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stances introduced under the Dangerous Substances Directive, 
since then with somewhat different registration requirements, 
and all new substances above 1 ton per year since entering into 
force of the REACH legislation. The legislation is organized 
by different deadlines, two of which had passed at the time of 
data analysis. The first required the registration of substances at 
tonnage levels above 1,000 tons and those with concerns as to 
carcinogenicity, mutagenicity and reproductive toxicity (CMR) 
before December 2010 and the second required the registration 

1  Introduction

The European REACH legislation (Regulation (EC) 1907/2006)1 
prescribed the largest collection of chemical toxicity data in his-
tory. REACH aims to collect comprehensive safety information 
for all substances on the European market in volumes of more 
than 1 ton per year of production or import volume. Basically, 
it includes three groups of substances, i.e., substances for which 
so far no registration was necessary on the European level, sub-

Research Article

Global Analysis of Publicly Available  
Safety Data for 9,801 Substances 
Registered under REACH from 2008-2014 
Thomas Luechtefeld 1, Alexandra Maertens 1, Daniel P. Russo 2, Costanza Rovida 4, Hao Zhu 2,3  
and Thomas Hartung 1,4

1Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Environmental  
Health Sciences, Baltimore, MD, USA; 2The Rutgers Center for Computational & Integrative Biology, Rutgers University at 
Camden, NJ, USA; 3Department of Chemistry, Rutgers University at Camden, NJ, USA; 4CAAT-Europe, University of  
Konstanz, Konstanz, Germany

Summary
The European Chemicals Agency (ECHA) warehouses the largest public dataset of in vivo and in vitro toxicity tests. In 
December 2014 this data was converted into a structured, machine readable and searchable database using natural 
language processing. It contains data for 9,801 unique substances, 3,609 unique study descriptions and 816,048 
study documents. This allows exploring toxicological data on a scale far larger than previously possible. 
Substance similarity analysis was used to determine clustering of substances for hazards by mapping to PubChem. 
Similarity was measured using PubChem 2D conformational substructure fingerprints, which were compared via the 
Tanimoto metric. Following K-Core filtration, the Blondel et al. (2008) module recognition algorithm was used to identify 
chemical modules showing clusters of substances in use within the chemical universe.
The Global Harmonized System of Classification and Labelling provides a valuable information source for hazard 
analysis. The most prevalent hazards are H317 “May cause an allergic skin reaction” with 20% and H318 “Causes 
serious eye damage” with 17% positive substances. Such prevalences obtained for all hazards here are key for the 
design of integrated testing strategies. The data allowed estimation of animal use.
The database covers about 20% of substances in the high-throughput biological assay database Tox21 (1,737 
substances) and has a 917 substance overlap with the Comparative Toxicogenomics Database (~7% of CTD). The 
biological data available in these datasets combined with ECHA in vivo endpoints have enormous modeling potential. 
A case is made that REACH should systematically open regulatory data for research purposes.
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of substances above 100 tons per year before June 2013; new 
substances were added to this, but their number is relatively 
small (Hartung, 2010). For this reason the analysis is clearly 
biased toward high-production volume substances.

While computational toxicology has recently seen the collec-
tion of several large-scale datasets (e.g., US EPA’s ToxCast), the 
data generated and collected for REACH, owing to its legisla-
tive nature, is becoming the largest collection of (eco-)toxicol-
ogy data relating to in vitro and in vivo endpoints. However, the 
REACH dossiers are currently proprietary and any workflows 
involving the public summary data in REACH depend on the 
slow and error-prone process of manual extraction. Dossiers can 
be viewed on the ECHA website2; documents are generated by 
industry via the IUCLID3 application.

Here we seek to demonstrate the extent and diversity of the 
REACH dataset – a dataset that far surpasses most existing 
datasets used for computational toxicology – and show how an 
open-access REACH program could allow a profound change 
in computational toxicology. More detailed analyses were per-
formed for ocular, oral and skin endpoints in other publications 
(Luechtefeld et al., 2016a-c, this issue).

 

2  Methods

2.1  REACH data extraction
Data was downloaded from ECHA using HtmlUnit in an iterative 
manner in order not to hinder data flow, using an open source 
Java “Gui-less browser” library (Bowler, 2002). Implementation 
of ECHA dossier download automation used the functional pro-
gramming language SCALA (Odersky et al., 2004).

A MongoDB database4 was generated from REACH data 
(Chodorow, 2013). Extracted REACH data is stored as a query- 
able collection of documents in this Mongo database. The database 
was generated by automated data extraction from ECHA dossier 
URLs via the SCALA driver ReactiveMongo (Godbillon, 2015). 

Every document is identified by a unique set of three fields: 
– ECNumber: Substance identifier (“415-890-1”) 
– type: Study description (e.g., “Exp Key Eye irritation”) 
– num: disambiguates repeat studies (1, 2, 3,…) 
The constructed database, downloaded December 17, 2014, 
contains 816,048 such documents with 9,801 unique substances 
(identified by ECNumber) and 3,609 unique study descriptions. 
Not every substance was associated with information for every 
study type.

While ECHA disseminated data is a highly structured dataset, 
much of REACH data contains natural language for quantita-
tive and categorical fields such as: number of animals, Klimisch 
score, dates, GHS hazards, dose data, response data, etc. These 
fields were mapped to numeric or categorical values via regular 
expression recognizing number words and numbers. 

To better enable categorization of studies used for animal end-
points, we enriched studies by categorizing into four groups (In-

Vitro, InVivo, ReadAcross or QSAR / PCHEM) mainly through 
analysis of keywords (i.e., “read across” in the methods data 
likely represents a ReadAcross study). The QSAR / PCHEM 
category refers to quantitative structure activity relationship 
model studies and physicochemical property studies. Due to an 
overlap in the language used by ECHA to describe these studies, 
QSAR and PCHEM are grouped together.

When applicable, guideline identifiers were extracted from 
study data. Thus all the studies matching a given OECD guide-
line can be easily queried. 

ECHA disseminated data is of a highly nested nature: admin-
istrative, reference, results, materials and methods data all have 
many subfields, and some subfields have their own subfields. 
The root fields for studies may, but do not necessarily, include: 
– ADMIN_DATA: Klimisch score, data waiving flag, etc. 
– Data source: References (authors, years, bibliographic 

sources) 
– Materials & methods: Study method details 
– Results & discussions: study result information (e.g., dose-

response data) 
– Applicant summary & conclusion: result interpretation 
Administrative data is associated with most studies in ECHA 
disseminated data, with the exception typically being a chemi-
cal report for classification and labeling. The extracted data may 
include fields for: 
– Purpose flag: Four categories for study purpose including: 

key study, supporting study, weight of evidence and disre-
garded study 

– Data waiving: Four categories to justify data waiving in-
cluding: study not technically feasible, scientifically unjus-
tified, exposure conditions and other justification. 

