver and isolated he-
patocytes to obtain appropriate values for scaling. This would mit-
igate variations caused by different proteomic techniques or dif-
ferent donor characteristics when calculating SF2. 

In our calculation of SF1, we found a large variability of ex-
pression levels of the same transporter in the same in vitro sys-
tems reported in different references. This exemplifies the need 
for every laboratory to carry out its own quantitative measure-
ments of the expression of transporters in its own particular in 
vitro system. The observed variability could be due to inter-lab-
oratory differences in gene transfection protocols when using 
HEK-293 cells (Ooi et al., 2016) or the quantitative proteomics 
method used to measure the expression of transporters (Wegler 
et al., 2017). Similarly, when using Caco-2 cells, cell density per 
unit surface area (mg/cm2) would be heavily influenced by cell 
culture techniques, area of insert used to culture the cells, and 
growth conditions (Sambuy et al., 2005). Without such informa-
tion, inaccurate estimates of intestinal transporter kinetics would 
be made when scaling using Equation 9. Our analyses indicate 
that it is not appropriate to cross-apply scaling factors across dif-
ferent laboratories and in vitro systems. 

Mechanistic modeling of metabolism and transporter kinet-
ics was performed to describe the biokinetics of the three statins. 
For bottom-up IVIVE, the quality and appropriateness of the da-
ta are critical. In the case of transporter kinetics, it is crucial to 
consider: (1) type of in vitro system, (2) unit in which the da-
ta is presented, (3) availability of quantitative measurements of 
transporter abundances, and (4) surface area of and cell densi-
ty on the transwell filter. There is often a significant overex-
pression of transporters in membrane vesicles, which would re-
sult in an overestimation of the contributions of the transporter 
without a correction based on quantitative measurements of the 
transporter expression. For example, expression of breast can-
cer resistant protein (BCRP) was found to be 3000 times greater 
in membrane vesicles compared to isolated HHEP, leading to an 
SF1 of 0.000327 (Vildhede et al., 2016). Furthermore, the unit of 
Jmax is typically expressed as pmol/min/mg protein when using 
membrane vesicles, which has to be converted to pmol/min/106 

cells using transporter expression data in HHEP for subsequent 
scaling. Such considerations are also pertinent for other in vitro  
systems (HEK-293 cells, Caco-2 cells, etc.). These observations 
underscore the need for careful scrutiny of the experimental units 
and derivation of scaling factors using quantitative measurements 
(Prasad and Unadkat, 2014; Vildhede et al., 2018). 

Interestingly, although our pitavastatin model recapitulated 
biokinetic profiles of both IV infusion and single oral dosing, we 
were unable to fully recapitulate the biokinetics of repeated pi-
tavastatin dosing. Analysis of the model suggested that this was 
due to an overestimation of CL, which could be explained by 
several reasons: Firstly, non-enzymatic reconversion of pitavas-
tatin lactone (a metabolite) back to pitavastatin has been report-
ed (Fujino et al., 2004b, 2005). Given that pitavastatin lactone is  
the major metabolite of pitavastatin with a half-life (t1/2) of 11-16 
hours (FDA, 2012), it is possible that an accumulation and subse-
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gers and Rowland equation used to predict Kp values does not 
account for any active transporter process that contributes to the 
transport of xenobiotics into and out of tissue (Rodgers and Row-
land, 2007). Also, it has been previously noted that predictions of 
Kp and Vss using the same method are less reliable when a com-
pound is involved in active transport processes (Rodgers and 
Rowland, 2007). Furthermore, if EHC occurs, it may increase 
the mean residence time of the compound, leading to a larger Vss 
(Chan et al., 2018). Since the dispositions of rosuvastatin and pi-
tavastatin are greatly influenced by transport processes and have 
been noted to undergo EHC (Kimata et al., 1998; Martin et al., 
2003; FDA, 2012), this could explain our sub-optimal prediction 
of distribution profiles for rosuvastatin and pitavastatin but not 
for fluvastatin. Therefore, further research is needed to improve 
the predictions of Kp and Vss, especially for xenobiotics that rely 
on active transport for tissue distribution.

5  Conclusion

In conclusion, a bottom-up PBK model of rosuvastatin, fluvas-
tatin, and pitavastatin was developed using mainly in vitro data, 
QSAR models, and animal distribution data. The IVIVE of trans-
porter-mediated disposition was greatly improved upon the ap-
plication of additional scaling factors that account for differential 
expression of transporter proteins between in vitro systems and 
in vivo organs. Our novel findings suggest that bottom-up PBK 
modeling is a viable alternative to animal testing for predicting 
human biokinetics of xenobiotics. Further research must be per-
formed to validate this bottom-up PBK-IVIVE approach and de-
velop new equations to better predict the distribution of xenobi-
otics in the body. In summary, PBK modeling has the potential to 
replace animal testing in predicting biokinetics of xenobiotics in 
humans.
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