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the NAS report, moved forward to outline a broadly collaborative 
program (Collins et al., 2008) with other United States federal 
agencies to implement recommendations from the NAS report. 
A multi-stakeholder program, SEURAT (Safety Evaluation Ul-
timately Replacing Animal Testing)1 that focused on implemen-
tation of non-animal methods also began in Europe. Following 
SEURAT, EU-ToxRisk, a large-scale project funded by the Euro-
pean Commission’s Horizon 2020 program2, is now driving the 
European research efforts on alternative testing methods. 

These in vitro and computational technologies, together with 
application of existing tools to new data streams (e.g., read-
across), are collectively referred to as new approach methodol-
ogies – NAMs (US EPA, 2018b). The US EPA under the new 
Toxic Substances Control Act (TSCA) in section 4(h) is required 

1  Introduction

The National Academy of Sciences (NAS) report in 2007, “Tox-
icity Testing in the 21st Century: A Vision and A Strategy,” pro-
posed fundamental changes in chemical risk assessment, in-
cluding moving to human cells, tissues, or cell lines, developing 
high-throughput methods for evaluating large numbers of chemi-
cals more efficiently, and using various computational chemistry 
and bioinformatic tools for data analysis and prediction of risk 
(NRC, 2007). The National Center for Computational Toxicol-
ogy (NCCT) at the US EPA had previously developed a plan to 
incorporate many of these approaches in toxicity testing, as de-
scribed in “A Framework for a Computational Toxicology Re-
search Strategy” (Kavlock et al., 2003) and after publication of 
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gether with significant advancements in data science and in vitro 
technologies, the toxicology and risk assessment communities 
are better equipped to approach the realities of NAM-based risk 
assessments. New assays examining a broader palette of possible 
responses (e.g., “omic” technologies and high-content imaging) 
are now being discussed, and tiered approaches are being de-
veloped for the use of these test platforms to streamline toxicity 
testing (Thomas et al., 2013, 2019).

One aspect emphasized in the 2007 NAS Toxicity Testing re-
port was that collecting data on hazard should be tied to risk de-
cision contexts. The original figure (S-1) from the report (NRC, 
2007) describing components of the vision had three parts – 
Chemical Characterization, Toxicity Testing (including both 
toxicity pathway evaluations and targeted testing) and Dose-Re-

to maintain a list of acceptable NAMs. More recently, a US EPA 
memorandum published in September 2019 officially announced 
a commitment to reduce its requests for and funding of live mam-
mal studies by 30% by 2025 and to eliminate all live mammal 
study requests by 2035 (Grimm, 2019). 

The primary testing initiatives following the release of the 
2007 NAS report focused on screening large numbers of com-
pounds with existing high-throughput assays (e.g., ToxCast, 
Tox21), many of which were repurposed from pharmaceutical 
applications (Judson et al., 2010; Reif et al., 2010). These efforts 
developed the infrastructure necessary for collection and analysis 
of large-scale data and determining the utility of existing meth-
ods for supporting chemical safety decisions. Now, with lessons 
learned about the practicalities of high-throughput screening, to-

Fig. 1: A multi-level strategy 
for using new alternative 
methods and higher-throughput 
exposure tools for context 
dependent safety assessments 
This tiered testing strategy is 
problem formulation-driven. The 
level of information available 
about chemicals will guide the 
particular testing required for any 
use conditions. The progression 
through different levels (orange 
arrows) is governed by decision 
context. Depending on the margin-
of-exposure (MOE) estimated at 
each level, a decision-maker might 
still regard the information at any 
specific level to be insufficient, 
leading to consideration of higher-
level testing to refine the analysis 
and have a greater degree of 
confidence in any decision. More 
detail on the NAMs at each level is 
in the text.
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Inferences about likely risks or safe usage of compounds at each 
of these levels underpin decisions regarding safety for specific 
use conditions or the need for further testing. A variety of con-
siderations, such as the magnitude of the MOE and the accura-
cy, regulatory acceptance and biological coverage of the assays 
populating the level, would have to be considered in deciding if 
higher-level testing would be necessary.

3  Looking at decisions at each level

The levels are characterized, in part, by the investment in in-
formation generated by each level and by confidence in the re-
sults. Gaining confidence in their use will be essential to make 
NAMs acceptable by regulatory agencies. The US EPA strategic 
plan based on the TSCA has three important components that 
are (1) identifying, developing and integrating NAMs for TSCA 
decisions; (2) building confidence that the NAMs are scientifi-
cally reliable and relevant for TSCA decisions; and (3) imple-
menting the reliable and relevant NAMs for TSCA decisions3. 
Approaches to establish confidence (validation) will need to be 
developed. Issues of confidence affect NAMs at all four of our 
testing levels. 

Output of testing and exposure assessment at each of these 
levels are potentially suitable for informing different decisions. 
In “Level 1 – Computational screening,” high-throughput pre-
dictions of exposure, putative toxicity and expected metabo-
lites, etc., are obtained using computational methods and would 
support chemical categorization and decision-making in lim-
ited contexts. For instance, when choosing among several lead 
chemicals for any particular application, compounds predicted 
to have higher exposures or carrying possible toxicity liabilities 
as determined by computational methods could be dropped from 
further consideration. NAMs populating this level are purely 
computational and support prioritization for further study or de-
cisions that the chemical is unsuitable for intended applications 
(Thomas et al., 2013). 