– Reliability: 1 (reliable without restrictions), 2 (reliable with 
restrictions), 3 (not reliable), 4 (not assignable) and other 
(Klimisch et al., 1997). 

– Study result type: Study descriptions including: estimated 
by calculation, experimental results, (Q)SAR, read-across 
from supporting substance, read-across based on group-
ing of substances, no data, experimental study planned and 
2,450 values prefixed by “other”. 

Material and methods data associated with studies submitted 
to ECHA tended to be varied in key fields. Most materials and 
methods data include: 
1. Materials: Table of substances used 
2. Organism details: name, sex, number used, etc. 
3. Guideline: Information such as OECD guideline 
4. Exposure details: dose, duration, frequency 
5. Misc: Many study specific fields 

2.2  Computational methods
Multiple programming languages, packages and database tools 
were used in the development of this project. Below we review 
the use of PubChem and other public databases, the visualiza-
tion package Gephi and the layout algorithm Force Atlas.

2 http://echa.europa.eu/
3 http://iuclid.eu/
4 https://www.mongodb.org/
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Gephi
Gephi, a network visualization tool, was used to construct and 
analyze similarity networks (Bastian et al., 2009). The code for 
Gephi is openly available6 and free to extend or modify. 

Force layout
The force layout algorithm (Jacomy et al., 2014) was used for 
generation of chemical similarity networks. The force layout 
algorithm works on graphs with nodes and edges. Nodes in a 
graph are connected by edges. The force layout algorithm treats 
nodes as charged particles that repel each other and edges as 
physical connections between these particles. The algorithm 
then positions nodes via a physics simulation. 

Term Frequency x Inverse Document Frequency (TFIDF)
TFIDF was performed on an 881-dimensional “substructure 
importance” vector by summing the occurrences of all 881 sub-
structures inside a module (module frequency) and dividing by 
their frequency in all substances (inverse chemical frequency). 
We denote this MF_ICF or “Module Frequency Inverse Chemi-
cal Frequency”. 

((Formel 3 genau hier einfügen))

Counts occurrence of structure si in all substances

((Formel 4 genau hier einfügen))

Counts occurrence of structure sj in module Mi

((Formel 5 genau hier einfügen))

Substructure importance vector for module i

((Formel 6 genau hier einfügen))

Mi and Mj similarity is measured as the cosine of the angle be-
tween both substructure importance vectors given here as the 
vector dot product over vector magnitudes. Module similarity is 
measured here as the cosine of module substructure importance 
vectors. 

Toxicity databases
We aggregated data from multiple toxicologically relevant data-
bases for analysis of biological and chemical structure data and 
its relationship with studies found in ECHA data.

ToxRefDB was accessed using the web portal given on the 
Environmental Protection Agency’s (EPA) website7. Tox21 data 
was also accessed through the EPA’s website by downloading8. 
Substances from the Comparative Toxicogenomics Database 
(CTD) were available for download9. Access to the PubChem 

PubChem Power User Gateway
PubChem’s Power User Gateway provided data on chemical 
similarity (including chemical fingerprints), chemical properties 
including molecular weight, chemical identification informa-
tion (common names, SMILES, etc.), and bioassay information 
(Cheng et al., 2014). Bioassay information includes 44,893 as-
says performed on at least one ECHA chemical and available on 
PubChem. The data provided by PubChem informed similarity 
analyses and computational models found in our related publi-
cations (Luechtefeld et al., 2016a-c, this issue).

PubChem’s 2D conformational Tanimoto similarity metric5  
was accessed through the Chemistry Development Kit (Stein-
beck et al., 2003). This similarity metric breaks substances into 
881 element binary vectors describing the presence or absence 
of substructures. Similarity between chemical vectors is calcu-
lated via Tanimoto distance. Tanimoto distance, the fraction of 
shared substructures divided by total number of substructures, 
is a number between 1 (perfectly similar) and 0 (no similarity):

((Formel 1 genau hier einfügen))

The K-Core algorithm was used to filter out substances with 
less than 30 neighbors. K-Core, an iterative algorithm, removes 
substances with the fewest neighbors first until all remaining 
substances have at least k neighbors. Previous use in protein-
protein networks and protein function analysis provide evidence 
of K-Core’s use in discovering useful network structures (Altaf-
Ul-Amine et al., 2003; Alvarez-Hamelin et al., 2005; Wuchty 
and Almaas, 2005). The parameter 30 was chosen to reduce the 
network to a manageable number of well connected modules.

Module creation
Following K-Core filtration, we used the Blondel (Blondel et 
al., 2008) module recognition algorithm to identify chemical 
modules in the K-Core reduced similarity graph. Blondel’s al-
gorithm optimizes Q, a measure of network modularity as eval-
uated by a function of vertex similarity and module assignment: 

((Formel 2 genau hier einfügen))

In the above formula:
– Aij is the similarity of chemical i and j,
– m = ∑ i,j Aij is the total sum of all similarities,
– ki = ∑ j Aij is the sum of similarities to chemical i, 
– ci is the module containing chemical i, 
– δ (ci, cj) is 1 if ci = cj and 0 otherwise. 

Q takes on values between -1 and 1. Good modularity, defined 
by stronger similarity between substances in the same modules 
versus different modules, is observed for networks with Q ≥ 0.3 
(Blondel et al., 2008).

5 https://pubchem.ncbi.nlm.nih.gov/score_matrix/score_matrix-help.html
6 https://github.com/gephi/gephi
7 http://actor.epa.gov/toxrefdb/faces/Home.jsp
8 http://epa.gov/ncct/toxcast/data.html
9 http://ctdbase.org/downloads/

Formula 1 

 

𝑇𝑇(𝐴𝐴, 𝐵𝐵) =  |𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| 

Formula 3 

 

𝐶𝐶(𝑠𝑠𝑖𝑖) = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐ℎ𝑒𝑒𝑒𝑒, 𝑠𝑠𝑖𝑖)
𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒

𝑐𝑐ℎ𝑒𝑒𝑒𝑒
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database, downloaded December 17, 2014, contains 816,048 
such documents with 9,801 unique substances (identified by 
ECNumber) and 3,609 unique study descriptions.

