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that encourage the use of alternative test methods for hazard and 
risk assessment applications, such as read-across, prioritization, 
and screening (ECHA, 2016; US EPA, 2018; Taylor et al., 2014). 
Novel analytical and in vitro data, now commonly referred to as 
new approach methodologies (NAMs), are being used in support 
of regulatory decisions (Kavlock et al., 2018; Paul Friedman et al., 
2020); however, concerns about the limitations of NAMs in deci-
sion-making also have been voiced (Gocht et al., 2015; Berggren 
et al., 2015). The US Environmental Protection Agency (EPA) is 
developing a strategic plan to reduce the use of vertebrate animals 
in testing chemical substances and promote the development of al-
ternative test methods; the goal is to eliminate animal testing from 
regulatory requirements for pesticides and industrial chemicals by 
2035 (US EPA, 2019). 

The efforts to expand the portfolio of NAMs and test their  
utility in decision-making are most prominent in the European 

1  Introduction

Most regulatory frameworks for evaluating the safety of drugs and 
chemicals include a requirement for studies in animals; however, 
because of the low throughput and high cost of these studies, con-
siderable toxicological information gaps exist for most chemicals 
in commerce (Locke and Myers, 2011; Taylor et al., 2014; Kav-
lock et al., 2018). The development of novel non-animal models, 
both cell-based and computational approaches, to replace animals 
as the default option in chemical safety evaluation was stimulated 
by ethical and political pressures (Taylor, 2018), advances in bio-
medical research and technology, and the need to address the po-
tential hazards from thousands of chemicals in commerce and the 
environment (NRC, 2007). In the United States and in the Euro-
pean Union, recent changes to the laws that govern the evaluation 
of commodity and environmental chemicals include provisions 
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Abstract
The lack of adequate toxicity data for the vast majority of chemicals in the environment has spurred the development 
of new approach methodologies (NAMs). This study aimed to develop a practical high-throughput in vitro model for 
rapidly evaluating potential hazards of chemicals using a small number of human cells. Forty-two compounds were tested 
using human induced pluripotent stem cell (iPSC)-derived cells (hepatocytes, neurons, cardiomyocytes and endothelial 
cells), and a primary endothelial cell line. Both functional and cytotoxicity endpoints were evaluated using high-content 
imaging. Concentration-response was used to derive points-of-departure (POD). PODs were integrated with ToxPi and 
used as surrogate NAM-based PODs for risk characterization. We found chemical class-specific similarity among the 
chemicals tested; metal salts exhibited the highest overall bioactivity. We also observed cell type-specific patterns among 
classes of chemicals, indicating the ability of the proposed in vitro model to recognize effects on different cell types. Com-
pared to available NAM datasets, such as ToxCast/Tox21 and chemical structure-based descriptors, we found that the 
data from the five-cell-type model was as good or even better in assigning compounds to chemical classes. Additionally, 
the PODs from this model performed well as a conservative surrogate for regulatory in vivo PODs and were less likely 
to underestimate in vivo potency and potential risk compared to other NAM-based PODs. In summary, we demonstrate 
the potential of this in vitro screening model to inform rapid risk-based decision-making through ranking, clustering, and 
assessment of both hazard and risks of diverse environmental chemicals.
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ing compounds to chemical classes, as compared to either data 
from large-scale chemical screening programs or chemical struc-
ture-based descriptors. In addition, the quantitative data from this 
model can serve as a conservative surrogate for regulatory deci-
sion-making in rapid hazard evaluation scenarios.

2  Materials and methods

Chemicals and biologicals
For our in vitro models, we selected four organ/tissue types from 
which iPSC-derived cells are available from a commercial vendor. 
iCell hepatocytes 2.0 (Catalogue # C1023), neurons (Catalogue 
# C1008), cardiomyocytes (Catalogue # CMC-100-010-001) 
and endothelial cells (Catalogue # C1023), including cell-specif-
ic media and supplements, were from Fujifilm Cellular Dynam-
ics (Madison, WI). Pooled human umbilical vein endothelial cells 
(HUVECs) in EGM-2 medium (Catalogue # CC-2519A) and the 
EGM™-2 BulletKits™ (Catalogue # CC-3162) were from Lonza 
(Walkersville, MD). We selected these cell types because many of 
the chemicals have been shown to be associated with hepatotoxic-
ity, neurotoxicity, cardiotoxicity, and vascular toxicity. Figure S11  
shows the number of published reports for each type of toxicity 
as identified in a literature review (results are available through 
the Health Assessment Workspace Collaborative (Shapiro et al., 
2018) web portal (see web links in the legend to Fig. S11)). The 
rationale for cell line selection, metabolic competency of the iCell 
hepatocyte model, and the justification for selected phenotypes in 
each cell type are detailed elsewhere (Grimm et al., 2015; Iwata et 
al., 2017; Sirenko et al., 2014a,b).

Additional reagents used were as follows: CellTiter-Glo® re-
agent was from Promega (Madison, WI, USA). EarlyTox™ Car-
diotoxicity Kits (Part# R8211) were from Molecular Devices (San 
Jose, CA, USA). RPMI 1640 medium, B-27 medium supplement, 
gentamicin (50 mg/mL), Calcein AM Green, MitoTracker Or-
ange reagent, Hoechst 33342, human fibronectin, and Geltrex™ 
LDEV-Free Reduced Growth Factor Basement Membrane were 
all from Life Technologies (Grand Island, NY, USA). Recombi-
nant human VEGF was provided by R&D Systems (Minneapo-
lis, MN, USA). Fetal bovine serum (FBS) and Medium 199 were 
purchased from Fisher Scientific (Waltham, MA, USA). Laminin 
(Catalogue #L2020-1MG, from Engelbreth-Holm-Swarm mu-
rine sarcoma basement membrane) was from Sigma-Aldrich (St. 
Louis, MO). The authors acknowledge that FBS-free or synthetic 
FBS-based culture conditions (van der Valk et al., 2018), as well 
as alternative synthetic basement membrane materials (Nguyen et 
al., 2017) should be utilized to replace animal-derived products, 
where appropriate.