With indications of higher expected exposures or indications 
of possible toxicity at Level 1, testing would be completed and 
compounds triaged or deprioritized. For some compounds al-
ready in commerce or those moving forward in development due 
to favorable use characteristics, further work would be required 
to refine exposure potential and determine activity in “Level 2 – 
High throughput (HT) in vitro screening.” This level would be 
populated by rapid, high-throughput dose-response screening of 
compound bioactivity and high-throughput in vitro-in vivo ex-
trapolation (HT-IVIVE) (Yoon et al., 2015). HT-IVIVE converts 
active concentrations from an in vitro assay (e.g., Tox21, Tox-
Cast) to a human equivalent dose, i.e., to a human dose or hu-
man exposure that would be expected to produce concentrations 
in an exposed person equal to the active concentration from the 
in vitro study (Rotroff et al., 2010; Sipes et al., 2017; Casey et 
al., 2018; Wambaugh et al., 2018). The NAMs populating Lev-
el 2 would optimally provide quantitative measures of response, 

sponse and Extrapolation Modeling. These three were surround-
ed by a circle identified as: “Risk Contexts” and “Population and 
Exposure Data.” In 2009, the NAS produced another report on 
opportunities in exposure science (NRC, 2009). The linkage be-
tween assessing toxicity and biological activity with NAMs and 
the use of higher-throughput methods for exposure assessment 
provide the basis for developing testing approaches more suited 
to answering diverse risk assessment questions.

2  NAMs and risk-based decisions

Converting computational approaches and in vitro test results to 
expected potency of test compounds for specific in life respons-
es is more complex than with traditional animal tests. The more 
straight-forward uses of these tests are to provide indications of 
expected in life responses based on chemical properties or in vitro  
“hits” or to predict expected exposures. For these reasons, most 
recommendations for early implementation of NAMs focused 
on prioritization: identifying chemicals with higher potential for 
toxicity for more in-depth evaluation or removing chemicals en-
tirely from further consideration. Higher priority compounds – 
those with some perceived hazard for specific types of adverse 
responses or with higher exposure potential – might be escalated 
to additional testing or, in some cases, to traditional animal-based 
methods depending on the decision context. Conversely, materi-
als with higher perceived risks might simply be dropped from 
further consideration for development or removed from com-
mercial use. It is important in developing more explicit priori-
tization schemes to include criteria that allow decision-making 
that avoids simply having lower priority compounds set aside 
awaiting extensive testing once the higher priority compounds 
move through more comprehensive testing of toxicity pathways 
or on to in life testing. For instance, after identifying and testing 
the high priority compounds, what is the strategy for moving on 
to those defined as lower priority? Our goal in developing these 
different test levels has been to minimize the need for higher tier 
testing through adherence to a risk context-based implementa-
tion of NAMs.

Figure 1 depicts four levels of testing that focus on use of 
NAMs (including both assays of biological activity and high-
er-throughput exposure methods) to develop information suffi-
cient for decision-making. Each level has NAMs for assessing 
both biological activity and expected human exposure. Rela-
tive safety of product usage is estimated by calculating mar-
gins-of-exposure (MOEs), a ratio of a measure of expected po-
tency divided by a measure of expected exposure in a population. 
This paper considers the question of when information available 
from any one of these levels would be considered sufficient for 
risk-based decisions and the kinds of decisions possible at the 
various levels. Light blue boxes to the left describe level-appro-
priate approaches for assessing bioactivity and for estimating 
expected exposure. The information provided by NAMs at each 
level allow calculation of an MOE (orange boxes to the right). 

3 https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf 
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es discussed here also apply to ecological risk evaluations, rec-
ognizing that the assays, IVIVE tools and exposure evaluations 
would need to be tailored to support ecological risk assessment 
decision contexts. 

Our context-dependent testing approach is applicable to a 
wide chemical space. However, the structure and physicochem-
ical properties of compounds may be challenging in short-term 
NAMs and will determine which assays are possible and how 
testing should proceed. For example, modeling or prediction of 
compounds that are highly lipophilic and hence slowly eliminat-
ed from the body is extremely difficult. These compounds are 
also difficult to keep in solution for testing, as they adsorb on 
surfaces or form micelles. Most of the training sets for in silico 
tools were developed based on pharmaceuticals with a narrow 
range of physicochemical/metabolic properties, not chemicals 
with much broader physicochemical properties like the ones in 
ToxCast (Moreau et al., in preparation). Measuring metabolic 
rates of slowly cleared compounds is also challenging, and better 
approaches need to be developed with an eye toward defining a 
chemical space for which existing computational tools can pre-
dict metabolism with reasonable accuracy and an understanding 
about when these tools are inadequate for low-tier decision-mak-
ing (Moreau et al.,  in preparation). Nonetheless, the testing and 
exposure assessment across these four levels should work with 
most compounds.