Out of the 509,083 studies with a purpose flag in the extract-
ed data, 13.5% (68,866) have the purpose flag “weight of evi-
dence”, 2.5% (13,051) “disregarded study”, 44.7% (227,417) 
“key study”, and 39.2% (199,749) have the purpose flag “sup-
porting study” (Fig. 1). Purpose flags can be useful for defining 
the breadth of database queries; some analyses may only have 
interest in study results directly used for classification and la-
beling and should refine their searches to studies with purpose 
flag “key study”. 

Klimisch reliability scores (Klimisch et al., 1997), which 
are defined by dossier registrants, can also be used to refine 
searches or even to compare results across reliability levels. 
Out of 539,675 studies with an assigned reliability score, 30.9% 
(153,792) have a reliability score of “1 (reliable without restric-
tion)”, 60.5% (301,649) “2 (reliable with restrictions)”, 8.6% 
(42,757) “3 (not reliable)”, and 8.3% (41,477) have a reliability 
score of “4 (not assignable)” (Fig. 2).

3.2  PubChem chemical similarity
Mapping substances from REACH to PubChem enables the anal-
ysis of chemical similarity via PubChem 2D conformational sub-
structure fingerprints (Jaworska and Nikolova-Jeliazkova, 2007; 
Cheng et al., 2014; Steinbeck et al., 2003). Substructure finger-
prints can be used in combination with the Tanimoto distance 
(number of shared substructures divided by total number of sub-
structures) to build the chemical similarity map in Figure 3. We 

and ChEMBL libraries was available through web services10  

(Bolton et al., 2008). Overlaps between databases were found 
by matching CAS Registry Numbers (CAS RN). The ChEM-
BL database stores compounds by a unique chemical identifier 
(ChEMBL ID) and does not contain CAS RN. For this overlay, 
CAS RN were converted to canonical SMILES and subsequent-
ly searched against the ChEMBL library. Because the PubChem 
and ChEMBL libraries are large and accessed via web services, 
the overlap between these databases was taken as reported by 
The European Bioinformatics Institute11.

The results of assays found in PubChem and ChEMBL for 
high production volume compounds were aggregated using 
the PubChem Power User Gateway and ChEMBL API. The 
response of a compound in a given assay was recorded inde-
pendent of the experimental outcome (e.g., active, inactive, in-
conclusive, etc.). The assays within CTD were available using 
the batch query portal within the site12. Each chemical-gene 
interaction for a queried compound was recorded as a response. 

3  Results

3.1  Extracted data overview
Efforts to determine chemical hazards such as eye irritation, 
skin sensitization and other health hazards have resulted in the 
accumulation of large amounts of privately held toxicity data. 
REACH legislation has resulted in the most extensive effort 
to systematically collect such data and outlined the necessary 
additional chemical testing that must be done. The constructed 

Fig. 1: Prevalence of purpose flags
Prevalence of the four purpose flags (disregarded 
study, key study, weight of evidence) over an extraction 
of 509,083 studies with purpose flags in REACH 
registrations 2008-2014.

10 http://astro.temple.edu/~tua87106/list_fingerprints.pdf
11 https://www.ebi.ac.uk/unichem/analysis/heatoverFullInchi
12 http://ctdbase.org/tools/batchQuery.go

Fig. 2: Klimisch score pie chart
Prevalence of different Klimisch values over 539,675 studies with assignable 
Klimisch values in REACH registrations 2008-2014. 

http://astro.temple.edu/~tua87106/list_fingerprints.pdf
https://www.ebi.ac.uk/unichem/analysis/heatoverFullInchi
http://ctdbase.org/tools/batchQuery.go
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Fig. 4: Filtering of 
chemical similarity  
graph via K-Core 
Chemical coloring via 
module membership 
(determined by Blondel 
et al. (2008) algorithm) to 
the nine global modules 
numbered 0-8. 

Fig. 3: Chemical 
similarity for 3,122 
substances mapped  
from ECHA dossiers  
to PubChem 
Minimum similarity of 
0.6. Substances without 
neighbors are filtered out. 
Gephi algorithm “Force 
Layout 2” used for layout. 
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modularity comes from visual inspection of the resulting map 
(with 9 modules given unique colors). Three large disconnected 
modules can be seen divided into visually reasonable neigh-
borhoods. Edge similarity is visualized via transparency, with 
opaque edges of higher similarity and translucent edges of low 
similarity; tightly connected modules are observed to display 
dark, strongly weighted edges. 

3.2.1  Gephi force layout visualization
Layout and visualization relies on the force layout algorithm 
implemented within an open source Java network visualization 
software called Gephi (Bastian et al., 2009). While technical de-
tails are beyond the scope of this paper, ForceAtlas distributes 
edges and nodes by simulating a physical system where nodes 
repulse each other (like charged particles) and edges attract their 
attached nodes (like springs) (Jacomy et al., 2014).

Substances are colored by their module number in Figure 4, 
and several example substances from each module are shown 
in Figure 5. While the Blondel et al. modularity algorithm pro-
vides a strong determination of global modules, it is interesting 
to consider the intra-module cohesiveness. Module cohesive-
ness, as measured by comparing similarity between substances 
in a module to substances outside a module, is the basis for 
Blondel algorithm module identification (Blondel et al., 2008). 
For example, visual inspection shows that module 8 is not a 
very cohesive module and could be broken up into several sub 
modules, and the chemical examples chosen from module 8 are 
selected from disparate submodules and do not appear strongly 
related. Module 2 showed extremely high intra-connectivity 
and structurally very similar substances – this likely reflects a 
class for which using a SAR approach could be fruitful.  

3.2.2  Module analysis
The super modules discovered via the Blondel algorithm have 
varying inter- and intra-connectedness. For instance, Module 2, 
Modules (1, 4, 6, 8) and Modules (0, 7, 5, 3) form 3 super mod-
ules with high degrees of interconnectivity.

To attempt to investigate and quantify this connectivity we 
borrowed the “Term Frequency x Inverse Document Frequency 
(TFIDF)” approach from document retrieval literature (Salton 
et al., 1975). TFIDF is often used in text-mining to assess the 
“importance” of a word by calculating its frequency in a given 
document in comparison to its typical appearance in the broader 
corpus, e.g., for a word to have a high value it must appear fre-
quently in a document, but infrequently in other documents. We 
adapted this approach for chemical substructures to examine 
which substructures were the most informative for each mod-
ule. Table 1 gives the highest ranking 10 substructures in each 
module.

