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cancers, birth defects, dysfunctional immunity, reproductive and 
neurological disorders (Koual et al., 2019; Deng et al., 2019). 
With the aim of protecting human health and the environment, an 
international agreement, the Stockholm Convention on POPs1, 
was established and adopted in 2001, and is effective since May 
2004. The main objectives of this convention are to eliminate or 
restrict the production and use of chemical substances defined as 
POPs and to reduce their unintentional release. In 2007, 16 sub-
stances were added to the 12 initial POPs covered by this con-
vention2. 

Besides taking measures to regulate the production and use of 
these chemicals, it is essential to gain a better understanding of 
their biological modes of action (MoA) and pathways of toxicity 
(PoT) to understand their impact on human health (Kleensang et 

1  Introduction 

Persistent organic pollutants (POPs) are organic chemicals that 
persist for long time periods in the environment and that are re-
sistant to environmental degradation by chemical, biological and 
photolytic processes. Therefore, they are capable of long-range 
transport, bioaccumulation in human and animal tissues (e.g., ad-
ipose tissue), and bio-magnification in food chains. POPs include 
dioxin, polychlorinated biphenyls (PCBs), polybrominated di-
phenyl ethers (PBDEs), and hexabromocyclodecane (HBCD). 

Exposure to such chemicals may have significant impacts on 
human health, animals as well as on the environment. Previous 
studies (from epidemiology to in vitro studies) have shown that 
some POPs may contribute to health disorders such as certain 
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to predict yet uncharacterized links between POPs and biological 
targets that may cause toxic effects. Since, in biological systems, 
proteins do not work as individual units but more in functional 
modules made up of two or more interacting proteins, we applied 
a computational network biology approach developed previous-
ly that associates protein pairs based on chemical-protein infor-
mation (PPAN) (Audouze et al., 2010) to generate a computa-
tional systems toxicology model for persistent organic pollutants 
(POP-PPAN, POP-protein-protein association network). 

This first global model, created using large sets of toxicog-
enomics data to explore the full biological space, was bench-
marked against high confidence experimental protein-protein in-
teractions, and predictions were validated by literature search-
es. This concept has previously been applied to other areas, 
with successful experimental validation of some chemical-pro-
tein predictions (Taboureau and Audouze, 2017; Audouze et al., 
2014). The ability of the developed POP-PPAN model to predict 
new links by calculation of a binary score is demonstrated with 
several case studies, including dicofol and perfluorooctanoic acid 
(PFOA), compounds listed as POP candidates in May 2019 un-
der the Stockholm Convention on POPs.

2  Material and methods 

A workflow of the strategy to develop the computational sys-
tems toxicology model is shown in Figure 1. First, existing bi-
ological knowledge was extracted from the ToxCast and Comp-
Tox databases (Richard et al., 2016; Williams et al., 2017). Spe-
cific information on POP-protein interactions was compiled in 
order to create the network-based model POP-PPAN. Only pro-

al., 2014) and facilitate decision-making that supports regulation, 
innovation and competitiveness (Naderi et al., 2014). Further, the 
development of relevant, reliable and cost-effective methods can 
help to identify new substances with similar activities. 

New approach methodologies (NAMs) are animal-free ap-
proaches that include computational models, in vitro high 
throughput screening (HTS), omics studies (Hartung et al., 
2017), and the newly suggested 3S approach (systematic, sys-
temic, and systems biology and toxicology)(Smirnova et al., 
2018). NAMs promise to capture a better understanding of the 
MoA of chemicals in humans and may help to support chemical 
safety assessment (Andersen et al., 2019). While they may not be 
able to completely substitute experimental studies, they can help 
to prioritize further experiments and thus support the 3Rs princi-
ple (Replacement, Reduction, Refinement).

During recent years, toxicological and chemical databas-
es have expanded substantially, and the relevance of integrative 
systems toxicological methods has been recognized (Corton et 
al., 2019; Audouze and Grandjean, 2011; Audouze et al., 2013). 
The development of computational approaches for future toxici-
ty assessment has been recommended by several committees in-
cluding the U.S. EPA (Knudsen, 2013), the National Research 
Council (NRC, 2007; Krewski et al., 2010), the European Chem-
icals Agency (ECHA), the REACH legislation (Registration,  
Evaluation and Authorisation of CHemicals), and the Organiza-
tion for Economic Co-operation and Development (OECD). 

Many small molecules, including drugs and environmental 
chemicals, are known to affect multiple molecular targets and 
may deregulate proteins and, subsequently, functional pathways 
(Yildirim et al., 2007; Audouze et al., 2010). Here, we propose a 
computational model specific to the “biological space” of POPs 