The Agency for Toxic Substances and Disease Registry  
(ATSDR) maintains a priority list of hazardous substances/
chemicals2 that are frequently detected at the US National Pri-
ority List (NPL) sites, also known as “Superfund” sites, and are 
known human health hazards. From the list of over 300 com-

Union (Daston et al., 2015; Berggren et al., 2015; Desprez et al., 
2018; Escher et al., 2019) and the United States (Thomas et al., 
2018; Judson et al., 2010a; Kavlock et al., 2018). Data on thou-
sands of chemicals that have been tested in hundreds of lower or-
ganism, cell- or molecular-based assays (Kleinstreuer et al., 2014) 
are publicly available (Williams et al., 2017). These data are used 
to derive quantitative hazard predictions (Bell et al., 2018; Wet-
more, 2015; Pearce et al., 2017; Wambaugh et al., 2015), to address 
potential data gaps (Chiu et al., 2018; Guyton et al., 2018), and to 
derive estimates of human health risk when combined with human 
exposure data or estimates (Sipes et al., 2017; Sirenko et al., 2017; 
Rotroff et al., 2010; Paul Friedman et al., 2020). 

Notwithstanding recent advances in the development of NAMs 
and publications of a number of case studies on their use for deci-
sion-making, many stakeholders, both the industry and the regu-
lators, remain unsure as to what assay(s) should be used to gather 
data on chemicals or mixtures not currently in ToxCast/Tox21 pro-
grams. A traditional approach to development of cell-based mod-
els for animal study replacement is to focus on one organ/tissue 
of concern to the toxicologists, such as the liver (Soldatow et al., 
2013), central nervous system (Schmidt et al., 2017), kidney (Su et 
al., 2016), lung (Lee et al., 2018) or heart (Blanchette et al., 2019). 
Examples of a successful effort to create targeted sets of in vitro 
assays for a particular decision context are proposals to replace rat 
uterotrophic (Browne et al., 2015) and Hershberger (Kleinstreuer 
et al., 2018) assays. In addition, some decision contexts require 
rapid evaluation of potential chemical hazards in a limited num-
ber of assays, such as in response to chemical spills (Judson et 
al., 2010b; NTP, 2016). Still, little consensus exists with respect 
to which assays are readily accessible, whether they are reproduc-
ible, and how the data shall be analyzed and interpreted.

It also has been reasoned that the pace of transition from an-
imal data to NAMs will depend on the pace at which these new 
models are optimized to reflect the biology of humans, rather 
than that of animals (Herrmann et al., 2019). Cancer cell lines, 
primary cells isolated from non-transplant grade donor tissues, 
and induced pluripotent stem cell (iPSC)-derived cells are cur-
rent options for studies of human biology in vitro. Of these choic-
es, iPSC-derived organotypic cells are the most physiological 
and reproducible cell-based model for animal replacement (An-
son et al., 2011); however, little toxicological data is available in 
iPSCs as they are not yet part of ToxCast/Tox21.

In this study, we aimed to conduct an initial test of the perfor-
mance of a compendium of human in vitro models that comprise 
a small but diverse array of tissues of interest using a representa-
tive set of chemicals with known regulatory toxicity values that 
exemplify major distinct classes of contaminants found on Su-
perfund sites. Specifically, we hypothesized that these cell-based 
assays can be used for rapid hazard evaluation and thus represent 
a sensible targeted set of alternative methods for NAM-enabled 
rapid risk assessment where timely decisions are needed but reg-
ulatory toxicity values are lacking. We show that the data from 
the five-cell-type model was as good or even better in assign-

1 doi:10.14573/altex.2002291s
2 http://www.atsdr.cdc.gov/spl
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Tab. 1: Superfund priority chemicals used in this study

ATSDR Chemical class	 Chemical name	 CAS number	 Chemical formula	 ATSDR rank 
				    (2017)

Inorganic substances	 Lead nitrate	 10099-74-8	 PbCl2	 2

	 Mercuric chloride	 7487-94-7	 HgCl2	 3

	 Cadmium chloride	 10108-64-2	 CdCl2	 7

	 Potassium chromate (VI)	 7789-00-6	 K2CrO4	 17

	 Cobalt chloride	 7646-79-9	 CoCl2	 51

	 Nickel chloride	 7718-54-9	 NiCl2	 57

	 Zinc chloride	 7646-85-7	 ZnCl2	 75

Polycyclic aromatic	 Benzo(b)fluoranthene	 205-99-2	 C20H12	 10
hydrocarbons (PAHs)	 Benzo(a)anthracene	 56-55-3	 C18H12	 38