Table 2 gives the similarity between each module measured in 
this way. The results help to confirm the validity of the TFIDF 
approach. Modules that appear visually related (Fig. 4) also 
have high quantitative similarity. Example substances were 
chosen from each module to help visualize the module constitu-
ency. The examples are given in Figure 5 and help to inform 
module characterization.

employed the 2D conformational fingerprint, which treats each 
fragment as 1 or 0 depending on its presence in a substance. Simi-
larity is calculated as the number of shared fragments divided by 
the total number of fragments in both molecules. Although other 
similarity measures exist for binary vectors, we chose Tanimoto 
for its simplicity (Lourenço et al., 2004). More advanced similar-
ity measures can be expected to perform more strongly than the 
baseline-setting approach used here.

Large chemical similarity graphs allow both visualization of 
the global chemical diversity of a dataset and suggest differ-
ent chemical classes within in the data. In construction of the 
chemical similarity network, filtering was performed for visu-
alization and identification of network modules. Edges between 
substances with similarity less than 0.65 were discarded.

Edge filtration and K-Core chemical filtration reduce 3,122 
original substances (mapped from REACH to PubChem) to 
1,383 and number of edges from 84,993 to 69,041. Preservation 
of one third of the original population demonstrates the well-
connectedness of the entire chemical similarity network. Figure 
4 shows the resulting filtered chemical similarity map with sub-
stances colored by modularity.

The REACH extraction network modularity Q value of 0.688 
demonstrates strong modularity. Supporting evidence of strong 

Fig. 5: Chemical examples from each module in Figure 4
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Tab. 1: Characteristic substructures for each module (Fig. 4) as determined by modular frequency x inverse  
chemical frequency (MF_ICF) 
Orange = Hierarchic Element Counts. Grey = Rings in a canonic extended smallest set of smallest rings (ESSR) ring set.  
Green = Simple atom nearest neighbors. Blue = SMARTS patterns. High MF_ICF numbers indicate stronger relationships  
between the given module and substructure. 

FP MF_ICF FP MF_ICF FP MF_ICF

Module 0  Module 1  Module 2

O=C-O-C:C 0.92 C-O-C-C=C 0.25 O=C-C-N-C 0.49

OC1C(O)CCCC1 0.88 C=C-C-O-C 0.25 ≥ 1 Fe 0.31

Oc1c(O)cccc1 0.87 O=C-C=C-[#1] 0.18 O=C-C-N 0.3

Cc1c(O)cccc1 0.84 O=C-C=C 0.16 ≥ 1 Cu 0.26

O-C:C-O-[#1] 0.83 O-C-C=C 0.15 N-C-C-N-C 0.23

O-C:C-O 0.82 C-C-O-C-C 0.13 O-C-C-N-C 0.22

O=C-C:C-O 0.8 O(~C)(~C) 0.11 N-C-C-N 0.2

O-C:C-O-C 0.8 ≥ 1 Sn 0.11 O-C-C-N 0.16

C-C:C-O-[#1] 0.77 C(-C)(-O)(=O) 0.1 ≥ 2 Na 0.16

Cc1ccc(O)cc1 0.75 C(-O)(=O) 0.09 ≥ 8 O 0.15

Module 3  Module 4  Module 5

Nc1c(Cl)cccc1 0.87 O-C-C=O 0.33 S=C-N-[#1] 0.33

NC1C(Cl)CCCC1 0.87 O=C-C-O 0.33 C-S-C:C 0.32

O=C-C-C-C-C(N)-C 0.86 O=C-C-C-O 0.24 C(~N)(:C)(:C) 0.31

C-C=N-N-C 0.85 O-C-C-C=O 0.24 Cc1ccc(N)cc1 0.31

N-N-C:C 0.84 ≥ 1 Zr 0.22 N-C-C-C:C 0.31

N(~C)(~H)(~N) 0.84 O=C-C-O-C 0.18 N-C-C:C-C 0.31

C=N-N-C 0.83 O-C-C-O-[#1] 0.18 N-C-C:C 0.3

N(~H)(~N) 0.79 ≥ 1 Pb 0.17 CC1CCC(N)CC1 0.3

N-N-C-C 0.79 O=C-C-C-C-O 0.17 C(-C)(-N)(=C) 0.3

≥ 5 unsaturated non-aromatic 0.71 O-C-C-O 0.16 N-C:C:C-C 0.29 
carbon-only ring size 6

Module 6  Module 7  Module 8

O=C-C-C-C-C-C 0.33 Cc1ccc(S)cc1 0.29 CC1CC(O)CC1 0.97

≥ 1 Sn 0.32 CC1CCC(S)CC1 0.29 CC1C(O)CCC1 0.97

O=C-C-C-C-C 0.32 N-S-C:C 0.28 ≥ 3 saturated or aromatic  
    carbon-only ring size 6 0.93

O-O 0.31 C(~C)(~H)(~P) 0.25 ≥ 2 saturated or aromatic  
    carbon-only ring size 6 0.75

O=C-C-C-C-C-C-C 0.29 Cc1ccc(C)cc1 0.24 ≥ 2 saturated or aromatic  
    carbon-only ring size 5 0.74

O-C-C-C-C-C-C-C 0.29 C(-C)(-Cl)(=O) 0.2 CC1C(C)CCC1 0.71

O=C-C-C-C 0.29 N-S 0.18 ≥ 1 saturated or aromatic  
    carbon-only ring size 5 0.71

C(-C)(-O)(=O) 0.28 C(-C)(-H)(=O) 0.18 CC1CC(C)CC1 0.69

O-C-C-C-C-C-C 0.27 C-P 0.17 CC1CC(O)CCC1 0.53

O-C-C-C-C-C 0.27 S-C:C-C 0.14 ≥ 1 saturated or aromatic  
    carbon-only ring size 6 0.48
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Annex VII., i.e., for all tonnage bands (Aulmann and Pechacek, 
2014; European Commission, 2006). As these endpoints are 
required for large numbers of substances, they should have a 
high frequency in the extracted data. Given this constraint, it is 
surprising that none of the OECD skin sensitization guidelines 
appear near the top in Table 3. Automatic curation indicates that 
out of the 9,801 extracted substances 5,551 were missing ex-
plicit in vivo key experimental skin sensitization studies, pos-
sibly due to data waiving or being substituted by read-across 
methods. Manual inspection of six online ECHA dossiers of 
substances missing key experimental in vivo sensitization test-
ing agreed with the automatically extracted results and identi-
fied the following: 
– 919-583-6: No key skin sensitization study given 
– 206-768-5: Data waiving (other justification) 
– 920-191-2: Read-Across GPMT (category approach) 
– 923-592-0: Read-Across Mouse LLNA 
 (substitute 269-646-0) 
– 482-090-5: No key skin sensitization study given 
– 273-748-0: Read-Across Mouse LLNA 
 (substitute 273-733-9) 
Analysis of the substances missing a key skin sensitization 
study indicated that out of 637 skin sensitization studies with 
data waiving, 360 are labeled as “other justification”, 255 are 
classified as “study scientifically unjustified”, and 148 as “study 
technically not feasible”. Examination of study result types as-
sociated with substances without a skin sensitization study indi-
cate 2,735 read-across from supporting substance, 2,156 read-
across based on grouping of substances, 2,144 experimental 
result, 157 “estimated by calculation”, and 128 (Q)SAR. This 
data indicates that read-across from a supporting substance is 
a more prevalent study type than read-across from categoriza-
tion for substances lacking a key experimental skin sensitization 
study. 

