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Summary
Primary dendritic cells and myeloid cell lines are used to assess the skin sensitization hazard in in vitro approaches. The 
aryl hydrocarbon receptor (AhR) modulates expression of CYP enzymes, which play a significant role in the bioactivation 
of various xenobiotics. These studies revealed a strong constitutive expression of the AhR in primary human monocytes, 
monocyte-derived immature dendritic cells (iDC) and cord blood-derived Langerhans cells (LC). In contrast, mRNA 
and protein expression of AhR was hardly detectable in the cell lines THP-1 and MUTZ-3. U937 cells and MUTZ-3-
derived dendritic (MUTZ-DC) or Langerhans cells (MUTZ-LC) showed about half the expression of AhR compared to 
iDC. Incubation of cells with the specific AhR-inducer benzo[a]anthracene resulted in an upregulation of CYP and IL-
1β mRNA expression in primary monocytes and iDC. CYP1A1 but not CYP1B1 and IL-1β expression was increased 
by benzo[a]anthracene in these cell lines except for U937 cells. AhR-independent CYP genes were not regulated by 
benzo[a]anthracene. Constitutive mRNA expression of other non AhR-dependent CYP enzymes was higher in some of 
the cell lines compared to the corresponding primary cells. This study demonstrates significant differences in expression 
and regulation of phase I genes in cell lines currently used for in vitro skin sensitization hazard assessment compared to 
primary cells. Additional studies are required regarding the combination of cutaneous xenobiotic metabolizing enzymes 
and APC-sensitization for the development of valid in vitro models for skin sensitization assessment.
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1  Introduction

Cytochrome P450 enzymes (CYP) represent a key metabolic 
enzyme family capable of metabolizing drugs and chemicals 
in hepatic and extrahepatic tissues including the skin. The in-
duction of CYP1A1 and CYP1B1 enhances the metabolism 
of polycyclic aromatic hydrocarbons (PAH), particularly 
benzo[a]pyrene and benzo[a]anthracene (Modi et al., 2012), 
which are potent carcinogens and are also able to induce con-
tact hypersensitivity (Anderson et al., 1995). Humans are ex-

posed to PAHs and related chemicals mainly through tobacco 
smoking and automobile exhaust (Finlayson-Pitts and Pitts, 
1997; Rubin, 2001). 

The aryl hydrocarbon receptor (AhR) is a ligand-activated 
transcription factor with multiple functions in adaptive me-
tabolism (Bock and Köhle, 2009). AhR in its dormant state is 
located in association with a complex of HSP90 (heat-shock 
protein 90), AIP (AhR interacting protein) and HSP90 co-chap-
erone p23 in the cytoplasm (Chen and Perdew, 1994). Upon 
ligand binding, AhR is activated by a conformational change 
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that exposes a nuclear localization signal (Ikuta et al., 1998). 
HSP90 is released from the complex and the receptor translo-
cates to the nucleus, where it forms a heterodimer with AhR 
nuclear translocator (ARNT) and binds to xenobiotic response 
element (XRE) (Whitelaw et al., 1993). XREs are found in 
the promotor regions of several genes involved in the metab-
olism of xenobiotics, including the CYP enzymes CYP1A1, 
CYP1A2 and CYP1B1. The AhR pathway is regulated by the 
AhR repressor (AhRR), a target gene of the AhR in a nega-
tive feedback loop (Ma, 2001; Esser et al., 2009; Jux et al., 
2009). Liver and lung exhibit high levels of AhR expression 
(Dolwick et al., 1993; Hayashi et al., 1994). However, it was 
found that some specific hematopoietic stem cells, dendritic 
cells, particular subsets of thymocytes and T-cells have similar 
or even higher levels of AhR expression than the liver (Esser 
et al., 2009; Frericks et al., 2007; Hirabayashi and Inoue, 2009; 
Veldhoen et al., 2009). 

In previous studies we were able to show that normal human 
epidermal keratinocytes (Baron et al., 2001, 2008) and also 
human skin equivalents (Neis et al., 2010) express a specific 
profile of CYP enzymes. In addition, we found that various 
CYP enzymes are expressed in dendritic cells (Sieben et al., 
1999) as well as in monocytes and macrophages (Baron et al., 
1998). Furthermore, we demonstrated using monocyte-derived 
dendritic cells (moDC) and THP-1 cells that CYPs play a sig-
nificant role in the activation of prohaptens to highly reactive 
species which bind to proteins and become the nominative 
antigen (Bergström et al., 2007; Merk et al., 2007; Ott et al., 
2009). The αβ-unsaturated oxime R-carvoxime is bioactivated 
by human cutaneous CYP1A1, CYP1B1 and, to some extent, 
by CYP2B6, thus forming highly allergenic metabolites, and 
has the potential to induce its own bioactivation pathway (in-
duces CYP1B1), particularly in antigen-presenting cells (Ott 
et al., 2009).