	 Naphthalene	 91-20-3	 C10H8	 81

	 Fluoranthene	 206-44-0	 C16H10	 138

	 Acenaphthene	 83-32-9	 C12H10	 171

Pesticides	 p,p’-DDT	 50-29-3	 C14H9Cl5	 13

	 Dieldrin	 60-57-1	 C12H8Cl6O	 18

	 Aldrin	 309-00-2	 C12H8Cl6	 25

	 p,p’-DDD	 72-54-8	 C14H10Cl4	 26

	 Heptachlor	 76-44-8	 C10H5Cl7	 28

	 Lindane	 58-89-9	 C6H6Cl6	 34

	 Disulfoton	 298-04-4	 C8H19O2PS3	 37

	 Endrin	 72-20-8	 C12H8Cl6O	 40

	 Diazinon	 333-41-5	 C12H21N2O3PS	 41

	 Endosulfan	 115-29-7	 C9H6Cl6O3S	 44

	 Heptachlor epoxide	 1024-57-3	 C10H5Cl7O	 47

	 o,p’-DDT	 789-02-6	 C14H9Cl5	 53

	 Methoxychlor	 72-43-5	 C16H15Cl3O2	 55

	 Chlorpyrifos	 2921-88-2	 C9H11Cl3NO3PS	 64

	 2,4-dinitrophenol	 51-28-5	 C6H4N2O5	 89

	 Ethion	 563-12-2	 C9H22O4P2S4	 99

	 Azinphos-methyl	 86-50-0	 C10H12N3O3PS2	 131

	 Dicofol	 115-32-2	 C14H9Cl5O	 145

	 Parathion	 56-38-2	 C10H14NO5PS	 148

	 Trifluralin	 1582-09-8	 C13H16F3N3O4	 157

Other industrial chemicals	 Benzidine	 92-87-5	 C12H12N2	 30

	 Pentachlorophenol	 87-86-5	 C6Cl5OH	 54

	 2,4,6-trichlorophenol	 88-06-2	 C6H2Cl3OH	 85

	 2,4-dinitrotoluene	 121-14-2	 C7H6N2O4	 98

	 2-Methyl-4,6-dinitrophenol	 534-52-1	 C7H6N2O5	 100

	 1,2,3-Trichlorobenzene	 87-61-6	 C6H3Cl3	 137

	 2,4,5-Trichlorophenol	 95-95-4	 C6H2Cl3OH	 142

	 p-Cresol	 106-44-5	 C7H8O	 175

Phthalates	 Dibutyl phthalate	 84-74-2	 C16H22O4	 58

	 Di(2-ethylhexyl) phthalate	 117-81-7	 C24H38O4	 77
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density and other cell culture conditions have been previously 
published for each of these cell types (Grimm et al., 2015; Iwata  
et al., 2017; Sirenko et al., 2014a,b) and details are included in 
Text S11. Cells were exposed to test chemicals in descending log-
arithmic order of concentrations (100, 10, 1, 0.1, and 0.01 μM). 
Serial dilutions were originally prepared in 100% cell-culture 
grade DMSO and then further diluted 100-fold in corresponding 
cell culture medium to yield 4× working solutions in 1% DMSO. 
The final concentration of DMSO in assay wells following addi-
tion of test chemicals was 0.25% (v/v), an amount that was low-
er than in previous reports where it had no effects on each cell 
type-derived phenotype (Grimm et al., 2015; Iwata et al., 2017; 
Sirenko et al., 2014a,b). 

Cytotoxicity assays
Cytotoxicity-related phenotypes in five tested cell types were 
assessed by high-content live cell imaging after a set exposure 
time (Tab. 2). Cells were stained with different fluorescent dyes 
(Hoechst 33342 for nuclei, Calcein AM Green for cytoplasm, and 
MitoTracker Orange for mitochondria) as detailed in (Grimm 
et al., 2015; Iwata et al., 2017; Sirenko et al., 2014a,b). Imag-
es of all cell culture plates were acquired with ImageXpress Mi-
cro Confocal High-Content Imaging System (Molecular Devic-

pounds, we selected 42 chemicals (Tab. 1) based on the review 
of available information. These compounds represent several 
classes of pollutants that are ubiquitous in the environment, in-
cluding polycyclic aromatic hydrocarbons (PAHs, n = 5), inor-
ganic substances (n = 7), phthalates (n = 2), pesticides (n = 20), 
and other industrial chemicals (n = 8). ATSDR chemical classes 
are groupings that relate chemicals by similar features based on 
their structure, uses, physical properties, or other factors. Chem-
icals were selected for testing based on the following criteria: 
(i) is listed by ATSDR as priority chemical, (ii) has been evalu-
ated by one or more government agencies and “safe exposure” 
levels have been established, (iii) was tested in ToxCast/Tox21, 
and (iv) reverse toxicokinetic and exposure data are publicly 
available through the EPA dashboard (Williams et al., 2017). 
Most chemicals were purchased from Sigma-Aldrich), except 
for heptachlor, heptachlor epoxide, 2,4,5-trichlorophenol, para-
thion, benzidine and o,p’-DDT, which were from ChemService 
(West Chester, PA).          

Cell culture and chemical treatments 
All cells were cultured in 384-well plates according to the man-
ufacturer’s (Fujifilm Cellular Dynamics or Lonza) recommen-
dations with respect to cell culture media and supplements. Cell 

Tab. 2: In vitro toxicity phenotypes evaluated in this study 
See Table S41 for detailed description of each phenotype.

Cell typea	 iCell hepatocytes	 iCell neurons	 iCell	 iCell	 HUVECc 
			   cardiomyocytesb	 endothelial cellsc

Catalog #	 C1023	 C1008	 CMC-100-010-001	 C1114	 CC-2519A

Time point

Functional 
phenotypes

Cytotoxicity 
phenotypes

24 h

– Mitochondrial  
   integrity

– Mitochondrial  
   intensity

– Cell number

– Nuclei intensity

– All cell mean area

15 or 90 min

– Beats per minute

– Peak amplitude

– Peak spacing

– Peak width

– Peak rise time

– Peak decay time

– Decay to rise ratio

– Cell number

– Mitochondrial  
   integrity

72 h

– Total outgrowth

– Mean outgrowth

– Total process

– Total branches

– Cells with  
   significant growth 
 

– Cell number

– Mitochondrial  
   integrity

– Cytoplasmic  
   integrity

– Total cells body  
   area

– ATPd

18 or 24 h

– Total tube length

– Mean tube length

– Total tube area

– Cell number

– Mitochondrial  
   integrity

– Mitochondrial  
   intensity

– Cytoplasmic  
   integrity

– Nuclei mean area

18 or 24 h

– Total tube length

– Mean tube length

– Total tube area

– Cell number

– Mitochondrial  
   integrity

– Mitochondrial  
   intensity

– Cytoplasmic  
   integrity

– Nuclei mean area 

– ATPd

a iCell lines were purchased from FujiFilm Cellular Dynamics, HUVEC cell line was purchased from Lonza. b Cytotoxicity phenotypes  
were measured in iCell cardiomyocytes at 90 min. c Cytotoxicity phenotypes were measured in iCell endothelial cells and HUVEC at 24 h.  
d CellTiter-Glo® assay.
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resenting the highest POD value in a given data set (i.e., the low-
est observed bioactivity) and 1 representing the lowest measured 
POD value (i.e., the highest observed bioactivity). These scaled 
POD values were then used as quantitative inputs for bioactivity 
profiling in ToxPi.

Clustering and classification analyses 
We used two approaches to grouping chemicals based on the bio-
logical profiling produced in this study, the bioactivity data from 
ToxCast/Tox21, and chemical structure-based Morgan finger-
print data. In an unsupervised analysis, chemicals were grouped 
based on the similarity between the biological/chemical profil-
ing of the chemicals, without prior knowledge of chemical cat-
egories. To evaluate the outcome of such grouping, we include 
a quantitative metric into the unsupervised analysis workflow to 
assess the correspondence of the outcome to the original cate-
gories of each chemical. The details of the unsupervised anal-
ysis workflow are described elsewhere (Onel et al., 2019). The  
Fowlkes-Mallows (FM) index (Fowlkes and Mallows, 1983), a 
measure of similarity of two clusters, was calculated to enable 
quantitative comparative assessment between groupings achieved 
using each dataset to the known chemical categories. The higher 
the FM index, the more similar the grouping based on in vitro or 
chemical descriptor data was to the “perfect” grouping as shown 
in Table 1. The FM index ranges from 0.0 (no correspondence) to 
1.0 (perfect correspondence). One-sided p-values for the FM in-
dex (using the null hypothesis of random assignment) were ob-
tained using a standard z-statistic (Fowlkes and Mallows, 1983) 
that compares the observed value to the null expectation.