TG 401: Acute Oral Toxicity (OECD, 1987) is the third most 
prevalent in vivo OECD TG in the extracted database. It is also 
the second most prevalent guideline in the read-across category. 

Three super modules, modules (1, 4, 6, 8), modules (0, 7, 5, 
3), and module 2, can easily be visualized. The two bigger super 
modules, modules (1, 4, 6, 8) and modules (0, 7, 5, 3), differ 
mainly in the frequency of straight-chain and cyclic alkanes or 
aromatic rings, respectively. In the first super module, modules 
(1, 4, 6, 8), modules 1 and 6 are both long and short chain esters 
differing only in the degree of saturation of their alkyl chains, 
explaining the high amount of similarity between the modules. 
Module 8 showed highly-cyclic structures of varying ring size 
and showed intermodular similarity with module 6 due to the 
O-C-R substructures contained in the cyclic alcohols and the 
esters. Another super module, module 2, is based on glycine 
derivatives that share little similarity with all other modules. 
The slight overlap with module 4, a module with ester and ether 
derivatives, comes from the shared O=C-O-R moiety in both 
groups. The other large super module, modules (0, 7, 5, 3), also 
shows some obvious feature overlaps. Module 0 is character-
ized by a high frequency of alcohol derivatives and esters, and 
showed the highest intermodular similarity with module 7, a 
module showing a high frequency of thiols. The similarity is 
most likely owing to the frequency of aromatic cyclic structures 
with a lone substitution in both groups. Module 3 (quinone and 
glycine derivatives) and module 5 (dianilines) shared high inter-
modularity due to the shared aniline backbone. 

3.3  OECD guideline usage
ECHA studies designate OECD guideline numbers when appro-
priate. These numbers improve analysis because studies sharing 
the same OECD guideline can be expected to have similar data 
formats (materials and methods, results, etc.). Table 3 shows 
the top 3 OECD guidelines for each enriched category (InVivo, 
InVitro, QSAR / PCHEM, Read Across). It should be noted that 
since OECD guidelines are given by ECHA in natural language 
and were extracted via regular expression recognition, it is pos-
sible that some guidelines were extracted imperfectly. 

REACH requirements for in vitro skin corrosion, skin irrita-
tion, eye irritation, and bacterial gene mutation are described in 

Tab. 2: Intermodular similarity as determined by cosine of angle between module substructure importance vectors  
Substructure importance vectors are determined via analog to TFIDF, where a module’s importance for a given substructure is given  
by its frequency within the module multiplied by the inverse of its frequency in all substances. Green cells show the greatest similarity for 
the module in each row. These similarities fit well with visual inspection of Figure 4.

Module 0 1 2 3 4 5 6 7 8

0 1.00 0.26 0.02 0.24 0.18 0.19 0.26 0.36 0.18

1 0.26 1.00 0.06 0.09 0.23 0.08 0.43 0.16 0.15

2 0.02 0.06 1.00 0.06 0.10 0.05 0.10 0.04 0.02

3 0.24 0.09 0.06 1.00 0.04 0.53 0.11 0.32 0.05

4 0.18 0.23 0.10 0.04 1.00 0.02 0.43 0.04 0.22

5 0.19 0.08 0.05 0.53 0.02 1.00 0.13 0.40 0.04

6 0.26 0.43 0.10 0.11 0.43 0.13 1.00 0.20 0.30

7 0.36 0.16 0.04 0.32 0.04 0.40 0.20 1.00 0.09

8 0.18 0.15 0.02 0.05 0.22 0.04 0.30 0.09 1.00
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ally Harmonized System of Classification and Labelling. Figure 
6 identifies label frequency as reported in extracted ECHA dos-
siers. Extracted GHS values exist for 6,186 REACH substances; 
incomplete GHS extractions are due to the limitations in text 
analysis and occasional inconsistencies in data format. 

The most abundant hazard is H317 “May cause an allergic 
skin reaction” with 1,255 (20%) labelled substances, 4,317 
(70%) substances with “conclusive but not sufficient data for 
classification” (which designates that data are available indicat-
ing no need for classification), 428 (6%) substances recorded as 
“data lacking”, 26 (0.4%) substances recorded as “inconclusive” 
and 160 (2.5%) substances for which data extraction failed. The 

REACH stipulates in Annex VII that acute toxicity must be eval-
uated for all tonnage bands, thus corroborating the extraction’s 
high prevalence (Aulmann and Pechacek, 2014). Overlaps in in 
vitro and read-across OECD guidelines indicate potentially rich 
datasets for the evaluation of read-across approaches.

OECD guideline data is used extensively in other publica-
tions in this issue evaluating ocular, skin and oral toxicity in 
more depth (Luechtefeld et al., 2016a-c, this issue).  

3.4  Hazard distribution
ECHA dossier submissions contain classification and labeling 
data that can be mapped to hazard definitions given by the Glob-

Fig. 6: Frequency of different health hazards in extracted dataset of REACH registrations 2008-2014 
Hazard definitions given in Table 4 (Hazard values extracted for 6,186 substances). Green bars designate the frequency of chemicals 
labeled with the given hazard, red bars designate the frequency of chemicals not labeled with given hazard. 

Tab. 3: Top 3 OECD TG counts by category in REACH registrations 2008-2014  
Counts give total number of studies following the given OECD TG.