3.1  Level 1: Computational screening
We can next ask what NAMs might be involved at each of these 
levels. The optimal suite of computational tools in Level 1 
should estimate physical properties, infer possible toxicity (e.g., 
QSAR platforms, threshold of toxicological concern, etc.), pre-
dict or take into account likely metabolites, and assess exposures 
that would be expected to arise during anticipated use condi-
tions. The goal in Level 1 is to have computational tools that are 
developed with as large a range of compounds as possible in or-
der to have confidence when calculating similar properties for a 
new compound or new class of compounds. The need for breadth 
of coverage is a challenge for model developers when data are 
not available to create models for specific endpoints or when da-
ta covering the domain of structural applicability is sparse. Even 
when data are available, they are often in need of curation, which 
is costly and time consuming.

Currently a variety of tools are available for estimating phys-
icochemical properties and environmental fate endpoints: e.g., 
EPA’s EPI Suite and ECOSAR (USEPA, 2018a), for predicting 
toxicological endpoints: TIMES (Mekenyan et al., 2004) and 
Leadscope (Roberts et al., 2000), for metabolites likely formed 
in vivo: (Leonard et al., 2018), Meteor Nexus (Marchant et al., 
2008), BioTransformer (Djoumbou-Feunang et al., 2019), and 
ADMET Predictor®, and for both thresholds of toxicological 
concern (TTC) and possible exposure levels: (Patlewicz et al., 
2018). With the collaborative estrogen receptor activity pre-
diction project (CERAPP), large-scale modeling using 32,464 
structures showed the possibility of screening large libraries 
of chemicals using a consensus of different in silico approach-
es (Mansouri et al., 2016). This approach has also been used to 
identify androgen active chemicals (Manganelli et al., 2019). 

such as AC50 (a concentration causing 50% of maximal change 
in the assay results) or LEC (the lowest effective concentration) 
and, based on active concentrations in these assays, permit es-
timation of human equivalent doses (HEDs) (Wetmore, 2015). 
The MOE would be the ratio of a measure of the HED divided 
by expected exposure levels. A decision-maker would have more 
confidence in the MOEs arising from these studies than the com-
parisons of estimated exposure and putative risks predicted from 
Level 1. Nonetheless, it would be difficult to be entirely comfort-
able making risk assessment decisions at Level 2 for compounds 
for which the estimated MOE was either not sufficiently large; 
where the presumed MOAs inferred from these assays – e.g., 
MOAs - reproductive, developmental, carcinogenic potential, 
etc. – increased the level of concern; or where high exposures 
were expected in a potential target population.

The testing at Level 2 with read-outs from multiple HT in vitro  
assays or from limited broad-coverage assays should be de-
signed to provide information on MOAs. Based on presump-
tions of MOAs from these assays, “Level 3 – Fit-for-purpose 
assays and safety assessment” would apply human-relevant fit-
for-purpose (FFP) assays to provide more in-depth examinations 
of MOA-related cellular perturbations in cell systems (Clewell 
et al., 2016). FFP assays would be designed with read-outs that 
represent key signaling processes for cellular pathways associ-
ated with a chemical’s MOA and ideally include markers that 
correlate with or directly measure adversity. Optimally, dose-re-
sponse data from the FFP assays, together with computational 
pathway models (Bhattacharya et al., 2011), could provide a 
mechanistic understanding of the shape of the dose-response 
curve and support more informed extrapolation to relevant hu-
man exposure. Quantitative IVIVE (QIVIVE), accounting for 
human relevant metabolism coupled with dose-response rela-
tionships from the FFP assays, would provide more confidence 
in estimated MOEs and determination of regions of safety, i.e., 
exposure concentrations at which no increased risk is expected 
in a human. Depending on the MOE obtained with these more 
comprehensive FFP assays and better knowledge of use-specific 
exposures, a decision-maker might still deem this information to 
be insufficient, leading to consideration of more complex assays 
and more detailed compound-specific exposure information at 
“Level 4 – More intact systems.” 

The opportunity to accumulate relevant and context-depen-
dent information at each level should substantially reduce the 
number of chemicals tested in these more complex NAMs. And, 
when necessary, alternative multi-dimensional and multi-cellu-
lar assays would assess human tissue-based dose responses rath-
er than moving to studies in animal models. In addition, MOA 
information provided from HT testing and FFP assays could sup-
port more limited testing in animal models targeted to the specif-
ic MOA. It bears emphasis that, depending on the decision con-
text, e.g. lead candidate selection, prioritization for remediation, 
ranking liabilities of possible substitutes, estimating risks with 
compounds lacking signals for endpoints of high regulatory con-
cern and formal regulatory decision-making, etc., compounds 
would not have to be tested sequentially at all four levels in a 
tiered approach. While the emphasis here is on NAMs for human 
health risk-based decision-making, the principles and approach-
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2 assays and/or similarity to chemicals with known hazard pro-
files can be used to justify a finding that further study is or is not 
warranted. Furthermore, in our conception of Level 2, ADME 
(absorption, distribution, metabolism, elimination) data would 
also be integrated with bioactivity assay data to convert AC50 
or LEC values to HEDs using in vitro to in vivo extrapolation 
methods and compared with exposure estimates to generate an 
MOE. An important challenge in interpreting responses in Level 
2 assays relates to distinguishing biologically relevant pathway 
responses from the “burst effect” that can arise from substances 
that lack specific affinity for cellular pathways and that, at rela-
tively high concentrations, elicit broad low-affinity non-covalent 
interactions, trigger cell stress pathways, or cause physical dis-
ruption of proteins or membranes (Judson et al., 2016; Shah et 
al., 2016). 