In the supervised analysis, assignments of chemicals to class-
es (Tab. 1) were used to build classification models, which were 
then used to predict the class for an unknown chemical. The 
term “supervised” is a statistical term (Kotsiantis, 2007) refer-
ring to models that are trained to perform automatic classification 
based on the available features, and using the classes as pre-de-
fined groupings. In a supervised analysis, the intent is to identi-
fy the features that are best able to distinguish among the classes. 
For this purpose, the randomForest package in R v3.5 was used 
for class prediction, with 5-fold cross validation implemented in  
50 random training/test data splits. The overall prediction accu-
racy from each database was calculated from cross-validation 
confusion matrices and the important distinguishing descriptors 
were further identified. A primary difference between unsuper-
vised and supervised analysis is that the latter focuses on features 
that best distinguish among existing chemical categorizations. 

Comparison to in vivo POD data and margin of  
exposure estimates 
In vivo data are still the most commonly used PODs for use in 
regulatory decision-making, but recent analyses have suggested 
that NAM-based PODs may be useful as conservative surrogates 
for in vivo values (Paul Friedman et al., 2020). Thus, for the 42 
chemicals in this study, we used the in vivo PODs from which 
the regulatory reference doses (RfDs) were derived (PODRfD  
values) as a benchmark. Specifically, we first compared the  
PODRfD values to various NAM-based PODs, including the in 

es) using the DAPI (Hoechst 3342), FITC (Calcein AM Green), 
and TRITC (MitoTracker Orange) filters at 10× or 20× magnifi-
cation. Acquired images were processed using the Multi-Wave-
length Cell Scoring, Neurite Outgrowth, or Angiogenesis Tube 
Formation application modules in MetaXpress (Molecular De-
vices) image processing software, and quantitative data were ex-
tracted for concentration-response modeling (see below). In ad-
dition, ATP production of iCell neurons and HUVECs was evalu-
ated using CellTiter-Glo assay as described in Text S21. 

Physiologically-relevant phenotype assays
Physiologically-relevant phenotypes of each cell type were eval-
uated as detailed in Table 2 and reported previously (Grimm et 
al., 2015; Iwata et al., 2017; Sirenko et al., 2014a,b). Effects on 
the mitochondrial integrity and intensity of iCell hepatocytes, 
and neurite outgrowth of iCell neurons were measured using 
high-content imaging (ImageXpress Micro Confocal High-Con-
tent Imaging System, Molecular Devices). Calcium flux reflect-
ing the contract beating of iCell cardiomyocytes was determined 
by a FLIPR tetra (Molecular Devices) instrument using Early-
Tox™ Cardiotoxicity Kit as described in Text S31. Effects on 
angiogenesis of both iCell endothelial cells and HUVECs were 
measured by 3D cell culture using an extracellular gel matrix and 
followed by high content imaging as detailed in Text S41. 

Assay quality controls and concentration-response profiling
The qualitative integrity of the screening assays in this study 
was evaluated using previously established conditions (Grimm 
et al., 2015). All responses were normalized to the vehicle con-
trol (0.25% DMSO-treated wells). Overall, quality control crite-
ria were established to evaluate each cell-based assay based on 
five parameters (see Tab. S1, S21): (i) variance in replicate wells 
for two negative controls (vehicle-treated wells and cell medi-
um only), (ii) the difference between two negative controls (vehi-
cle vs cell culture media), (iii) intra- and (iv) inter-plate replicate 
correlation, and (v) EC50 of the positive control chemicals/drugs 
that were specific for each cell type. 

Vehicle control-scaled data for each treatment were fitted to a 
curve with a nonlinear logistic function to determine point-of-de-
parture (POD) values, defined as the concentrations at which the 
fitted curve exceeds one standard deviation above or below the 
mean of vehicle-treated controls, using R software-based script 
as previously reported (Sirenko et al., 2013). The choice of one 
standard deviation “benchmark response” was based on the US 
EPA guidance for dose-response modeling and determination of 
the point-of-departure values (US EPA, 2012), as well as empir-
ical testing of various thresholds as detailed in (Sirenko et al., 
2013), which showed that a choice of one standard deviation 
generates consistently high classification accuracy.

Data integration in ToxPi 
For data integration and visualization in Toxicological Priori-
ty Index Graphical User Interface (ToxPi GUI) (Marvel et al., 
2018), we selected 48 phenotypes from all five cell types (Tab. 
2). Following the standard ToxPi data protocol, POD values for 
each phenotype were inversely scaled on a 0-1 scale, with 0 rep-
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3  Results

3.1  Screening assays and concentration-response  
profiling 
In vitro effects of the test chemicals were evaluated for a wide 
range of functional and cytotoxicity phenotypes in five human 
cell types that represent four tissues (Tab. 2). POD values were 
derived from the concentration-response relationships for a to-
tal of 48 phenotypes (see quality control data for each phenotype 
in Tab. S1 and S21) and plotted (Fig. 1) separately for each cell 
type. Chemicals are grouped by their chemical class and ranked 
within each class from least to most bioactive based on the medi-
an response in iCell hepatocytes. Both for the individual chemi-
cals and within a chemical class, there was a wide range of poten-
cy across all phenotypes. Each chemical had an effect in at least 

vitro POD derived from this study using iPSC-derived cells and 
HUVECs, as well as two other in vitro data sets: the minimum of 
the distribution of 50% maximal activity concentration (AC50) 
of high throughput in vitro assays in ToxCast database (i.e., 
most sensitive assay) and conservative PODNAM values report-
ed in (Paul Friedman et al., 2020). In addition, using ExpoCast 
exposure estimates, we compared margin of exposure (MoE)  
estimates based on PODRfD values with those based on NAM 
data. Oral dose-based PODs or exposures were converted to Css 
(concentration at steady-state)-based values (or vice versa) using 
the high throughput toxicokinetic (httk) (Pearce et al., 2017) R 
package (v 1.10.1) at the upper 95th percentile for toxicokinetic 
variability. Due to the limitation of the availability of each data 
stream, only the chemicals shared in all the databases were taken 
into consideration for comparison (see details in Tab. S31). 