Fig. 1: Workflow of the computational 
systems toxicology approach to 
predict adverse effects of suspected 
persistent organic pollutants (POPs) 
1-Model generation: Links between 
POPs from the Stockholm Convention 
list and proteins were extracted from 
the CompTox and ToxCast databases 
(in blue). The POP-PPAN model was 
created, based on a protein-protein 
association network procedure. 
2-Prediction: Known proteins linked 
to suspected POPs (in red) were 
compiled. The developed model was 
then screened for these proteins; 
binary scores were calculated between 
known (red) and uncharacterized (blue) 
proteins for the suspected POP, using a 
neighbor protein procedure. Biological 
interpretation of the results was done 
after integration and over representation 
analysis (ORA) of various datasets 
(adverse outcome pathways (AOPs), 
pathways and diseases).
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teins for which POPs are defined as “active” and with activi-
ty below their cytotoxicity threshold were included. A neighbor 
protein procedure was developed and applied, based on the bi-
nary interaction method used in high-throughput experiments to 
develop a scoring system that allows the prediction of unchar-
acterized links between 28 POP candidates (compounds listed 

or under review in the Stockholm Convention or identified from 
literature studies) and proteins. As a last step, biological infor-
mation (adverse outcome pathways (AOPs), pathways, gene on-
tology terms (GO) and diseases) was integrated to identify sta-
tistically significant connections between the chemicals and the 
biological events.

Tab. 1: Chemicals currently listed as POPs under the Stockholm convention 
For the compound classes (designated with an *), specific chemicals that are good representatives of these chemical families were 
selected, resulting in a total of 35 compounds.

Inital POPs	 CAS rn	  	 Newer POPs	 CAS rn	  

Aldrin	 309-00-2	 Insecticide	 Alpha Hexachlorocyclohexane 	 319-84-6 	 Insecticide

Chlordane	 57-74-9	 Pesticide	 Beta Hexachlorocyclohexane	 319-85-7	 Insecticide

Dichlorodiphenyltrichloroethane	 50-29-3	 Pesticide	 Chlordecone (=Kepone)	 143-50-0 	 Insecticide 
(DDT)

Dieldrin	 60-57-1	 Insecticide	 Decabromodiphenyl ether	 1163-19-5 	 Flame retardant 
			   (DecaBDE = BDE 209)

Endrin	 72-20-8	 Pesticide	 Hexabromobiphenyl  (PBB 153)	 36355-01-8 	 Flame retardant

Heptachlor	 76-44-8	 Pesticide	 Hexabromocyclododecane  	 25637-99-4	 Flame retardant

Hexachlorobenzene (HCB)	 118-74-1	 Fungicide, 	 Hexabromodiphenyl ether	 36483-60-0 
		  additive to  
		  fireworks,  
		  ammunition &  
		  synthetic rubber	  

Mirex	 2385-85-5	 Pesticide, 	 Heptabromodiphenyl ether	 68928-80-3 
		  fire retardant	  

Toxaphene	 8001-35-2 	 Pesticide	 Hexachlorobutadiene  	 87-68-3	  

Polychlorinated biohenyls (PCB)*	  	 Insulating fluid; 	 Lindane  	 58-89-9 	 Insecticide 
		  paint; additive;  
		  lubricant

– 2,2’-Dichlorobiphenyl	 13029-08-8		  Pentachlorobenzene 	 608-93-5	 Pesticide

– 2,2’,3,4’,5,5’,6-Heptachloro-1,	 52663-68-0	  	 Pentachlorophenol  	 87-86-5	  
   1’-biphenyl		   

– 2,2’,4,4’,5,5’-Hexachlorobiphenyl	 35065-27-1	  	 Perfluorooctane sulfonic acid (PFOS) 	 1763-23-1 	 Protective 
					      coating

Polychlorinated dibenzo-p-dioxins 	  	 Herbicide	 Perfluorooctane sulfonyl fluoride	 307-35-7	 Protective 
(PCDD)*			   (PFOSF)		  coating

– 2,3,7,8-Tetrachlorodibenzodioxin 	 1746-01-6	  	 Pentabromodiphenyl ether	 32534-81-9 	 Flame retardant 
   (=TCDD)

Polychlorinated dibenzofurans 	  	 Herbicide	 Tetrabromodiphenyl ether  	 40088-47-9 
(PCDF)*	  

– 2,3,4,7,8-Pentachlorodibenzofuran	 57117-31-4	  	 Polychlorinated naphthalenes* 	  	  

– 1,2,3,7,8-Pentachlorodibenzofuran	 57117-41-6 	  	 – 1-Chloronaphthalene	 90-13-1	  

 	  	  	 Endosulfan	 115-29-7	 Pesticide

 	  	  	 Short chain chlorinated parafins  
			   (SCCPs)*		   	  

 	  	  	 – chlorinated paraffins: 	 no CAS rn 			 
			      C12, 60% chlorine	 (PubChem  
				    ID:  
				    5284361)

 	  	  	 – 1,2,3,4,6,7,10-  	 1005111-	   
			      Heptachlorododecane	 47-6
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classes, i.e., pesticides, industrial chemicals, and by-products. 
The 16 new chemicals are compounds with a risk profile; they 
are categorized in the same way as the 12 initial POPs.