There are now wider discussions about using cell-based 
assays designed to broadly examine gene expression using 
high-throughput transcriptomic analysis (Grimm et al., 2016; 
McMullen et al., 2019) and to assess cellular morphology us-
ing high-content imaging (HCI) (Vantangoli et al., 2016). Gene 
expression platforms such as BioSpyder6 have reduced the cost 
for whole genome differential gene expression analysis (DGEA) 
(Yeakley et al., 2017). Benchmark dose analysis (Thomas et al., 
2007) and pathway visualization methods for MOA analysis, 
such as mode of action visualization software MoAviz (Ander-
sen et al., 2018; McMullen et al., in press), assess both potency 
and biological functions/pathways affected by treatment. HCI 
platforms can be automated (Feng et al., 2009; Bray et al., 2016, 
2017) to query a wide range of cellular phenotypes, and link-
ing the two assay platforms DGEA and HCI could provide the 
necessary link between transcriptomic signatures, cellular phe-
notype and MOAs. The DGEA and HCI can be regarded as path-
way-agnostic methods; analysis of results of the assays gives an 
indication of MOA rather than using inferences from Level 1 to 
design more MOA-targeted assays. 

While there is significant enthusiasm for broad coverage as-
says that are not directly based on knowledge of MOAs, there 
is as yet no consensus on cell types or duration of exposure for 
these transcriptomic studies. To the extent that these second-gen-
eration assays (Thomas et al., 2019) are successful and their 
use to assess affected biological pathways becomes more wide-
spread, the developed information can be merged with available 
databases, including those from ToxCast, and be used to de-
velop DGE-signatures for the well-studied compounds in Tox-
Cast Phase I and Phase II. The results of broad coverage, path-
way-agnostic assays in Level 2 should ideally allow for (a) iden-
tification of AOPs/MOAs activated by a test substance and (b) 
IVIVE approaches to convert the active concentration to a HED. 
Through this process, confidence in subsequent MOE calcula-
tions will increase and some Level 2 results may be accepted for 
decision-making, partially due to narrowing uncertainty regard-
ing the MOE and knowledge of likely MOAs.

The computational models that apply algorithms to estimate 
TTCs and exposures permit estimation of approximate margins 
of safety – MOS (Wambaugh et al., 2013; Nicolas et al., in prepa-
ration). These TTCs are derived from in vivo toxicity datasets and 
include a 100-fold safety factor. Due to the use of the 100-fold 
safety factor, MOS values, i.e., the TTC divided by expected ex-
posure, are more conservative than MOEs derived using a HED. 
Similar approaches have been applied to the large CERAPP data-
set to calculate both TTCs and exposures, thereby providing ap-
proximate estimates of MOEs. Other tools at Level 1 include in 
silico metabolite identification (met-ID) using tools such as the 
OECD QSAR Toolbox metabolism profiler4 or ACD/Labs Meta-
Sense biotransformation map software5. The results of compu-
tational scrutiny of a compound or group of compounds could 
provide compelling results, i.e., very low predicted exposures  
or lack of signals for expected toxic liabilities, leading either to a 
much-reduced level of concern or exemption of the chemical(s) 
from further study.

Some combination of higher expected exposures, indications 
of specific types of toxicity from QSAR methods, or physico-
chemical properties that indicate long half-lives in a target spe-
cies or the environment, would raise flags, indicating a higher 
priority for considering further testing or, in the case of new 
compound development, possibly a decision to discontinue fur-
ther development. In cases where Level 1 analyses fail to pro-
vide a sufficiently large MOS, the next step would be to use Lev-
el 2 NAMs to test for biological responses in high-throughput 
cellular or subcellular assay platforms, first considering NAMs 
that target possible toxicity identified in Level 1. 

3.2  Level 2: High throughput in vitro screening
Level 2 comprises assays that can be easily run on a large num-
ber of compounds in high-throughput mode. Examples here are 
the Tox21 and ToxCast assays from NIH and EPA, respectively, 
which could be run on essentially any compound that is soluble 
in water or DMSO and is not highly volatile. Ideally, Level 2 as-
says should be tailored toward endpoints of regulatory concern, 
with a good understanding of how the assay fits within known 
MOAs or adverse outcome pathways (AOPs). The original in-
tentions of Tox21 and ToxCast were to generate directly compa-
rable data for a large number of chemicals to facilitate grouping 
of chemicals by MOA, ranking of chemicals within a particular 
MOA by potency, prioritization of these chemicals for risk as-
sessment by regulatory bodies, and ultimately providing a plat-
form where unknowns could be subjected to the same battery of 
assays and MOAs assigned based on the pattern of activity seen 
in the results. Even though many of these goals were later shown 
to be out of reach, at least for the assays chosen to be part of the 
Phase I and Phase II efforts, these assays still show promise for 
grouping chemicals as part of a process known as “biological 
read across.” This approach is similar to hazard identification in 
the traditional risk assessment process, where activity in Level 