Fig. 1: Quantitative analysis of chemical-specific effects in five cell types 
Box (inter-quartile range and median) and whiskers (min to max) plots show the range of PODs (one standard deviation of vehicle-treated 
wells) across 48 phenotypes in five cell types (Tab. 2) for each of the 42 Superfund priority list chemicals (Tab. 1). Chemicals were grouped 
into classes (Tab. 1) and then sorted within a class based on the mean POD values of the phenotypes in iCell hepatocytes. 



Chen et al.

ALTEX 37(4), 2020 629

(width) indicates its weight in the overall model (in this analy-
sis, data from each cell type were weighed equally). ToxPi scores 
were further combined into one pie chart to indicate the overall 
effect of each chemical on all five human cell types. ToxPi for 
three of the 42 tested chemicals are shown as examples in Fig-
ure 3B. Cadmium chloride showed the highest bioactivity (lowest 
PODs) in iCell hepatocytes compared to the other cell types, re-
sulting in a large green slice in the ToxPi. Mercuric chloride and 
methoxychlor showed highest effects on iCell neurons and iCell 
cardiomyocytes, respectively. 

The overall ToxPi scores for each chemical, reflecting the av-
erage of the normalized input scores for each slice of the re-
spective bioactivity profile, were then used as a score to rank 
and cluster chemicals according to their overall bioactivity (Fig. 
4A). ToxPi ranking using quantitative bioactivity data can be 
used for chemical prioritization (Reif et al., 2010). The 42 test-
ed chemicals were ranked based on the summed effects in the 
five human cell lines. The three inorganic substances (mercu-
ric chloride, cadmium chloride and potassium chromate) had 
the highest overall bioactivity score (Fig. 4B). When bioactivi-
ty profiles of the individual chemicals were combined into their 
respective classes, inorganic substances were on average most 
bioactive, followed by pesticides, phthalates, other industrial 
chemicals, and PAHs (Fig. 4C, Tab. 3). Furthermore, specific ef-
fects of different classes of chemicals on certain cell types were 
identified. While inorganic substances were bioactive in most 
cell types, pesticides had the highest bioactivity in iCell cardio-
myocytes (Tab. 3, Fig. S41). 

Chemicals were also clustered using ToxPi scores and bio-
activity profiles (Fig. 4D). This visualization shows that while 
some compounds are clustered because of their relatively high 
potency (mercuric chloride, cadmium chloride and potassium 

one cell type and no correlation in PODs was evident among 
cell types (Fig. S21), indicating that the chemicals elicited cell 
type-specific effects. 

When the PODs were grouped by cell type (Fig. 2), the iCell 
cardiomyocytes clearly were, on average, the most sensitive to 
these chemicals. Across the 48 phenotypes included in the anal-
ysis, there was a wide range of effects for most of the evaluated 
chemicals. Not only were there chemicals that had effects at low 
concentrations, but there was a pronounced shift in the median 
and inter-quartile range, and for most of the phenotypes that were 
evaluated (Fig. 2, right panel). In other cell types, few chemicals 
had pronounced effects while most exhibited effects only at nom-
inal test concentrations above 10 µM. It is noteworthy that fewer 
effects were observed in metabolically-active iCell hepatocytes 
(Sirenko et al., 2014b) compared to other cell types. iCell endo-
thelial cells were most resistant to the effects of chemicals tested 
in this study. In addition, functional effects had significantly low-
er PODs compared to cytotoxicity phenotypes, indicating higher 
sensitivity, in all in vitro data combined, and in data from iCell 
hepatocytes, cardiomyocytes and HUVECs (Fig. S31). 

3.2  Ranking and clustering using ToxPi scores
To facilitate interpretation of the data from these experiments 
that involved five cell types and 48 phenotypes, we aggregated 
the concentration-response data and PODs derived from in vitro  
screening assays using the Toxicological Priority Index (Tox-
Pi) (Marvel et al., 2018). Each cell type was assigned an indi-
vidual ToxPi “slice” (Fig. 3A). Specifically, PODs were convert-
ed into ToxPi scores as detailed in Section 2 and in Marvel et al. 
(2018). For each slice, the distance that the arc extends from the 
origin is proportional to its relative evidence of concern (e.g., lon-
ger = greater hazard because of lower POD), and the radial angle 

Fig. 2: Quantitative analysis of cell-specific effects of the  
42 Superfund priority list chemicals
The left panel shows box (inter-quartile range and median) and 
whiskers (min to max) plots of PODs (one standard deviation  
of vehicle-treated wells) for all 42 tested chemicals (Tab. 1) in  
each cell type. The size of each box and whiskers plot is 
proportional to the number of phenotypes evaluated in each cell 
type (Tab. 2). The right panel shows box (inter-quartile range 
and median) and whiskers (Tukey) plots of PODs (one standard 
deviation of vehicle-treated wells) for all 42 tested chemicals  
(Tab. 1) in each phenotype. Phenotypes are grouped based on  
the cell type (Tab. 2). Outlier chemicals are shown as circles.
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each chemical on each cell type were further identified by clus-
tering chemicals using data on each cell type (Fig. S51). Cadmi-
um chloride exhibited the most pronounced effects on iCell he-
patocytes by affecting all phenotypes. Mercuric chloride domi-
nated effects on iCell neurons. Pesticide methoxychlor was the 
most bioactive in iCell cardiomyocytes. iCell endothelial cells 
and HUVECs were most affected by potassium chromate. 

chromate), other compounds have similar ToxPi profiles, indi-
cating similarity in their effects on different cell types. For ex-
ample, DDT-like organochlorine pesticides are clustered closely 
because of the similarity in both potency and effects across all 
five cell types. Similarly, other organochlorine pesticides cluster 
together because they showed the highest relative bioactivity in 
iCell cardiomyocytes. In addition, phenotype-specific effects of 

Fig. 3: Data integration from concentration-response modeling for each chemical and phenotype using Toxicological 
Prioritization Index (ToxPi) approach
(A) Representative examples of concentration-response fits (lines) to the data (dots) are shown for three chemicals (rows) and five cell-
specific phenotypes (columns). Pie chart slices are colored to distinguish effects in each cell type. (B) Examples of ToxPi images for  
three selected chemicals.