Prediction 
A list of 28 chemicals suspected to be POPs or semi-persistent 
organic pollutants (sPOPs) was established, based on data from 

2.1  Chemical data
Model generation 
We extracted the chemical names of the 28 POPs from the Stock-
holm Convention list (as of January 2019)3, i.e., the 12 initial 
POPs and the 16 new POPs (Tab. 1). The 12 initial POPs are 
chemicals that have been recognized as causing adverse effects 
on humans and the ecosystem. They are categorized into three 

Tab. 2: List of the 28 chemicals defined as POP candidates  
Chemicals that have proteins associated to them in the ToxCast database considering the cytotoxicity threshold are shown  
in grey. Chemicals that have more than 4 proteins associated to them, for which we performed an ORA analysis, are in bold font.  
NA, not analyzed for enrichment (proteins < 4)

Chemical name		  CAS rn	 Cytotoxicity	 Number of	 Number of 
				    proteins from 	 proteins with 
				    assays	 PPAN

 	 1,2-Dichlorobenzene	 95-50-1	 1000 µM	 7	 18
BDE-47	 2,2’,4,4’-Tetrabromodiphenyl ether	 5436-43-1	 8.36 µM	 no assays after	 NA 
				    cytotox threshold
BDE-99	 2,2’,4,4’,5-Pentabromodiphenyl ether	 60348-60-9	 6.94 µM	 no assays after	 NA 
				    cytotox threshold
BDE-153 	 2,2’,4,4’,5,5’-Hexabromodiphenyl ether	 68631-49-2	 6.66 µM	 no assays after	 NA 
				    cytotox threshold
PCB 118	 2,3’,4,4’,5-Pentachlorobiphenyl	 31508-00-6	 no data	 –	 NA
 	 2,6-Dinitrotoluene	 606-20-2	 1000 µM	 4	 NA
 	 Atrazine	 1912-24-9 	 1.25 µM	 1	 NA
	 Benzene	 71-43-2 	 1000 µM	 –	 NA
βHCH	 beta-Hexachlorocyclohexane	 319-85-7	 11.38 µM	 6	 16
Dechlorane Plus	 Bis(hexachlorocyclopentadieno)cyclooctane	 13560-89-9	 no data	 –	 NA
 	 Bisphenol-A	 80-05-7	 11.69 µM	 33	 39
 	 Chloramphenicol	 56-75-7	 1000 µM	 4	 NA
 	 Chlordimeform	 6164-98-3	 1000 µM	 1	 NA
 	 Chlorobenzene	 108-90-7 	 1000 µM	 1	 NA
 	 Diazinon	 333-41-5	 1000 µM	 30	 35
p,p’-DDE	 Dichlorodiphenyldichloroethylene 	 72-55-9	 8.74 µM	 4	 NA
 	 Dimethomorph	 110488-70-5	 5.86 µM	 13	 21
	 Methoxychlor	 72-43-5	 8.26 µM	 11	 18
 	 Naproxen	 22204-53-1	 1000 µM	 0	 NA
 	 Nitrobenzene	 98-95-3	 1000 µM	 3	 NA
 	 Parathion	 56-38-2 	 8.74 µM	 27	 33
PFHxS	 Perfluorohexane sulfonic acid	 355-46-4	 no data	 –	 NA
	 Phenanthrene	 85-01-8 	 8.76 µM	 3	 NA
	 Phenol	 108-95-2	 1000 µM	 3	 NA
	 Prometryne	 7287-19-6	 8.28 µM	 16	 25
	 Pyrene	 129-00-0	 11.46 µM	 3	 NA
	 Pyrimethanil	 53112-28-0 	 1000 µM	 34	 41
PFOA	 Perfluorooctanoic acid 	 335-67-1	 5.35 µM	 9	 17
	 Dicofol	 115-32-2	 7.89 µM	 18	 28

3 http://chm.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx 

http://chm.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx
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for the input proteins in order to determine the first-order inter-
acting proteins and the surrounding networks. This established 
a network of interacting proteins that contains the input pro-
teins and proteins from the model. The last step was to calcu-
late a binary score (binS) between each pair of proteins to rank 
and select putative proteins for the sPOPs. The developed binS 
is based on quality scoring of protein-protein interactions (PPIs) 
used in high-throughput experiments (such as yeast two-hybrid 
and protein-fragment complementation assay) to determine the 
reliability of the PPIs in large-scale datasets (Yu et al., 2008;  
Tarassov et al., 2008). A previous study has shown that the reli-
ability of interactions between proteins correlates well with the 
number of non-shared interaction proteins for each interacting 
pair (de Lichtenberg et al., 2005). A binS was calculated for each 
protein pair as follows:

binS(P1, P2) = -log10 ((NP1 +1)(NP2 +1)),

where NP1 and NP2 are the numbers of non-shared interaction 
partners for an association between proteins 1 (P1) and 2 (P2) 
(Fig. 2).

2.5  AOP-protein linkages
To characterize AOPs connected to the protein complexes, AOP 
information was integrated into the developed model using da-
ta from the CompTox and AOP-wiki databases5 (August 28, 
2019). In order to cover the biggest toxicological space possible, 

the literature, chemicals recommended for listing by the review 
committee of the Stockholm Convention, and chemicals under 
review by the Stockholm Convention (Tab. 2).