Category OECD TG Count Description

InVitro 471 6044 Bacterial Reverse Mutation Test (OECD, 1997)

 431 3576 in vitro Skin Corrosion: Human Skin Model Test (OECD, 2014)

 435 3287 in vitro Membrane Barrier Test Method for Skin Corrosion (OECD, 2006)

QSAR/PCHEM 105 2920 Water Solubility (OECD, 1995b)

 109 2420 Density of liquids and solids (OECD, 2012a)

 102 2322 Melting Point/Range (OECD, 1995a)

InVivo 404 8548 Acute Dermal Irritation/Corrosion (OECD, 2002)

 405 8142 Acute Eye Irritation/Corrosion (Draize) (OECD, 2012b) 

 401 7852 Acute Oral Toxicity (OECD, 1987)

ReadAcross 471 3896 Bacterial Reverse Mutation Test (OECD, 1997)

 401 2747 Acute Oral Toxicity (OECD, 1987)

 201 2679 Cyanobacteria Growth Inhibition Test (OECD, 2011)

Conclusive but not sufficient for classification 
Positive Hazard

   Percent of Chemicals
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Tab. 4: Hazard counts for extracted GHS hazards in REACH registrations 2008-2014 
6,186 substances had extractable classification and labeling data in ECHA dossiers. 

Description Hazard Labeled   Conclusive but Data lacking Inconclusive Failed 
  substances not sufficient for   extraction 
   classification 

Unstable explosive H200 6 (0.1%) 5507 (89%) 492 (8%) 22 (0.4%) 159 (2.6%)

Explosive; mass explosion hazard H201 14 (0.2%) 5499 (88.9%) 492 (8%) 22 (0.4%) 159 (2.6%)

Fire or projection hazard H204 16 (0.3%) 5497 (88.9%) 492 (8%) 22 (0.4%) 159 (2.6%)

Extremely flammable gas H220 41 (0.7%) 4841 (78.3%) 1122 (18.1%) 23 (0.4%) 159 (2.6%)

Flammable gas H221 2 (0%) 4880 (78.9%) 1122 (18.1%) 23 (0.4%) 159 (2.6%)

Extremely flammable liquid and vapour H224 90 (1.5%) 5047 (81.6%) 877 (14.2%) 13 (0.2%) 159 (2.6%)

Highly flammable liquid and vapour H225 268 (4.3%) 4869 (78.7%) 877 (14.2%) 13 (0.2%) 159 (2.6%)

Flammable liquid and vapour H226 401 (6.5%) 4741 (76.6%) 872 (14.1%) 13 (0.2%) 159 (2.6%)

Combustible liquid H227 2 (0%) 5136 (83%) 876 (14.2%) 13 (0.2%) 159 (2.6%)

Flammable solid H228 68 (1.1%) 5277 (85.3%) 659 (10.7%) 23 (0.4%) 159 (2.6%)

May react explosively even in the absence H230 2 (0%) 4880 (78.9%) 1122 (18.1%) 23 (0.4%) 159 (2.6%) 
of air 

Heating may cause a fire or explosion H241 4 (0.1%) 4879 (78.9%) 1126 (18.2%) 17 (0.3%) 160 (2.6%)

Heating may cause a fire H242 55 (0.9%) 4831 (78.1%) 1123 (18.2%) 17 (0.3%) 160 (2.6%)

Catches fire spontaneously if exposed H250 13 (0.2%) 5077 (82.1%) 918 (14.8%) 19 (0.3%) 159 (2.6%) 
to air

Self-heating; may catch fire H251 13 (0.2%) 4886 (79%) 1109 (17.9%) 19 (0.3%) 159 (2.6%)

Self-heating in large quantities;  H252 8 (0.1%) 4892 (79.1%) 1108 (17.9%) 19 (0.3%) 159 (2.6%) 
may catch fire

In contact with water releases flammable H260 15 (0.2%) 5076 (82.1%) 914 (14.8%) 22 (0.4%) 159 (2.6%) 
gases which may ignite spontaneously

In contact with water releases flammable H261 8 (0.1%) 5083 (82.2%) 914 (14.8%) 22 (0.4%) 159 (2.6%) 
gas

May cause or intensify fire; oxidizer H270 3 (0%) 4862 (78.6%) 1139 (18.4%) 23 (0.4%) 159 (2.6%)

May cause fire or explosion; strong oxidizer H271 15 (0.2%) 5262 (85.1%) 732 (11.8%) 18 (0.3%) 159 (2.6%)

May intensify fire; oxidizer H272 41 (0.7%) 5236 (84.6%) 732 (11.8%) 18 (0.3%) 159 (2.6%)

Contains gas under pressure; may H280 60 (1%) 4784 (77.3%) 1161 (18.8%) 22 (0.4%) 159 (2.6%) 
explode if heated

Contains refrigerated gas; may cause H281 1 (0%) 4843 (78.3%) 1161 (18.8%) 22 (0.4%) 159 (2.6%) 
cryogenic burns or injury

May be corrosive to metals H290 125 (2%) 3722 (60.2%) 2155 (34.8%) 25 (0.4%) 159 (2.6%)

Fatal if swallowed H300 33 (0.5%) 5709 (92.3%) 273 (4.4%) 12 (0.2%) 159 (2.6%)

Toxic if swallowed H301 225 (3.6%) 5518 (89.2%) 272 (4.4%) 12 (0.2%) 159 (2.6%)

Harmful if swallowed H302 1072 (17.3%) 4677 (75.6%) 266 (4.3%) 12 (0.2%) 159 (2.6%)

May be harmful if swallowed H303 23 (0.4%) 5720 (92.5%) 272 (4.4%) 12 (0.2%) 159 (2.6%)

May be fatal if swallowed and enters H304 453 (7.3%) 2913 (47.1%) 2626 (42.5%) 35 (0.6%) 159 (2.6%) 
airways

May be harmful if swallowed and enters H305 3 (0%) 3361 (54.3%) 2628 (42.5%) 35 (0.6%) 159 (2.6%) 
airways

Fatal in contact with skin H310 30 (0.5%) 4905 (79.3%) 1074 (17.4%) 18 (0.3%) 159 (2.6%)

Toxic in contact with skin H311 164 (2.7%) 4774 (77.2%) 1071 (17.3%) 18 (0.3%) 159 (2.6%)
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Harmful in contact with skin H312 209 (3.4%) 4728 (76.4%) 1072 (17.3%) 18 (0.3%) 159 (2.6%)

May be harmful in contact with skin H313 9 (0.1%) 4924 (79.6%) 1076 (17.4%) 18 (0.3%) 159 (2.6%)

Causes severe skin burns and eye damage H314 615 (9.9%) 5105 (82.5%) 290 (4.7%) 16 (0.3%) 160 (2.6%)

Causes skin irritation H315 1010 (16.3%) 4714 (76.2%) 287 (4.6%) 15 (0.2%) 160 (2.6%)

Causes mild skin irritation H316 10 (0.2%) 5706 (92.2%) 294 (4.8%) 16 (0.3%) 160 (2.6%)