The establishment of in vitro sensitization methods for the 
screening of new chemicals is of major importance for the re-
duction of animal testing. One approach to quantify the sensiti-
zation potential of a chemical in vitro is to determine dendritic 
cell (DC) activation. Low molecular weight chemicals induce 
the activation of DCs, which leads to upregulation of surface 
marker expression, cytokine production and Nrf2-dependent 
antioxidant gene products. Human cell lines including THP-
1, MUTZ-3 and U937 should undergo similar alterations after 
activation, which indicate their potential to behave like a DC. 
In addition to primary DCs, these cell lines are used as an alter-
native tool to predict skin sensitization (Basketter et al., 2008; 
Ott et al., 2010; Python et al., 2009).

Here, we investigated the expression of AhR and ARNT 
in the human cell lines THP-1, U937 and MUTZ-3 in com-
parison to primary human monocytes, immature moDC (iDC) 
and cord blood-derived Langerhans cells (LC) using real-time 
PCR analysis and immunohistochemistry. Furthermore, we 
analyzed the gene expression profile of AhR-dependent and 
-independent CYP450 enzymes and of IL-1β in cells treated 
with benzo[a]anthracene and unstimulated control cells by 
real-time PCR analysis.

2  Materials and methods

2.1  In vitro culture 
All cell culture materials used were non-cytotoxic, non-pyro-
genic tested to less than 0.1 EU/ml by the companies they were 
purchased from.

Monocyte-derived dendritic cells
Human peripheral blood mononuclear cells (PBMCs) from a total 
of six healthy donors were separated from single buffy coats (De-
partment of Transfusion Medicine, University Hospital Aachen, 
Germany) over a Ficoll-Paque gradient (Amersham Pharmacia 
Biotech, Uppsala, Sweden). Due to restrictions of the Aachen 
ethics committee only anonymized probes may be used for cell 
culture experiments. 

CD3, CD7, CD16, CD19, CD56, CD123 and Glycophorin A 
positive leukocytes were depleted using a negative monocyte 
isolation kit (human Monocyte Isolation Kit II, Miltenyi Biotec, 
Bergisch Gladbach, Germany). The isolated, unlabeled mono-
cytes were suspended in medium consisting of RPMI 1640 + 
GlutaMAX™-I (Invitrogen, Darmstadt, Germany) enriched with 
3% heat-inactivated autologous plasma. The cell suspension was 
plated at a density of 3x106 cells per reaction well in a 6-well 
plate. In order to induce DC differentiation, the culture medium 
was supplemented with 800 U/ml GM-CSF (R&D-Systems, 
Bühlmann, Basel, Switzerland, 215-GM-050/CF) and 1000 U/ml 
IL-4 (R&D-Systems, Wiesbaden, Germany, 204-IL-050/CF) and 
cells were kept at 37°C and 5% CO2 for 6 days. On days 2, 4 and 
6 the culture medium was refreshed and 1600 U/ml GM-CSF and 
1000 U/ml IL-4 were added. On day 5 the resulting DC pheno-
type was determined by flow cytometric analysis. At this time 
point, the cells displayed a phenotype characteristic for imma-
ture DC, i.e., CD1ahigh, CD80intermediate, CD86low, CD83negative, 
CD14negative. On day 6 suspension cells were transferred to new 
6-well-plates and stimulated with benzo[a]anthracene (Sigma-
Aldrich, Munich, Germany). 

	
Langerhans cells (LC) 
Cord blood-derived CD34+ progenitor cells were purchased from 
STEMCELL Technologies, Grenoble, France. To induce LC dif-
ferentiation, cells were transferred into T-150 flasks and cultured 
in 30 ml RPMI medium supplemented with 10% FCS (Biochrom, 
Berlin, Germany), 100 ng/ml GM-CSF, 2.5 ng/ml TNF-α (R&D-
Systems, Wiesbaden, Germany, 204-IL-050/CF) and 25 ng/ml 
SCF (R&D Systems, Wiesbaden, Germany, 255-SC-050/CF). 
On days 2-4 culture medium was refreshed. On day 5, medium 
was changed to RPMI1640 + 10% FCS + 1 ng/ml TGF-β1 (R&D 
Systems, Wiesbaden, Germany, 240-B-010/CF). Medium was re-
freshed on day 7 and on days 9-10. On day 12, LC-phenotype 
was determined by flow cytometric analysis. Cells displayed a 
phenotype characteristic for LCs, i.e., CD207high and CD1ahigh. 
Cells were stimulated with benzo[a]anthracene on day 12. 