2.2  Chemical-protein associations
Chemical-protein associations were extracted from the public-
ly available CompTox and ToxCast databases (last accessed No-
vember 2019). The CompTox database (Williams et al., 2017), 
an online database maintained by the U.S. Environmental Pro-
tection Agency (EPA), contains information regarding multiple 
data types (physico-chemical properties, exposure, biological 
activities, etc.) for over 87,500 chemicals. The CompTox dash-
board was used to identify the biological assays in which the 
POPs and sPOPs are active to determine the cytotoxicity infor-
mation and respective links to AOPs. The ToxCast database is a 
U.S. EPA program that builds large collections of endpoint data 
of more than 700 high-throughput assays on chemicals to which 
humans are potentially exposed (Richard et al., 2016; Kavlock et 
al., 2012). The ToxCast dashboard was used to obtain informa-
tion about the assays extracted from the CompTox database, for 
example the protein identifiers.

For the current investigation, only proteins passing the filter-
ing process using the “cytotoxic-associated burst” region were 
retained (Judson et al., 2016) (Tab. S14), as it has been demon-
strated that compounds activate assays at concentration levels al-
so observed for cytotoxicity or cell stress (Judson et al., 2016). 
Therefore, only assay activities (AC50) that occurred at a con-
centration below the “cytotoxic-associated burst” region were 
extracted.

2.3  Generating a high-confidence protein-protein  
associations network model
The relevant POP-protein links compiled and filtered from the 
CompTox and ToxCast databases were used to create the mod-
el. The POP-PPAN model was generated based on the previously 
published protein-protein association network (PPAN) approach 
(Audouze et al., 2010). Each protein (that linked to at least one 
POP) was represented as a node, and any protein-protein pairs 
for which at least one overlapping chemical was identified were 
linked by an edge. These protein-protein associations were con-
verted into a non-redundant list of associations, i.e., if proteins 
A and B are linked, the network may have two associations A-B 
and B-A. In our approach, only one of these protein pairs was re-
tained to create the model. To reduce noise and retain only the 
most relevant associations, each protein pair was scored (oS) 
based on the chemical overlapping information, i.e., counting 
shared POPs between each protein pair.

2.4  Neighbor protein procedure
To predict novel links between sPOPs and proteins, a neighbor 
protein procedure was developed, which is a three-step proce-
dure: First, input proteins known to interact with the studied 
chemical were identified from the CompTox and ToxCast da-
tabases. Then, the developed POP-PPAN model was screened 

4 doi:10.14573/altex.1910161s
5 https://aopwiki.org/

Fig. 2: Predictions of protein associations using a binary 
score (binS) 
An input protein (in red) known to interact with a studied chemical 
is screened into the POP-PPAN model. As results, network of 
first order interacting proteins are identified (in blue), and binS 
are calculated to rank and select high-confidence interactions. 
The binS(P1, P2) is a low-confidence score, as it has six unshared 
interaction partners (all the other blue ones). The binS(P2, P3) has 
a higher confidence score as it has only one unshared interaction 
partner, i.e., P1. Therefore, proteins P2 and P3 are more likely to 
be associated in the POP space, and protein P3 is predicted as a 
potential target for the chemical of interest.

https://doi.org/10.14573/altex.1910161s
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cific biomolecular function and toxicity due to general cell stress. 
These 20 chemicals were linked to 95 unique proteins via 247 as-
sociations; chlordecone was associated with 56 proteins (via 97 
assays), and the human estrogen receptor 1 (ESR1) was associ-
ated with 10 compounds (via 29 assays) (Tab. S14). We were not 
able to retrieve bioactive records for hexachlorobenzene (HCB), 
hexabromobiphenyl (PBB 153), hexabromocyclododecane (HB-
CD), and some polybrominated diphenyl ethers (PBDEs). To 
build the model, 198 unique associations between the 20 chemi-
cals and 95 proteins were used.

3.1  Generating a high-confidence protein-protein  
association network (PPAN) 
in the biological space of POPs
Using the compiled chemical-protein information, we construct-
ed a POP-PPAN model following the procedure developed pre-
viously (Audouze et al., 2010). This procedure is based on the 
assumption that if two proteins are biologically affected by the 
same POPs (defined as shared compounds), they are likely to be 
involved in a common mechanism of action of the chemicals. 
Therefore, two biological targets are linked to each other if they 
are associated with at least one common POP. The resulting mod-
el consists of 47 associations between 18 proteins (Fig. 3, Tab. 
S24), meaning that many of the extracted proteins are not, or are 
not yet known to be, targeted by common POPs.

To highlight the most significant associations, an overlapping 
score (oS) was assigned to each pair of proteins based on the cal-
culation of overlapping POPs for each protein pair. The small-
est oS value being 3 (for example, ESR1 and ESR2 are targeted 
by the 3 POPs bHCH, chlordane, and chlordecone); the highest 
score was 8 (ESR1 and NR1I2 are targeted by endosulfan, diel-
drin, bHCH, endrin, DDT, chlordane, chlordecone, and aldrin).