May cause an allergic skin reaction H317 1255 (20.3%) 4317 (69.8%) 428 (6.9%) 26 (0.4%) 160 (2.6%)

Causes serious eye damage H318 1087 (17.6%) 4574 (73.9%) 352 (5.7%) 14 (0.2%) 159 (2.6%)

Causes serious eye irritation H319 885 (14.3%) 4762 (77%) 366 (5.9%) 14 (0.2%) 159 (2.6%)

Causes eye irritation H320 44 (0.7%) 5592 (90.4%) 377 (6.1%) 14 (0.2%) 159 (2.6%)

Fatal if inhaled H330 119 (1.9%) 3385 (54.7%) 2480 (40.1%) 43 (0.7%) 159 (2.6%)

Toxic if inhaled H331 188 (3%) 3314 (53.6%) 2482 (40.1%) 43 (0.7%) 159 (2.6%)

Harmful if inhaled H332 446 (7.2%) 3064 (49.5%) 2474 (40%) 43 (0.7%) 159 (2.6%)

May cause allergy or asthma symptoms H334 127 (2.1%) 2054 (33.2%) 3825 (61.8%) 21 (0.3%) 159 (2.6%) 
or breathing difficulties if inhaled

May cause respiratory irritation H335 377 (6.1%) 4156 (67.2%) 1409 (22.8%) 35 (0.6%) 209 (3.4%)

May cause drowsiness or dizziness H336 207 (3.3%) 4315 (69.8%) 1415 (22.9%) 35 (0.6%) 214 (3.5%)

May cause genetic defects H340 143 (2.3%) 4983 (80.6%) 770 (12.4%) 80 (1.3%) 210 (3.4%)

Suspected of causing genetic defects H341 126 (2%) 5005 (80.9%) 766 (12.4%) 79 (1.3%) 210 (3.4%)

May cause cancer H350 342 (5.5%) 2260 (36.5%) 3373 (54.5%) 24 (0.4%) 187 (3%)

Suspected of causing cancer H351 143 (2.3%) 2460 (39.8%) 3372 (54.5%) 24 (0.4%) 187 (3%)

May damage fertility or the unborn child H360 191 (3.1%) 3854 (62.3%) 1927 (31.2%) 54 (0.9%) 160 (2.6%)

Suspected of damaging fertility or H361 370 (6%) 3677 (59.4%) 1925 (31.1%) 54 (0.9%) 160 (2.6%) 
the unborn child

May cause harm to breast-fed children H362 9 (0.1%) 2132 (34.5%) 3865 (62.5%) 21 (0.3%) 159 (2.6%)

Causes damage to organs H370 32 (0.5%) 4476 (72.4%) 1414 (22.9%) 35 (0.6%) 229 (3.7%)

May cause damage to organs H371 24 (0.4%) 4485 (72.5%) 1415 (22.9%) 35 (0.6%) 227 (3.7%)

Causes damage to organs through H372 258 (4.2%) 4466 (72.2%) 1216 (19.7%) 44 (0.7%) 202 (3.3%) 
prolonged or repeated exposure

May cause damage to organs through H373 453 (7.3%) 4277 (69.1%) 1212 (19.6%) 44 (0.7%) 200 (3.2%) 
prolonged or repeated exposure

Very toxic to aquatic life H400 805 (13%) 4258 (68.8%) 938 (15.2%) 16 (0.3%) 169 (2.7%)

Toxic to aquatic life H401 31 (0.5%) 4893 (79.1%) 1078 (17.4%) 16 (0.3%) 168 (2.7%)

Harmful to aquatic life H402 33 (0.5%) 4888 (79%) 1080 (17.5%) 16 (0.3%) 169 (2.7%)

Very toxic to aquatic life with long-lasting H410 715 (11.6%) 4840 (78.2%) 455 (7.4%) 16 (0.3%) 160 (2.6%) 
effects

Toxic to aquatic life with long-lasting effects H411 870 (14.1%) 4649 (75.2%) 489 (7.9%) 16 (0.3%) 162 (2.6%)

Harmful to aquatic life with long-lasting H412 615 (9.9%) 4904 (79.3%) 489 (7.9%) 16 (0.3%) 162 (2.6%) 
effects

May cause long-lasting harmful effects H413 276 (4.5%) 5240 (84.7%) 492 (8%) 16 (0.3%) 162 (2.6%) 
to aquatic life

Harms public health and the environment  H420 3 (0%) 2706 (43.7%) 3272 (52.9%) 8 (0.1%) 197 (3.2%) 
by destroying ozone in the upper  
atmosphere

Description Hazard Labeled   Conclusive but Data lacking Inconclusive Failed 
  substances not sufficient for   extraction 
   classification 
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3.6  Data overlap
To determine the relevance of ECHA extracted data in the 
context of current toxicological databases, the 9,801 extracted 
REACH compounds were searched against three well-known 
toxicity datasets: Toxicity Reference Database (ToxRefDB), 
Toxicity Testing in the 21st Century (Tox21) and Comparative 
Toxicogenomics Database (CTD). 

ToxRefDB is a collection of 30 years of animal toxicity test-
ing data in the US Environmental Protection Agency (US EPA) 
and contains 474 compounds (Martin et al., 2009). 

Tox21 is a collaborative screening effort among EPA, the 
National Institute of Environmental Health Science (NIEHS), 
National Toxicology Program (NTP), the National Center for 
Advancing Translational Sciences (NCATS), and the Food 
and Drug Administration (FDA) (Tice et al., 2013): Phase I of 
Tox21 investigates approximately 2,800 compounds in over 
75 bioassays. Phase II expanded the chemical library to over 
10,000 and seeks to test these compounds in approximately 40 
assays over the coming years (Attene-Ramos et al., 2013). This 
target chemical library mainly consists of compounds of envi-
ronmental interest (e.g., high production volume compounds, 
pesticides, drugs, etc.).

The CTD consists of 13,446 compounds with toxicogenomics 
data (e.g., drug molecules). This public database aims to explore 
how environmental exposures impact human health via manu-
ally curated chemical-gene, chemical-protein, chemical-disease 
and gene-disease interactions. 

REACH compounds have the largest overlap (1,737 com-
pounds) with Tox21 compounds, possibly reflecting the simi-
lar goals of Tox21 and REACH (Tab. 5). The overlap between 
REACH and CTD is much lower. The extracted REACH sub-
stances cover 11% of Toxcast, 20% of Tox21 and 7% of CTD. 

high frequency of this hazard, the relatively well-established 
Adverse Outcome Pathway (AOP), as well as the relative ease 
of using in vitro tests for various steps of the pathway make it an 
ideal test case for further research into Integrated Testing Strate-
gies (Hartung et al., 2013). For a more detailed analysis of the 
skin sensitization data see Luechtefeld et al. (2016c, this issue).