4 https://qsartoolbox.org/
5 https://www.acdlabs.com/solutions/metasense/
6 https://www.biospyder.com
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(T47D). None of the ToxCast in vitro assays evaluate uterine re-
sponse, even though the uterus is a critical target tissue for estro-
genic compounds and there are differences in breast and uterine 
responses to various estrogenic compounds (Barakat, 1995). Our 
approach for creating a FFP assay for estrogenicity (Miller et al., 
2016, 2017; Beames et al., in press) has relied on using a human 
adenocarcinoma cell line, i.e. Ishikawa cells, and confirming 
that the cells retained all components of the estrogen signaling 
network involved in the control of cell proliferation. To test the 
utility of the in vitro model to predict quantitative dose-response 
relationships in the species of interest, we tested the assay output 
for endogenous estrogen and known human uterotrophic drugs 
against clinical and epidemiological data. The FFP in vitro uter-
ine assay consistently predicted chemical concentrations associ-
ated with human estrogenicity. Further, the assay predicted ac-
tivity at lower concentrations than any of the ToxCast HT assays 
(Miller et al., 2016). 

Based on these studies, we had confidence that the assay was 
sufficiently sensitive to predict safe levels of human exposure 
for uterotrophic compounds. To test the application of the assay 
for the broader universe of environmental compounds, we ran 
dose-response curves for 116 chemicals (Beames et al., in press), 
including chemicals that were determined to be estrogenic  
(n = 106) or non-estrogenic (n = 10) in the EPA estrogen model 
(Browne et al., 2015; Judson et al., 2015), and possible metabo-
lites of 5 parent compounds from the ToxCast library. The Ishi-
kawa assay was compared to ToxCast assay results, as well as in 
vivo rodent uterotrophic and two-generation reproductive study 
data. Active concentrations in the uterine proliferation assay 
were consistently among the lowest of the test models, wheth-
er comparing in vivo or in vitro results, indicating that observed 
activity in the in vitro model would provide a sufficiently protec-
tive point of departure for risk assessment. However, when com-
pared to animal studies, approximately 41% of the compounds 
that caused uterotrophic response in guideline-like rodent stud-
ies did not show proliferative activity in the human cell-based 
assay. 

This disconnect between the human in vitro assay and the ro-
dent in vivo assay highlights an important issue in validation of 
NAMs, i.e. selection of the benchmark or comparator. When 
comparing in vivo studies in rats with assays in human-relevant 
cells, challenges arise related to decisions about defining com-
pounds as positive or negative. Should animal studies be consid-
ered the “gold standard” when we know that many substances 
cause an effect in rats but not in humans, or vice versa? Or should 
we not even attempt to “predict” rodent responses and benchmark 
NAM predictivity against human data only? This is an open ques-
tion regarding validation, and one that will (at least for the time 
being) necessarily be addressed on a case-by-case basis. Here, 
the FFP estrogen model faithfully reproduced human response 
for the admittedly few compounds for which clinical data was 
available (n = 4), but only showed activity for just over half of  
the rodent uterotrophic compounds. While we neither have nor 
ever expect to have human data with most chemicals, it nonethe-
less bears emphasis that the responses in test animals in vivo fre-
quently differ from those in human populations, and animal tox-

3.3  Level 3: Fit-for-purpose assays and safety  
assessment
Level 3 assays would be designed so that the output from the 
NAMs in Level 2 and from more refined exposure assessments 
increase confidence in the estimated MOE and support formal 
risk assessment without moving on to more complex assays. 
These applications require FFP assays (Clewell et al., 2016). 
These FFP platforms are targeted cellular assays that are devel-
oped based on an understanding of human biology. The land-
scape of FFP assay platforms in Level 3 is diverse with many 
more under active development. Complex CNS tissues – so-
called mini-brains – are just one example (Pamies et al., 2017; 
Boutin et al., 2018). Three-dimensional cultures of cells derived 
from various tissues are also being used to develop more rele-
vant platforms and are increasingly integrated with HCI technol-
ogies in order to simultaneously assess multiple phenotypic end-
points – the combination of these platforms provides a form of 
cellular pathology (Kabadi et al., 2015). 

One of the most publicized successes of the ToxCast program 
to date, the prediction of in vivo rodent uterotrophic results using 
in vitro assay data, used a computational model (Judson et al., 
2015). This early success has energized efforts in the field of en-
docrine disruption to try to replicate this success for other, relat-
ed MOAs, such as using androgen receptor data to predict in vivo 
Hershberger assay results. For estrogenic mode of action, over 
one hundred of the 1812 evaluated chemicals were predicted to 
be endocrine-active based on this computational model (Browne 
et al., 2015; Judson et al., 2015). These results appear robust as 
model results demonstrated that the method worked well for a 
set of reference chemicals by correctly identifying agonist, an-
tagonist and inactive compounds with high sensitivity and spec-
ificity. Using HT-IVIVE and the results of the assays allowed 
estimation of pathway-altering doses. While this estrogenicity 
model utilized a variety of molecular and cellular endpoints, all 
were based on signaling through two estrogen nuclear receptors 
(ESR1, also referred to as ER66/ERα, and ESR2/ERβ). The type 
of analysis is akin to Level 2 in our scheme. 