In order to evaluate the POP-PPAN in the toxicological space, 
we went one step further and integrated biological events from 
the known AOPs into the protein complex network using both 
the CompTox and AOP-wiki databases. We were able to link  
7 of the 18 proteins to 12 MIEs and 7 KEs (the event ID 122 
is defined as a MIE and a KE in AOPwiki) that are involved in 
21 different AOPs, mainly ones related to reproductive dysfunc-
tions (see Tab. S34 for full names of the AOP events, and links 
to MIEs and KEs). Only one AOP (AOP 167, Early-life estro-
gen receptor activity leading to endometrial carcinoma in the 
mouse) is connected to two events (MIE 1064, Pre-pubertal in-
crease, estrogen receptor (ER) activity and KE 1065, Activation, 
estrogen receptor alpha). Four MIEs are connected to two AOPs 
each, i.e., MIE 111 (Agonism, estrogen receptor), MIE 122 (Ac-
tivation, glucocorticoid receptor), MIE 245 (Activation, PXR/
SXR), and MIE 1396 (Increased, glucocorticoid receptor activ-
ity) linked respectively to AOPs 29/52 (Estrogen receptor ag-
onism leading to reproductive dysfunction / ER agonism lead-
ing to skewed sex ratios due to altered sexual differentiation 
in males), AOPs 14/214 (Glucocorticoid Receptor Activation 
Leading to Increased Disease Susceptibility / Network of SS-
RIs (selective serotonin reuptake inhibitors), AOPs 11/60 (Pen-
tachlorophenol Acute Response by Percellome / PXR activation 
leading to hepatic steatosis), and AOPs 221/222 (Mental stress 
to depression / Mental stress to agitation). 

and since few AOPs had been validated by the date of the study, 
AOPs under development were also integrated. The AOP-wiki 
database, which is part of a knowledge structure of AOPs (Vil-
leneuve et al., 2014), is an online database based on a collabo-
rative program between the OECD and the European Commis-
sion. 

2.6  Biological enrichment of the protein networks
The protein complexes associated with the sPOPs were inde-
pendently tested for biological significance and disease associ-
ations. All proteins were converted to EntrezGeneID to facilitate 
analysis. To assess the relevance of protein -GO, -pathway and 
-disease linkages, each data source was individually tested us-
ing an over-representation analysis (ORA) based on a hypergeo-
metric distribution. A significance level of 0.05 after Benjami-
ni-Hochberg correction for multiple testing of p-values was used 
to select the most relevant associations.

Gene ontology-protein associations
Investigation in terms of biological relevance was done for each 
of the GO categories, i.e., biological process, molecular function, 
and cellular component (Ashburner et al., 2000; The Gene Ontol-
ogy Consortium, 2019). 

Pathway-protein associations
Functional pathways that may potentially be disturbed by chem-
icals were investigated using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and the Reactome database (Kanehisa et 
al., 2019; Fabregat et al., 2018) (last access November, 2019). 

Disease-protein enrichment
For disease enrichment, the DisGeNET data source, which con-
tains human protein-disease annotations, was used to identify 
disorders potentially connected with the studied chemicals (Piñe-
ro et al., 2017) (last access November, 2019). DisGenNET is the 
largest publicly available platform integrating knowledge on 
gene-disease linkages from diverse databases and published ar-
ticles. The current version (v6.0) contains 628,685 gene-disease 
associations between 17,549 genes and 24,166 diseases and ab-
normal human phenotypes. 

3  Results

Based on the CompTox and ToxCast databases, a PPAN mod-
el representative of the POP biological space was generated 
in order to predict potential toxic effects of suspected POPs 
(sPOPs). 

We extracted the 28 POPs from the Stockholm Convention 
list. Among them, five are families of compounds; therefore, we 
selected specific chemicals that are good representatives of these 
chemical families to facilitate further analysis, resulting in a total 
of 35 compounds used to create the PPAN model (Tab. 1). Protein 
information could only be retrieved for 20 chemicals when their 
cytotoxicity thresholds, as defined by Judson et al. (2016), were 
taken into consideration (Tab. S14). The cytotoxicity thresholds 
allow distinction between toxicity due to the disruption of a spe-
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an sPOP and proteins. This neighbor protein procedure was ap-
plied to all 28 sPOPs; detailed analyses are presented for dicofol 
and PFOA below.

3.2.1  Systems toxicology prediction of dicofol 
Dicofol is an organochlorine pesticide, structurally related to 
DDT, that is known to be involved in human adverse effects such 
as reproductive and neurobehavioral outcomes (Audouze and 
Grandjean, 2011). Dicofol is used as a pesticide and acaricide 
on a variety of fruits, vegetables, and field crops in many coun-
tries around the world. In May 2019, it was added to the Stock-
holm Convention on POPs due to its ability to bioaccumulate in 
living organisms and evidence of persistent criteria (half-life of 
85 days in water and of 313 days in aerobic soil) (Kelly et al., 
2007;6). Moreover, this substance has a high potential for long-
range environmental transport, for example, it has been detected 
in the Artic environment (Zhong et al., 2012). Even if the MoA 
of dicofol are not yet fully identified, adverse effects on human 
health and other living organisms have been reported, including 
effects on liver, kidney, and adrenal glands (Liu and Liu, 2012). 