H318 “Causes serious eye damage” is the second most fre-
quent endpoint with 1,087 (17%) positive substances, 4,574 
(74%) “conclusive but not sufficient”, 352 (5.7%) “data lack-
ing”, 14 (0.02%) “inconclusive” and 159 (2.5%), for which data 
extraction failed. We examine ocular toxicity in more detail in 
Luechtefeld et al. (2016b, this issue).

The information on hazard frequencies in Table 4 can be used 
as estimates for hazard prevalence to anchor testing strategies 
(Hoffmann and Hartung, 2005).  

3.5  Animal use
The number of animals used in REACH data sources can be 
extracted simply from Materials and Methods data. In a given 
study the number of animals used is given in natural text, e.g., 
“5 males and females”. We wrote heuristics for extracting ani-
mal counts from these natural language descriptions. Addition-
ally, due to lack of reference identifiers, the same reference may 
be counted multiple times when it is used for different ECHA 
studies, thus inflating the estimates. 

We can evaluate use of animals in reference studies over time 
by first assessing the distribution of study start dates (Fig. 7) 
and then finding the distribution of number of animals used in 
each year (Fig. 8). We used simple heuristics to estimate animal 
counts from natural language. When comparing Figure 7 and 
8 it appears that the number of animals used per reference was 
lower in the late 2000s relative to the 1990s. 

Fig. 7: Number of sources from each year
Possible double counting due to absence of reference identifiers in 
ECHA dossiers.

Fig. 8: Number of animals used in data sources from 
referenced year in REACH registrations 2008-2014  
Possible double counting due to missing reference identifiers in 
ECHA dossiers. 
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navashe et al., 2009; Patlewicz et al., 2013, 2015). Improve-
ment of computational models relies on accessibility of training 
and testing data. The open data nature of Tox21, ToxRefDB, 
PubChem, CTD and ChEMBL promotes numerous publications 
and development of ever improving statistical and expert mod-
els. Overlaps of REACH with existing databases given in Table 
5 further demonstrate the value of the extracted data: ToxRefDB 
(a commonly used animal testing database) covers only 474 
substances with multiple animal endpoints while the extraction 
in this publication covers over 9800. 

5  Conclusion

The extracted ECHA dataset first of all allows us to better un-
derstand the landscape of substances for a given hazard: Which 
parts of the chemical universe are associated with a given haz-
ard? How concordant and reproducible are different methods? 
With the limited information of the New Chemicals Database 
(NCD) of the EU (which is not publicly available), it has pre-
viously been shown how much useful information can be ex-
tracted from such databases using the example of skin irritation 
(Hoffmann et al., 2005). Our parallel articles in this ALTEX is-
sue address the most prevalent human hazards, i.e., oral toxicity, 
skin sensitization and eye irritation. 

One goal of this publication is to underscore the impor-
tance of structuring data in a machine-readable format – 
while REACH in many ways has a workable ontology for 
classifying endpoints, the toxicological value of REACH da-
ta could be realized by using formal data structures for results 
extracted from the main guideline-compliant studies, espe-
cially for the key hazards of eye irritation and skin sensitiza-
tion, which easily lend themselves to this approach. Eventu-
ally the development of ontologies (e.g., OpenTox, ToxML) 
to classify studies by type and study results and outcomes for 
more complicated endpoints, such as developmental toxicity, 
will greatly aid the ability of toxicologists to assemble large 
datasets.

Furthermore, it is our hope that our arguments and referenced 
articles will motivate the systematic and more comprehensive 
publication of REACH data to the general public. An open 
REACH platform would allow third parties to investigate con-
cepts such as OECD TG use and quality assessment, testing re-

The biological data available in these datasets combined with 
in vivo endpoints extractable from REACH represent a strong 
modeling potential.

PubChem, a large chemical database hosted by the National 
Center for Biotechnology Information (NCBI) and the National 
Institutes of Health (NIH) (Cheng et al., 2014), currently con-
tains 68 million compounds tested in over 1 million bioassays, 
including massive amounts of toxicity data. It is not surprising 
that 4,955 of the REACH substances are found here. ChEMBL, 
established by the European Bioinformatics Institute, is part of 
the European Molecular Biology Laboratory (EMBL). ChEM-
BL is a chemical-bioassay database manually curated from 
peer-reviewed publications consisting mostly of drug-like com-
pounds (Gaulton et al., 2011), but 2,080 of the REACH chemi-
cals are also represented here. Both repositories are thus very 
rich for further analysis. 

4  Discussion

Massive amounts of toxicity data have been generated in the 
past decade and various data repositories have been developed 
to share data with research communities. REACH is the larg-
est of these efforts with expected multi-billion Euros of testing 
costs (Hartung and Rovida, 2009; Rovida and Hartung, 2009), 
but so far its full potential has not been realized. A searchable 
repository of the publically available REACH data represents 
an enormous resource for toxicology, particularly computation-
al approaches requiring large datasets. 

REACH data can be used to inform risk assessments, develop 
computational models, develop and evaluate test strategies, and 
improve / store toxicological knowledge on a per study basis. 
The extracted data is far from perfect as the non-standardized 
presentation of data in many narrative fields is prone to errors 
when extracted automatically with search engines. While the 
primary objective of REACH submissions is not data extrac-
tion and mining, this publication and others in this issue (Luech-
tefeld et al., 2016a-c) demonstrate the potential value of ECHA 
reports submitted for REACH. Further curation, as well with 
data from registrations occurring post December 2014, would 
be extremely helpful.

Ultimately, reduction of animal testing will depend in a large 
part on the development of in silico models such as QSAR (Zvi-

Tab. 5: Number of substances shared between pairs of toxicological/chemical databases   
REACH refers only to substances extracted for this publication.

 REACH ToxRefDB Tox21 CTD ChEMBl PubChem

REACH 9,801     

ToxRefDB 51 474    

Tox21 1,737 375 8,599   

CTD 917 230 2,511 13,446  

ChEMBl 2,080 339 6,001 5,490 1,715,667 

PubChem 4,955 465 8,065 7,729 1,394,860 68,369,258
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dundancies, and hazard distributions, and could automate many 
research tasks. 

As we have demonstrated, REACH would provide computa-
tional toxicology with an unparalleled dataset for QSAR devel-
opment, in vitro to in vivo extrapolation, and computational toxi-
cology approaches. Making REACH open and available to the 
community should be a priority for both scientists and legislators.
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