Tab. 3: Ranges in ToxPi scores for each chemical class and cell type

Cell type	 PAHs	 Pesticides	 Inorganic	 Other industrial	 Phthalates 
			   substances	 chemicals

iCell hepatocytes	 0-0.14	 0-0.32	 0-0.88	 0-0.45	 0.026-0.03

iCell neurons	 0-0.11	 0-0.37	 0.01-1	 0-0.47	 0-0.46

iCell cardiomyocytes	 0.10-0.55	 0.18-0.78	 0-0.50	 0.01-0.34	 0.37-0.42

iCell endothelial cells	 0.02-0.27	 0-0.38	 0.04-0.72	 0-0.49	 0.005-0.009

HUVECs	 0-0.41	 0-0.38	 0.10-0.75	 0-0.36	 0.13-0.18

Overall	 0.08-0.32	 0.10-0.39	 0.18-0.63	 0.04-0.38	 0.14-0.25 
(combination of all phenotypes)



Chen et al.

ALTEX 37(4), 2020 631

We also compared the ability of the targeted dataset obtained 
in this study to group chemicals into classes to that of a larger 
ToxCast/Tox21 in vitro dataset, or chemical structure-based de-
scriptors (Morgan chemical fingerprints). Figure 5B shows that 
in vitro data on 48 phenotypes from five cell types obtained in 
this study has a higher FM index for grouping of 42 chemicals 
into five classes compared to other information that is available 
on these compounds. Figures 5C-E show the individual dendro-
grams for each of the comparisons in Figure 5B.

3.4  Bioactivity-based class supervised grouping 
A different type of question that is often asked when using NAM 
data in decision-making is whether one can use the data obtained 
in the same set of assays as those for the compounds in a da-
tabase to classify a new compound into a class. We conducted 
supervised analyses using a cross-validated random forest algo-
rithm where every test compound was predicted using a classifi-
cation model. In contrast to the unsupervised analysis, the super-
vised analysis attempts to train a model to identify the features 
that are most predictive of existing classification. Figure 6 shows 
the outcomes of the cross-validated classifications for each da-

3.3  Bioactivity-based class unsupervised grouping
Next, we tested how well the bioactivity data on the individu-
al cell type, or in combination, can be used for grouping of test-
ed chemicals into classes. A quantitative comparison of the un-
supervised analysis was conducted using the Fowlkes-Mallows 
(FM) index (Fowlkes and Mallows, 1983; Onel et al., 2019). The 
results of the clustering were compared to the known chemical 
groupings (Tab. 1) that were used as a reference. Figure 5A shows 
that clustering using the bioactivity profiles of the combination of 
all five cell types resulted in the highest FM index (FM = 0.56) 
and was highly significant compared to that expected under ran-
dom permutation (p < 0.001). Among the individual cell types, 
iCell hepatocytes showed the highest FM index (FM = 0.41), al-
beit it was not significant. Data from HUVECs was least informa-
tive in this analysis. Because of the pronounced heterogeneity in 
the “value” of information from different cell types, we also eval-
uated whether even smaller sets of cell types may have clustering 
accuracy approaching the data on all five cell types. We found that 
a combination of the data from iCell cardiomyocytes and iCell 
neurons yielded an FM index that was as high as when the data 
from all five cell types was used (FM = 0.53, Fig. S61). 

Fig. 4: ToxPi analysis-based ranking and clustering of 42 Superfund priority list chemicals based on the effects in five cell types
(A) Legend to the ToxPi visualization of the effects on five cell types. (B) Ranking of the tested chemicals based on the overall ToxPi 
scores. Chemicals are colored based on chemical class. Table S51 contains the data from the ToxPi analysis. (C) Box (inter-quartile range 
and median) and whiskers (min to max) plots show the range of ToxPi scores for each chemical (dots) for each class. Chemical classes 
(Tab. 1) were ranked based on the median value. (D) Clustering (Ward’s D method) of 42 Superfund priority list chemicals using ToxPi 
scores. Chemical names are colored based on chemical class as in panel C. 
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would not have been achieved. The prediction accuracy results 
suggest that the a priori classification is meaningful, and, in con-
trast to unsupervised analysis, highlight the specific measured bi-
ological features that are best able to discriminate among classes, 
as described below.

The supervised classification analysis, where every test com-
pound was predicted using a classification model, can also be ex-
amined for information on the “most informative” features (i.e., 
features that are most predictive of existing classification) on 
which the models were developed. The top 10 most informative 
features from each dataset, i.e., phenotypes that contributed the 
most to the accuracy of the classification, are shown in Figure 7. 
Interestingly, for the in vitro data generated in this study, 5 of the 
top 10 most informative descriptors were functional phenotypes 
from iCell cardiomyocytes, followed by phenotypes from iCell 
neurons (Fig. 7A). For ToxCast/Tox21 data, the descriptors in the 
top 10 included largely disparate data from a wide range of mod-
els, i.e., from zebrafish, to cytotoxicity, to reporter assays (Fig. 
7B). While Morgan fingerprints are difficult to interpret direct-

ta type. Numbers on the top left to bottom right diagonals show 
correct class prediction, and the numbers off the diagonal show 
misclassifications and which class the compounds were misclas-
sified into. Overall, the Morgan fingerprints-based classifica-
tion was superior (81% accurate prediction) when compared to 
classifications based on either data from this study or ToxCast/
Tox21 data (60% and 69%, respectively). It is also noteworthy 
that the in vitro data generated in this study can accurately classi-
fy most pesticides into the correct chemical class, whereas Tox-
Cast/Tox21 data classified all inorganic substances correctly. The 
combination of the in vitro data and Morgan fingerprints, or com-
bination of two in vitro datasets (Fig. S7A1) did not improve pre-
diction accuracy. The accuracy of classification with each type of 
data was significantly better than random assignment into class-
es (Fig. S7B1). We emphasize that our prediction by supervised 
analysis was performed using cross-validation, which avoids 
overfitting inherent in fitting complex prediction models. If the 
chemical classes used had been truly meaningless, in the sense of 
“random,” then our reasonably high prediction accuracy values 

Fig. 5: Quantitative analysis of 
the grouping of 42 Superfund 
priority list chemicals with 
various data streams
(A) Fowlkes-Mallows (FM) index 
for clustering of chemicals into 
five classes (Tab. 1) using in vitro 
data from each cell type, or all 
data combined. (B) FM index for 
clustering of chemicals using 
data in this study (black bar), or 
other publicly available in vitro 
or chemical descriptors (e.g., 
Morgan fingerprints [FP]), or a 
combination thereof. Asterisks (*) 
indicate that one-sided p-values 
were < 0.05 for the observed FM 
index value compared to the null 
expectation. (C-F) Clustering 
dendrograms (average Pearson 
correlation method) for each data 
stream shown in (B). FM index 
and the number of variables 
included in each comparison  
are shown below each plot.  
(C) In vitro data from this study, 
all endpoints combined.  
(D) ToxCast/Tox21 data (as of 
November 2019). (E) Morgan 
fingerprints. (F) Morgan finger-
prints combined with in vitro 
data from this study. Identity of 
each chemical in each clustering 
diagram is listed in Table S61. 
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trast, as shown in Figure 8C, only the approach of using the min-
imum (most sensitive) ToxCast AC50 has similarly conservative 
results, whereas cardiomyocytes alone and the PODNAM from 
(Paul Friedman et al., 2020), which is a lower 5th percentile, had 
a substantial number of “unconservative” results. Note that these 
results appear to contrast with those reported by (Paul Friedman 
et al., 2020) because they used in vivo PODs from ToxRefDB, 
whereas we used the in vivo PODs that supported regulatory RfD 
toxicity values (Wignall et al., 2014). 