ESR1 is the protein connected to the most biological events 
(6), and ESR1 and ESR2 share events, reflecting that estrogen 
receptors are actively studied targets, probably due to their endo-
crine related activities.                                                                          

3.2  Using the POP-PPAN model for chemical  
toxicity prediction
Besides revealing POP-AOP linkages, the network can be used 
to predict potential MoA for environmental chemicals. Our as-
sumption is that if two proteins are affected by two chemicals, 
these proteins are associated in the chemical space. If one of the 
proteins is further deregulated by an additional chemical, then 
this compound may also deregulate the second protein. A hy-
pothesis on how chemicals may affect human health can be based 
on a neighbor protein procedure. The binary score (binS) was de-
veloped based on the quality scoring of protein-protein interac-
tion data used to evaluate the large-scale experimental data set. 
This allows us to calculate a score for each pair of proteins, to 
scan the POP-PPAN for each of the sPOPs present in the list, and 
therefore to predict relevant high-scoring associations between 

Fig. 3: Network representation of the top interactions from the POP-PPAN model in the AOP space 
An edge is placed between two proteins (grey nodes) if they share at least one chemical (POP), and their width is proportional to the 
number of chemicals that are linked to both proteins (based on the calculated overlapping score (oS)). For example, the ESR1 and RARB 
share more POPs (oS = 6) than RARB and RARG (oS = 4). The white nodes circled in grey correspond to the biological events, and the 
white nodes circled in black to the AOPs extracted from the CompTox and AOP-wiki databases (for both, edges represent only a known 
interaction). The ID numbering is from the AOP-wiki database.

6 https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-010501_1-Nov-98.pdf   

https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-010501_1-Nov-98.pdf


Wu et al.

ALTEX 37(2), 2020       294

(Tab. S44). Most of the AOPs identified are linked to the repro-
ductive and the nervous systems. Interestingly, the predicted glu-
cocorticoid receptor NR3C1 (nuclear receptor subfamily 3 group 
C member 1) was associated with 7 AOPs, among these 3 are 
involved in male fertility dysfunctions and 3 in stress. A recent 
study from Nordkap et al. (2017) suggested a link between stress 
and testicular function that may be modulated by NR3C1, which 
is expressed in human testis (Chihara et al., 2016).

To obtain an overview of the pathways that may be dysregu-
lated by the identified proteins, an ORA was performed on the 
full protein complex related to dicofol using the KEGG and Re-
actome databases (Fig. 4, Tab. S54). The KEGG analysis reveals 
that some proteins are involved in 20 pathways, and among them 
12 were statistically significantly associated with proteins (false 
discovery rate (FDR) > 5%). The most significant KEGG path-
way was AGE-RAGE signaling pathway in diabetic complica-
tions (FDR 2.19e-04, via CCL2; COL3A1; IL1A; SERPINE1; 
THBD; VCAM1), a well-studied cascade of signaling mech-
anisms that initiates metabolic disorders such as diabetic com-
plications (Kay et al., 2016). Among the other KEGG pathways, 
several were associated with metabolism (metabolism of xenobi-
otics by cytochrome P450, FDR 5.14e-4 via CYP1A1; CYP2B6; 
CYP2C9; CYP3A4; SULT2A1; and linoleic acid metabolism, 

Dicofol may disturb biological functions, some being related to 
endocrine disruption effects (Vinggaard et al., 2000), and has 
been shown to exert generational perturbations (MacLellan et al., 
1996). The World Health Organization (WHO) classifies dico-
fol as a Level II, “moderately hazardous” pesticide; the US EPA 
classifies dicofol in Group C, as “possible human carcinogen”. 
Based on these concerns, we decided to explore the potential tox-
icity of dicofol using the developed POP-PPAN model in order 
to propose potential linkages between this substance and adverse 
health effects. 

Proteins known to be deregulated by dicofol were extracted 
from the CompTox database (as of July 17, 2019). Considering 
the cytotoxicity threshold (7.89 µM, CompTox database as of Ju-
ly 2019), we were able to identify 18 biological targets (Tab. S44). 
The POP-PPAN model was scanned with these 18 proteins, using 
the neighbor protein procedure. As a result, a protein complex of 
18 proteins was identified that includes 10 proteins predicted to 
be associated with 8 of the known proteins, meaning that 10 pro-
teins known to be linked to dicofol were not present in the pro-
tein complex (Tab. S44). The resulting protein complex for dico-
fol, which contains 33 protein-protein associations (PPAs), was 
connected to 9 biological KEs of the know targets and to 9 KEs 
of the predicted proteins, linking respectively to 9 and 12 AOPs 

Fig. 4: Protein-protein association network for Dicofol in the POP space 
Each node represents a protein, the input proteins being the ones extracted from the CompTox database, to which associated proteins 
from the POP-PPAN model were added (predicted proteins). The width of edges is according to the binary score (binS) calculated for each 
protein pair. Colored forms represent some significant pathways annotations from the KEGG and Reactome databases based on an over-
representation analysis. 
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contains 8 protein-protein associations. Only 3 AOPs (related to 
hepatic steatosis, breast cancer, and fetal testis) were identified 
via 3 targets, i.e., NR1I2, ESR1 and NR3C1. 