The analysis of estrogenicity using information on only the 
two receptors ERα and ERβ ignores other pertinent information 
on estrogen signaling. FFP assays for estrogenicity should be de-
signed to account for human biology, focus on specific cellular 
outcomes, and assure that the cell system has the molecular path-
way components necessary to recapitulate the cellular read-outs 
relevant to an adverse response in vivo. The coordination of es-
trogen responses in any tissue integrates the action of at least five 
estrogen receptors, including both classical nuclear and mem-
brane-bound receptors: ER66, ER46, ER36, ERβ, and GPR30 
(Miller et al., 2017). The goal in FFP assays for estrogenicity 
is to generate appropriate cellular response assays, quantitative 
IVIVE approaches, refined exposure information, and inferences 
about possible bioactive metabolites to create a package of infor-
mation sufficient for MOA-based risk assessment without resort-
ing to in vivo testing. 

The ToxCast estrogenicity assays were conducted with cell-
free and pathway-overexpression systems and using a pheno-
typic assay measuring proliferation in a breast cancer cell line 
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suited to predict parent chemical clearance, and the domain of 
applicability is centered in the pharmaceutical compound space. 
However, recent efforts are testing their suitability for use as 
first tier metabolism predictions of environmental compounds  
(Casey et al., 2018; Moreau et al., in preparation). A proof of 
concept study was completed that integrated TTC values with 
HT exposure modeling to provide prioritization level MOEs for 
close to 7000 substances (Patlewicz et al., 2018). More recently, 
TTC values derived for approximately 40,000 substances (Nico-
las et al., in preparation) have been disseminated publicly as a 
searchable table on the internet7. Advances in HT exposure mod-
eling have now yielded median human intake rates and credible 
upper bound intervals for more than 450,000 chemicals in vari-
ous U.S. population demographic age groups (Ring et al., 2019). 
As one component of the priority setting in the US EPA’s pro-
jected approach for conducting risk-based prioritization of ex-
isting chemicals under TSCA, the Agency intends to use HT ex-
posure modeling and TTC values to calculate TTC-to-exposure 
ratios (US EPA, 2018c).

MOE calculations for Level 2 screening assay results with 
consideration of exposure began with simple kinetic models, as-
suming steady-state oral exposure and determination of HEDs 
(Wetmore et al., 2013). IVIVE methods have also been used with 
AC50 values from ToxCast estrogenic assays to generate HEDs 
and MOEs by comparing these HEDs to predicted human expo-
sures. In this way, these ToxCast estrogen assay-derived MOEs 
could be used as stand-alone risk-based screening values or com-
pared to the MOE of the ubiquitous dietary phytoestrogen to pro-
vide additional context (Becker et al., 2015). 

We recently proposed an alternative dosimetry measure for 
fruit and vegetable mixtures (Wetmore et al., 2019). The dose 
measure was related to daily intake of the juices in relation to 
their bioactivity in the BioMap® assay platform. This measure 
of activity was then compared with the equivalent adjusted daily 
intake of agrichemical residues found in these produce materials 
in relation to their potency. While this measure of dose does not 
account for pharmacokinetics of the juices, which are complex 
mixtures, the adjusted daily intake allows comparison of the de-
gree of assay activity expected from the produce and the agri-
chemicals. The contribution from most of the produce juices was 
more than 1000-fold greater than the contribution of bioactivi-
ty associated with agrichemicals used in growing this produce. 
This examination of fruit and vegetable juices falls into Level 2 
testing with mixtures using a total intake dosimeter. More exten-
sive examination of mixture kinetics could follow with identifica-
tion of major components or fractionation into different chemical 
subclasses that could be studied individually. Depending on the 
test materials, especially for mixtures and chemical substances 
of unknown or variable composition (e.g., biological products, 
herbal medicines and dietary supplements, foods), dose measures 
other than HEDs will need to be considered and evaluated. 

 Whether dealing with mixtures with known constituents or 
single chemicals, available computational tools can predict like-
ly metabolites (met-ID) and infer possible toxicity of test com-

icity results should not necessarily be considered the gold stan-
dard for comparison (Blaauboer and Andersen, 2007).

Other examples of FFP assays have been pursued with p53 
mediated DNA damage (Clewell et al., 2014, 2016; Adeleye et 
al., 2015; Clewell and Andersen, 2016), PPARα signaling (Mc-
Mullen et al., 2014, 2019) and adipocyte differentiation (Foley 
et al., 2017; Hartman et al., 2018). Our work with these FFP 
assays has helped establish criteria for the cellular read-outs to 
ensure applicability of the results for assessing adversity. These 
assays can be particularly informative of human relevance. For 
example, with the PPARα assay, criteria have been established 
for comparing results from human cells to in vivo outcomes in 
rodents that appear to be qualitatively different from responses 
expected in humans (McMullen et al., in press). Another oppor-
tunity arising from development of FFP assays is the possibility 
of examining the signaling networks controlling various cellular 
responses to develop computational systems biology modeling 
tools to assess the biological basis of cellular dose-response be-
haviors, including a better understanding of threshold behaviors 
at the cellular and organism level (Zhang et al., 2014, 2015; Ty-
son and Novák, 2015; Clewell and Andersen, 2016).