A related comparison was with respect to the resulting screen-
ing-level risk characterization using a Margin of Exposure (MoE) 
approach. Specifically, we used a MoE benchmark of < 100 as an 
indication of “potential concern.” As shown in Figure 8B, more 
than half of the chemicals have implied MoEs less than a bench-
mark of 100 when using all cell types combined, with similar re-
sults for cardiomyocytes, but far fewer chemicals are suggest-
ed to be of “potential concern” when using other cell types. In 
Figure 8D, when restricting to chemicals common across dif-
ferent NAM-based approaches, we find that the PODRfD-based 

ly (Fig. 7C), a combination of bioactivity and chemical structure 
data showed that chemical descriptors do not dominate the list of 
informative features, and that in vitro data may be equally infor-
mative (Fig. 7D).                    

3.5  Comparison to in vivo POD data and margin of  
exposure estimates
It has recently been proposed that NAM-based PODs can serve as 
conservative surrogates for traditional in vivo PODs (Paul Fried-
man et al., 2020). Thus, we first compared various NAM-based 
PODs, including those based on our five cell types, to the regu-
latory PODs used as the basis for RfD toxicity values (PODRfD).  
For our in vitro-based PODs, we used either the most sensitive 
POD for each cell type or the most sensitive POD across all cell 
types combined (Fig. 8). As shown in Figure 8A, only when all 
cell types are combined do our in vitro PODs represent a conser-
vative surrogate for the PODRfD, with only 25% of our in vitro 
PODs being higher than the corresponding PODRfD, and those 
remaining 25% being within 10-fold of the in vivo value. In con-

Fig. 6: Confusion matrices for chemical classification into  
five classes using in vitro and/or chemical descriptors
Known (columns) chemical assignment into each of five classes 
(Tab. 1) is compared to predicted (rows) class assignment using 
random forest algorithm with 5-fold cross validation as detailed 
in Section 2. Classification outcomes for the analyses using data 
from all phenotypes in this study (top left), ToxCast/Tox21 data (top 
right), Morgan fingerprints [FP] (bottom left), or data from this study 
and Morgan FP combined (bottom right) are shown. Accuracy of 
classification for each dataset is shown in the top left corner of 
each matrix. Numbers in the cells filled with green (on diagonal) 
and light pink (off diagonal) indicate the number of chemicals that 
were classified correctly or misclassified, respectively. 

Fig. 7: Classification accuracy-contributing phenotypes
Importance of the in vitro or chemical structure descriptors 
contributing to the classification accuracy from different data 
streams (Fig. 6) was analyzed as detailed in Section 2. Top 10 
features are listed. (A) In vitro data from this study. (B) ToxCast/
Tox21 data. (C) Morgan fingerprints. (D) Morgan fingerprint 
combined with in vitro data from this study. 
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cal and computational tools is available to probe human function 
and disease at the molecular level through the transcriptome, 
epigenome, proteome and metabolome (Nielsen, 2017). Many  
thousands of immortalized cell lines collected from various 
tissues and individuals are now used in toxicological research 
(Chiu and Rusyn, 2018). There are large databases of publicly 
available biological data that can be explored to develop hypoth-
eses about how chemicals, genes, and diseases may be connect-
ed (Miller, 2016; Davis et al., 2019; Williams et al., 2017). There 
are genetically diverse mammalian and non-mammalian mod-
els, in vivo and in vitro, that are used for toxicological research 
(Zeise et al., 2013). Complex human biology is being replicated 
in multicellular perfused microphysiological systems that mim-
ic certain tissue functions (Marx et al., 2020). It appears that the 
field of regulatory science has finally overcome the long-lament-
ed challenge of shortage of information for decisions on chemi-
cal safety (Lutter et al., 2013).

Alas, the quantity of the information now available is yet to be 
translated into actual examples of using these data in various de-
cision contexts beyond now well-accepted screening-level, risk-
based chemical prioritization (Harrill et al., 2019; Paul Friedman 
et al., 2020), or filling data gaps (Guyton et al., 2018). For new 
chemicals, complex substances, or mixtures, what is a sensible 

“ground truth” suggests that only 2/16 chemicals are of “poten-
tial concern.” Using only iCell cardiomyocytes, or using all cell 
types, results in a more conservative estimate of 4 to 5/16 chem-
icals, with the median MoE being slightly more conservative 
than the in vivo-based MoE. In contrast, using the PODNAM from 
(Paul Friedman et al., 2020) results in an “unconservative” esti-
mate of only 1/16 chemicals of potential concern, with the medi-
an MoE being much higher (implying “safer”) than the in vivo- 
based MoE. 

Overall, for this limited dataset, our PODs derived from high 
throughput in vitro data from five human cell types performed 
well as a conservative surrogate for regulatory in vivo PODs and 
were less likely to underestimate in vivo potency and potential 
risk compared to other NAM-based PODs.         

4  Discussion

It is widely recognized that the future of regulatory toxicology 
lies in high-throughput in vitro assays and computational models 
based on human biology, rather than in continued testing in lab-
oratory animals (NRC, 2007; National Academies of Sciences 
Engineering and Medicine, 2017). A wide array of both biologi-

Fig. 8: POD data comparison across different in vitro and in vivo datasets and margin of exposure estimates 
Minimum of in vitro PODs generated from each cell type and all cell types combined in this study were compared to in vivo POD derived 
from Reference dose (A). Margins of exposure were calculated based on in vitro PODs from this study and the estimated exposure levels 
(B). The ratio between in vivo and in vitro (C), and the margins of exposure (D) were further compared across different datasets. All of the 
ratio outputs were log transformed for comparison; n represents the number of chemicals from 42 Superfund priority list chemicals covered 
by different datasets for comparison and detailed in Table S31. 
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derestimated. These findings suggest that when testing is not 
meant to be mechanism- or effect-based, inclusion of cells from 
multiple tissues should be a design principle for in vitro test bat-
teries that are to be used as NAMs. Such tissue-diverse data 
should also increase confidence in the “biological coverage” of 
in vitro NAMs.