ORA studies were performed on the diverse data sources. 
Among the 17 proteins involved in the complex linked to PFOA, 
two were not mapped (CYP2A2 and CYP2C11), meaning that 
these proteins are not yet annotated in the databases. The results of 
the GO terms investigation showed that the 15 proteins are clas-
sified in the metabolic process category (Tab. S74). Among them, 
8 are assigned to the developmental process and 4 to growth and 
reproductive processes. The KEGG pathway enrichment analy-
sis did not reveal any significant result, meaning that no pathway 
was highly connected to PFOA. By exploring the non-significant 
associations, several metabolism-related pathways could be re-
ported as “drug metabolism” (Tab. S74). The enrichment analy-
sis with the Reactome database identified 6 significant pathways, 
the most significant being the nuclear receptor transcription path-
way (FDR of 2.40e-8 via ESR1; NR1I2; NR3C1; RARB; RORA 
and VDR). Interestingly, the circadian clock, which is part of reg-
ulatory pathways, was also identified (FDR 2.20e-2 via NR3C1; 
PPP1CA; RORA). No diseases were associated after enrichment 
of the protein complex using the DisGeNET database due to the 
small size of the protein complex. More knowledge and data in-
tegration are necessary in order to predict toxicity of such com-
pounds. Looking at other existing databases such as the Com-
parative Toxicogenomics Database (CTD), PFOA was found to 
be connected to many more proteins, but not necessarily direct-
ly, and no cytotoxicity data were found (Davis et al., 2017). For 
instance, the biological target PPARA is highly associated with 
PFOA (in CTD as of September 8, 2019), via interactions such as 
“PPARA protein inhibits the reaction PFOA results in decreased 
expression of ADH7 mRNA” (Rosen et al., 2008), which is very 
difficult to integrate into a toxicological model.

3.2.3  Global mapping of the 28 sPOPs 
in biological and disease spaces
Potential toxicities were explored using the POP-PPAN model 
for the other 26 listed sPOPs using the approach described above 
for dicofol and PFOA. First, sPOP-protein data were compiled 
from the CompTox database (as of November 2019), includ-
ing the cytotoxicity thresholds (Tab. 2). Among the 28 sPOPs, 
no data was retrieved for three compounds, i.e., PCB 118, de-
chlorane plus, and perfluorohexane sulfonic acid (PFHxS). Three 
other chemicals did not pass the cytotoxicity threshold (BDE 47, 
BDE 99 and BDE 153), and fewer than 5 proteins were identi-
fied for 11 compounds. Therefore, only 11 sPOPs could under-
go the systems toxicology analyses. Using the POP-PPAN mod-
el, first order interactor proteins were added individually to the 
11 sPOP-proteins to form protein complexes (Tab. 2), and ORA 
analyses were performed.

In the GO analyses, the main biological processes involving 
proteins from the different identified protein complexes were the 
metabolic, the developmental and the reproductive processes. 
From a pathway point of view, based on the KEGG ORA, var-

FDR 4.65e-3 via CYP2C19; CYP2C9; CYP3A4). Another sig-
nificantly associated pathway was the signaling pathway of TNF 
(tumor necrosis factor), which is a multifunctional proinflamma-
tory cytokine with effects on lipid metabolism, coagulation, insu-
lin resistance, and endothelial function (FDR 1.73e-3 via CCL2; 
CSF1; CXCL10; MMP9; VCAM1). The Reactome main path-
way analysis (Tab. S54) further indicates that 9 of the 28 proteins 
are annotated to the nuclear receptor transcription pathway (FDR 
4.22e-12, AR; ESR1; ESR2; NR1I2; NR1I3; NR3C1; RARB; 
RARG; VDR). In total, 20 significant pathways were identified 
with the Reactome ORA analysis, most of them involving the 
different cytochromes associated with dicofol.

The enrichment analysis performed with the GO terms re-
vealed that 27 of the 28 proteins are involved in metabol-
ic processes (GO:0008152) and 10 are linked to reproduction 
(GO:0000003) (all biological processes, molecular functions, 
and cellular components are shown in Tab. S54).

As a last step, disease enrichment was performed on the identi-
fied protein complex using the DisGeNET database. This allows 
us to highlight potential links between dicofol and disorders of 
the nervous system (depressive symptoms, unipolar depression, 
major depressive disorder, and brain ischemia with respective 
FDRs of 1.11e-6, 3.22e-3, 3.40e-3, and 0.03) and to the reproduc-
tive system (prostatic neoplasms, mammary neoplasms, female 
infertility, prostatic intraepithelial neoplasias, and endometri-
al neoplasm, with respective FDRs of 1.15e-5, 3.88e-4, 7.98e-4, 
1.65e-3, and 4.98e-3) (Tab. S54). Moreover, linkages were found 
for metabolic syndrome X, which is a cluster of conditions that 
occur together, leading to increased risk of heart disease, stroke, 
and type 2 diabetes as well as diabetic nephropathy, which is kid-
ney damage that results from having diabetes.   