3.4  Level 4: More intact systems 
Ultimately, the goal of defining multiple levels for context-ap-
propriate testing is that over time the tools used for targeted in 
vivo studies in test animals will be regarded as studies of last re-
sort. Problems arising from high dose animal studies in relation 
to human relevance and kinetic non-linearities at high doses are 
well-documented and these high dose rodent studies frequently 
raise more issues than they resolve. Instead of simply moving to 
in vivo studies, over time Level 4 should become populated with 
more complex assays, including multi-cellular and multi-di-
mensional assays, human-on-a-chip (Zhang and Radisic, 2017; 
Zhang et al., 2018), linked tissue surrogates with provisions for 
liver metabolism and inter-tissue circulation of metabolites, and 
inclusion of metabolite generating cells or subcellular fractions 
within the assay platforms (Zhang and Radisic, 2017; Zhang et 
al., 2018), providing a variety of biologically inspired test sys-
tems for conducting more integrated toxicity testing (Marx et 
al., 2016). 

4  Dosimetry, extrapolation and MOE considerations

While the preceding description of the risk context-related lev-
els focused more on assessing the biological targets, MOAs and 
dose-response, each level also requires consideration of dosim-
etry, IVIVE and exposure assessment in order to estimate MOSs 
or MOEs to place results from NAMs in an appropriate risk/safe-
ty context (NRC, 2007). 

At Level 1, computational methods permit HT predictions of  
exposure and metabolism including estimation of intrinsic 
clearance (CLint) and unbound fraction (Fu) based on chemical 
structure. These metabolism prediction tools are currently best 

7 https://scitovation.shinyapps.io/TTCApplet/

https://scitovation.shinyapps.io/TTCApplet/
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threshold models augmented with use of uncertainty factors for 
non-cancer risk evaluations).

An integrated approach with bioactivity testing and exposure 
assessment for assays at Level 4 (Webster et al., 2019) employed 
an MOE approach referred to as a bioactivity exposure ratio. Re-
sults from HTS assays (ToxCast), in vivo screening level assays, 
and in vivo apical tests of adverse effects were used to inform the 
need for conducting additional testing. Importantly, this case ex-
ample involved several data-rich substances and showed that in 
vitro MOE values were actually lower than the in vivo MOE val-
ues, an observation “that this health protective approach could fa-
cilitate a substance’s prioritization or deprioritization for further 
action, including the need for comprehensive in vivo testing.”

5  Domain of applicability 

The goal of organizing NAMs within these four levels was to 
consider when data from any of the levels would return adequate 
information to determine product safety for intended uses. The 
organization then provides a focus on the risk context, not sim-
ply the types of assays and computational tools available. Its ap-
plicability to particular chemistries or industrial sectors depends 
on the end-uses of products and whether the value of the product 
is associated with some biological activity. With environmental 
compounds, where the functionality is not related to specific bi-
ological activity, these tools offer significant promise for safety 
assessments based on measures of MOEs (TTC or AC50 divid-
ed by exposure). This approach is more safety assessment-based 
and differs from risk assessment procedures over the last 40 
years where there was an attempt to estimate a human dose (ex-
posure) that would be expected to produce some low incidence 
of response in a human population. This difference, i.e. a safe-
ty assessment versus risk assessment emphasis, was highlighted 
as a key point in applying TT21C information rather than in vi-
vo animal studies for decision-making (Andersen and Krewski, 
2010).

The transformation from traditional risk assessment approach-
es to this problem-oriented, safety assessment approach based on 
the use of NAMs across the different levels should be appropri-
ate for environmental compounds, GRAS substances, cosmetics 
and food additives (Rovida et al., 2015; Hartung, 2018). The use 
with functional food additives or cosmetics with targeted biolog-
ical activity poses challenges depending on the nature of the bi-
ological activity, the level of exposure from the intended uses of 
products, and on the possibility of inappropriate use conditions 
leading to excessive exposures. These two classes, i.e. functional 
foods and bioactive cosmetics, are intermediate between envi-
ronmental compounds and those marketed because of end-use 
bioactivity. 

Pharmaceuticals and pesticides pose challenges in that intrin-
sic biological activity is essential to efficacy for their intend-
ed uses. These classes of compounds can have both excessive 
on-target and unanticipated off-target biological activity. The 
discussed scheme for using NAMs for safety assessment would 
likely need to be customized for pharmaceuticals and pesticides. 

pounds (QSAR). These predicted values could, in theory, be 
used as an early estimate of bioactivity and MOE, though me-
tabolite prediction software is presently more qualitative than 
quantitative. Level 2 would include measurements of CLint and 
Fu in HT assays to estimate steady-state concentrations expected 
from continuous daily exposures. The ratio of the HED and actu-
al human exposure provides the MOE at Level 2. Currently, the 
HTS assay systems focus on clearance of the parent chemical, 
assuming that metabolism is an inactivating step for the chemi-
cal. This assumption provides a first-order estimate of risk based 
on parent chemical but leaves bioactivation via metabolism un-
addressed. Efforts are currently underway to address this gap 
by incorporation of metabolism into HTS screens, through the 
addition of hepatocytes, cellular fractions (S9) or recombinant 
enzymes (DeGroot et al., 2018). Unfortunately, the broader test-
ing community rarely accounts for activation via metabolism in 
HTS evaluation. 