Third, we observed that in vitro bioactivity data may be as 
good as or, in some cases better than, chemical descriptors for 
grouping of chemical substances into classes. In addition, im-
portant synergies are realized when biological and chemical de-
scriptors are combined. These findings are in line with previous 
observations that chemical-biological data are most powerful for 
grouping (Low et al., 2011, 2013, 2014), as well as that they are 
most interpretable by the decision-makers (Zhu et al., 2016). 

Finally, we found that a limited set of in vitro data may be 
equally or even more informative that the much larger datasets 
from large-scale chemical screening programs (Thomas et al., 
2018). Overabundance of NAM data is not necessarily a recipe 
for more accurate prediction, as has been shown for various types 
of biological (Kreutz et al., 2013) and chemical (Fourches et al., 
2015) data. One approach to dealing with such “big data” prob-
lems is to apply variable selection (Knudsen et al., 2013) or deep 
learning (Grapov et al., 2018) algorithms to uncover meaningful 
“signals” in large datasets. Regretfully, these exercises seldom 
have resulted in selection of a reasonably small set of assays/end-
points that are reasonably accurate for prediction and do not re-
quire extensive and lengthy experimentation. Only recently, in-
fluential examples have emerged of how a small set of assays can 
be used to replace a specific animal test (Kleinstreuer et al., 2018; 
Browne et al., 2015). On the other hand, the data from our study 
performed at least as well, if not better, than larger NAM data-
sets, not only for grouping of chemicals into classes, but also in 
serving as surrogate NAM-based PODs for rapid risk character-
ization. Additional confidence in these results could be obtained 
by evaluating a larger set of ToxCast/Tox21 chemicals.

Notwithstanding the need for diverse high-throughput in vi-
tro data streams to rapidly inform hazard identification and to fill 
the knowledge gap for chemicals with minimum toxicity data, 
challenges remain about their use in prioritization and screening 
level assessment strategies as well as tradeoffs between speed 
and uncertainty (Paul Friedman et al., 2020). For instance, while 
high throughput screening data could play key roles in deci-
sion-making for emergency response, there are many limitations 
with respect to predicting chemical fate and effects in the envi-
ronment, challenges that might lead to potentially missed haz-
ards (Ginsberg et al., 2019). Furthermore, there is also uncer-
tainty in the extrapolation from in vitro bioactivity to in vivo tox-
icity (Bell et al., 2018), and gaps exist in the cell-based in vitro 
screening and potential effects on human health since most cell 
assay endpoints are still related to cytotoxicity and non-specific 
effects (Judson et al., 2016). Overall, however, our findings sup-
port the notion that the field of in vitro toxicology and NAM im-
plementation would be well served by agreeing on a reasonably 
small subset of differentiated, human cell-based models with 
both cytotoxicity-based and functional readouts that can be used 
in different decision contexts.

compendium of in vitro and in silico models that may satisfy the 
data requirements for a particular decision context? A number 
of examples have been published recently to address this ques-
tion, especially in the context of grouping and read-across (De 
Abrew et al., 2019; Zhu et al., 2016; Escher et al., 2019). Indeed, 
it is critically important to establish both the strengths and limita-
tions of cell-based in vitro screening methods, so that promising 
NAMs can be generated and used for decision-making in human 
and environmental health. 

This study, even though primarily focused on an in vitro mod-
el that can be used for rapid hazard assessment, adds to the over-
all body of recent evidence on the topic of the utility of NAMs. 
We aimed to test performance of a small set of human in vitro 
models that represent a diverse array of tissues of interest to reg-
ulatory toxicologists. We took advantage of recently developed 
reproducible and physiologically-relevant human in vitro mod-
els derived from iPSCs (Li and Xia, 2019; Anson et al., 2011), 
models that are excellent replacements for animal tests and for 
which detailed methods and metrics of reproducibility have been 
established (Sirenko et al., 2013, 2014a,b; Grimm et al., 2018; 
Iwata et al., 2017; Klaren and Rusyn, 2018). We posited that 
commercially-available iPSC-derived cells are poised for wid-
er use, replacement of animal studies, and inter-comparison of 
the outcomes in a rigorous and reproducible manner (Anson et 
al., 2011). Presence of advanced cellular functions and absence 
of genetic drift because of repeated passaging, both problems of 
cancer cell lines, are advantages of iPSC-derived differentiated 
cells in toxicity testing (Kim et al., 2019). Our hypothesis was 
that these cell-based models, when probed for both physiologi-
cal and toxicological effects of chemicals, can be used for rap-
id hazard evaluation and thus represent a sensible targeted set of 
alternative methods for NAM-enabled decisions, especially un-
der conditions of rapid evaluations such as emergency response 
(Judson et al., 2010b).

Even though this study is not the first to attempt to probe the 
ability of a small dataset to group and classify diverse environ-
mental chemicals, a number of important learnings have emerged. 
First, our comparison of cells representing various tissue types 
showed that iPSC-derived cardiomyocytes may be among the cell 
types that are most sensitive to effects across various chemical 
classes. This is noteworthy because iCell cardiomyocytes can be 
used as a highly reproducible in vitro model that faithfully repli-
cates many in vivo cardiotoxic phenotypes (Grimm et al., 2018). 
Our previous studies showed that environmental chemicals have 
adverse effects on cardiomyocytes, similar to many known car-
diotoxic drugs (Sirenko et al., 2017; Burnett et al., 2019; Blanch-
ette et al., 2019); however, it is noteworthy that this metabo-
lism-limited cell type was most affected by the diverse set of Su-
perfund priority chemicals from different classes. 

Second, the fact that the chemicals tested in this study showed 
very divergent effects across multiple cell types, leading to dis-
tinct class-specific bioactivity profiles that can be used to group 
substances, also strongly supports the need for tissue diversity 
of in vitro models. Moreover, when used for NAM-based risk 
characterization, multiple cell types together performed better 
than any individual cell type for ensuring that the risk is not un-
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