3.2.2  Systems toxicology prediction of 
perfluorooctanoic acid (PFOA)
PFOA and its related substances are widely used in applica-
tions and consumer products such as fire-fighting foams, wet-
ting agents, and cleaners. PFOA can be found in textiles, food 
packaging, and various paints to mention but a few sources. This 
chemical is highly persistent and does not undergo any further 
abiotic or biotic degradation under environmental conditions ow-
ing to its hydrolytically stable properties. Moreover, studies have 
shown that PFOA bio-accumulates in humans (Haug et al., 2010, 
2011), and experimental and epidemiological evidence shows 
that PFOA is linked to adverse effects in humans and wildlife, 
e.g., affecting the endocrine system, leading to reproductive dis-
orders7 (Environment Canada and Health Canada, 2012). For ex-
ample, PFOA, which is quickly absorbed, can be transferred to 
the fetus through the placenta, and to infants via breast milk8. 

Potential toxicity events were explored using the POP-PPAN 
model. First, data were compiled from the CompTox database (as of 
July 18, 2019). Considering the cytotoxicity threshold (5.35 µM),  
nine proteins were extracted (Tab. S64). Using the POP-PPAN 
model, eight proteins were added, allowing the formation of a 
protein complex of 17 proteins linked to PFOA (Tab. S64) that 

7 https://www.ec.gc.ca/ese-ees/370AB133-3972-454F-A03A-F18890B58277/PFOA_EN.pdf
8 https://echa.europa.eu/documents/10162/8059e342-1092-410f-bd85-80118a5526f5

https://www.ec.gc.ca/ese-ees/370AB133-3972-454F-A03A-F18890B58277/PFOA_EN.pdf
https://echa.europa.eu/documents/10162/8059e342-1092-410f-bd85-80118a5526f5
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Seven chemicals were statistically associated with the repro-
ductive disorder female infertility (2.56e-06 < FDR < 7.98e-04). 
Some links between the reproductive system and sPOPs are al-
ready known (methoxychlor), others have not been characterized 
yet (diazinon, dimethomorph, pyrimethanil) (PubMed, as of De-
cember 9, 2019).                              

4  Discussion

The proposed computational network-based model is different 
and complementary to existing molecular modelling approach-
es such as quantitative structure activity relationships (QSAR) 
and quantitative structure property relationships (QSPR) that are 
based on structural information of chemicals. For example, effi-
cient QSAR and QSPR models have been developed to predict, 
in a quantitative manner, eco-toxicological, half-life or chemical 
properties of environmental interest that can be used for regula-

ious metabolism pathways were retrieved as statistically signif-
icant, such as linoleic acid, retinol, arachidonic acid or trypto-
phan metabolism. Within the Reactome enrichment, mainly lipid 
metabolism-related pathways were identified. The last analysis 
was performed using the DisGeNet database in order to decipher 
linkage between the sPOPs and diseases. Two major systems ap-
pear to be affected by 10 of these candidate POPs (no statistical 
significance was found for PFOA), i.e., the nervous system and 
reproductive system (Fig. 5). Such findings are well in line with 
previous studies. A recent review highlighted the pivotal role of 
lipids in neuronal functions, emphasizing the potential use of lip-
ids as biomarkers for major depressive disorders (Parekh et al., 
2017). Our model allowed us to identify which sPOPs (dicofol, 
parathion, beta-hexachlorocyclohexane (β-HCH)) may be asso-
ciated with major depressive disorders as well as other neural 
diseases. For example, to date, among the 405 available publica-
tions on dicofol, none mention a link between dicofol and major 
depression disorder (PubMed, as of December 09, 2019).

Fig. 5: Mapping of 10 POP candidates in the disease space
Each green node represents a chemical, and each grey node a disease. Linkages between chemicals and disorders were obtained by an 
over-representation analysis using the DisGeNet database on the protein complexes associated to each chemical that were identified using 
the developed POP-protein network. The width of the edges is according to statistical significance.
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With the advances in data generation and bioinformatics tech-
nology, more heterogeneous data will be publicly accessible and 
could be integrated, such as qualitative and quantitative infor-
mation and know-how from animal, clinical, epidemiological, 
exposure and biomonitoring studies, allowing the development 
of emerging approaches to help understand the effects of POPs 
on human health. The challenge will be to map and integrate all 
these data into a common platform (Pawar et al., 2019).

The use of innovative informatics technology is also useful as 
this will allow the identification, in a systemic manner, of already 
known and published information. For example, a novel tool 
based on artificial intelligence, AOP-helpFinder, uses text min-
ing to screen abstracts of published articles to identify co-men-
tioned terms, which could be a chemical and an AOP event (Car-
vaillo et al., 2019; Rugard et al., 2019). Key information can also 
be identified by integrating multiple data sources from HTS stud-
ies by using frequent itemset mining (FIM) to develop a compu-
tational predictive model (Oki and Edwards, 2016). 

5  Conclusion

To support chemical safety assessment, there is a need to develop 
and apply novel innovative and validated methods that are ani-
mal-free approaches in order to decipher the toxicological profil-
ing of chemical substances such as POPs. While in silico testing 
cannot substitute for in vitro or in vivo testing, it can help focus 
on particular substances and targets to allow priority-setting for 
more efficient testing that can greatly help early risk assessment 
of POPs.
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