The role of metabolism in toxicity will more likely be ad-
dressed in Level 3, where metabolic competence can be incor-
porated into the FFP assay designs. FFP assays conducted in 
the absence of components that ensure production of metabo-
lites allow for the assessment of the bioactivity of the test com-
pound itself, although its activity in an organism would depend 
on metabolism and bioavailability. With FFP assays at Level 3 
it becomes particularly important to account for metabolism, ei-
ther by incorporating metabolically competent preparations into 
the FFP-assay or by procuring potential metabolites and testing 
them (Beames et al., 2019). 

For Level 3 studies to be regarded as sufficient for risk assess-
ment, it may be necessary to estimate HEDs for more diverse ex-
posure conditions and for multiple routes of exposure. By com-
bining computational approaches for metabolism and pharmaco-
kinetics (IVIVE, PBPK) with in vitro readouts for the suite of 
metabolites expected in the blood for a given exposure, it should 
be possible with more advanced kinetic models to develop a 
combined estimate of potency that is predictive of in vivo expe-
rience for oral, dermal and inhalation exposures and for multi-
ple compounds. An example of assessment of parent compounds 
and active metabolites was completed in a case study looking 
at combined exposure to the multiple blood metabolites expect-
ed from exposures to both diethylhexyl phthalate and dibutyl 
phthalate. Here, in vitro assays evaluated potency of both par-
ent phthalates and active metabolites, and PBPK modeling was 
used to predict serum metabolites at expected human exposures 
(Clewell et al., submitted). 

Broad screening of possible MOAs along with Level 1 chem-
ical characterization may indicate that responses are due to di-
rect chemical reactivity or broad low-affinity non-covalent in-
teractions (Judson et al., 2016) rather than interaction with more 
specific biological targets. In these cases, no observed transcrip-
tional effect levels (NOTELs) coupled with HT-IVIVE can sup-
port decisions about MOEs. Many of the same considerations 
for Level 3 assays also apply for the more complex assays in 
Level 4. Of course, decisions based on in vivo studies would 
use pharmacokinetic (especially PBPK) modeling for assess-
ing internal doses and for selecting extrapolation methods (e.g., 
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ment approaches based on perturbation of intracellular tox-
icity pathways. PLoS One 6, e20887. doi:10.1371/journal.
pone.0020887
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col 81, 385-387. doi:10.1007/s00204-006-0175-0
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formation. J Neurosci Methods 299, 55-63. doi:10.1016/j. 
jneumeth.2017.01.014
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doi:10.1038/nprot.2016.105
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small-molecule treatments using the Cell Painting assay.  
Gigascience 6, 1-5. doi:10.1093/gigascience/giw014

Browne, P., Judson, R. S., Casey, W. M. et al. (2015). Screen-
ing chemicals for estrogen receptor bioactivity using a com-
putational model. Environ Sci Technol 49, 8804-8814. 
doi:10.1021/acs.est.5b02641

Casey, W. M., Chang, X., Allen, D. G. et al. (2018). Evaluation 
and optimization of pharmacokinetic models for in vitro to in 
vivo extrapolation of estrogenic activity for environmental 
chemicals. Environ Health Perspect 126, 97001. doi:10.1289/
ehp1655

The challenges of developing NAM-based approaches with bio-
active compounds was highlighted recently in a multi-stake-
holder meeting aiming to establish readiness criteria for assess-
ing developmental neurotoxicity (Bal-Price et al., 2018). The 
approaches with these bioactive compounds need to be fash-
ioned to capture multiple possible MOAs and encourage use 
of integrated assessment approaches (IATAs) (Tollefsen et al., 
2014) that have undergone some level of mechanistic validation 
(Hartung et al., 2013). Nevertheless, the challenges in pursuing 
NAM-based safety assessment with pesticides and pharmaceuti-
cals do not diminish the promise of their more rapid application 
with these classes of products. 

6  Summary

With the explosion of available NAMs in the past decade and 
changes in the regulatory environment afforded by various ini-
tiatives such as the Frank R. Lautenberg Chemical Safety for the 
21st Century legislation8, it is an opportune moment to assess 
how information developed using NAMs will shape approach-
es for various risk assessment decisions. In looking over the 
possibilities for their use, there is no one-size-fits-all solution; 
rather, the context of the decision needs to drive the selection of 
NAMs used in any risk assessment. This contribution organizes 
NAMs into different levels, emphasizing the types of decisions 
that can follow from completion of studies at each of the levels. 
Importantly, most risk-based decisions do not require bringing 
compounds or classes of compounds through a tiered strategy 
(i.e., going lockstep from Level 1 through Level 4). Moving 
through just one or two of these levels should allow decisions 
about relative risks of products, including absence or low degree 
of potential anticipated toxicity and low expected exposure (i.e., 
very high MOSs or MOEs). Level 2 and 3 assays should pro-
vide the necessary information for assessing MOAs, AC50s or 
LECs and, when combined with improved human exposure as-
sessment methodologies, should become preferred approaches 
for most safety assessments. The context-dependent applications 
of NAMs and the functional roadmap we describe may be useful 
in motivating additional case examples documenting the utility 
of, and confidence in, using a defined set of NAMs for specific 
decisions. In addition, the framework and roadmap can also help 
to identify where additional scientific research is needed to build 
greater confidence in various NAMs so that they can be used in 
the future with the necessary degree of confidence. 
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