MUTZ-3
MUTZ-3, an acute myelogenous leukemia cell line, was pur-
chased from the German Collection of Microorganisms and Cell 
Cultures (Braunschweig, Germany, ACC295) and was cultured 
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U937
Human U937 cell line was purchased from the German Collec-
tion of Microorganisms and Cell Cultures (Braunschweig, Ger-
many, ACC5) and cultured as suspension cells in RPMI 1640 
(Gibco/Invitrogen, Darmstadt, Germany) supplemented with 
10% FCS (Biochrom, Berlin, Germany) at 37°C and 5% CO2. 
The cells were subcultured at a split ratio of 1:5 to 1:10 and 
passaged every 3-4 days. Cells were transferred to new 6-well-
plates and stimulated with benzo[a]anthracene

Cell lines were regularly tested for mycoplasma contamination 
and were used at limited passage numbers (MUTZ-3 (includ-
ing MUTZ-LC and MUTZ-DC) passage 17, THP-1 passage 9, 
U937 passage 8).

2.2  Cell stimulation with benzo[a]anthracene
A stock solution of benzo[a]anthracene (C18H12, IUPAC Tet-
raphene, MW 228.29, CAS number 56-55-3; Sigma-Aldrich, 
Munich, Germany) was prepared in DMSO at a concentration 
of 10-2 M. Primary cells and myeloid cell lines were stimu-
lated with a stock solution of benzo[a]anthracene prediluted in  
cell specific medium as described above, at a concentration of 
10-6 M for 24 h.

2.3  RNA isolation
Total RNA was isolated using the RNeasy Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s instructions, 
including on-column digestion of DNA with RNase-free DNase 
I. The RNA was quantified by photometric measurement (Nano-
Drop Technologies, Wilmington, DE, USA).

2.4  Quantitative Real-Time  
Reverse Transcription Polymerase  
Chain Reaction (qRT-PCR)
Purified RNA was reverse transcribed with the High Capac-
ity RNA-to-cDNA Master Mix (Applied Biosystems, Darm-
stadt, Germany) according to the manufacturer’s instructions. 
Taq Man experiments were carried out on an ABI Prism 7000 
sequence detection system (Applied Biosystems, Darmstadt, 
Germany) using Assays-on-Demand gene expression prod-
ucts for AhR (Hs00169233_m1), ARNT (Hs00231048_m1), 
CYP1A1 (Hs00153120_m1), CYP1B1 (Hs00164383_m1), 
IL1ß (Hs00174097_m1), CYP2S1 (Hs00998125_m1), CYP2E1 
(Hs00c559367_m1) and CYP3A5 (Hs00241417_m1) according 
to the manufacturer’s recommendations. An Assay-on-Demand 
product for cyclophilin A (Hs99999904_m1) was used as an in-
ternal reference to normalize the target transcripts. Results were 
analyzed with the 7300 System SDS Software (Applied Biosys-
tems, Darmstadt, Germany). All measurements were performed 
in triplicates in separate reaction wells.

2.5  Immunocytological analysis of AhR expression
Cytospin preparations of moDCs, LCs, MUTZ-3, THP-1 and 
U937 (~ 0.1 x 106 cells) were stained with monoclonal antibod-
ies against CYP1A1 (ab3568), CYP1B1 (ab33586) and AhR 
(ab2770) (Abcam, Cambridge, UK) each for 1 h and protein 
expression was detected using a labeled streptavidin-biotin 

in Minimum Essential Medium alpha (MEM-α) + GlutaMAX™ 
(Gibco/Invitrogen, Darmstadt, Germany) supplemented with 
ribonucleosides and deoxyribonucleosides, 20% FCS (Bio-
chrom, Berlin, Germany), 2 mM L-Glutamine (Life Technolo-
gies, Darmstadt, Germany), 50 µM β-mercaptoethanol (Sigma-
Aldrich, Munich, Germany) and 10% of conditioned medium 
from the renal cell carcinoma cell line 5637 at 37°C in a 5% CO2 
humidified incubator. Cells were subcultured at a split ratio of 
1:2 twice per week. Cells were stimulated with benzo[a]anthra-
cene on days 6-7.

5637, a renal cell carcinoma cell line, was purchased from 
the German Collection of Microorganisms and Cell Cultures 
(Braunschweig, Germany, ACC35) and was cultured in RPMI 
medium supplemented with 10% FCS. The cells were subcul-
tured at a split ratio of 1:4 to 1:5 and passaged every 3-4 days.

MUTZ-DC
Immature MUTZ-DCs (MUTZ-derived dendritic cells) were 
generated from MUTZ-3 progenitor cells. MUTZ-3 cells were 
cultured at a density of 2x105 cells/ml in 12-well plates for 
6-7 days in Minimum Essential Medium alpha (MEM-α) + 
GlutaMAX™ (Gibco/Invitrogen, Darmstadt, Germany) sup-
plemented with ribonucleosides and deoxyribonucleosides,  
20% FCS (Biochrom, Berlin, Germany), 2 mM L-Glutamine (Life 
Technologies, Darmstadt, Germany), 50 µM β-mercaptoethanol 
(Sigma-Aldrich, Munich, Germany) without conditioned me-
dium of 5637 cells supplemented with 100 ng/ml GM-CSF,  
20 ng/ml IL-4 and 2.5 ng/ml TNF-α. On day 3, fresh cytokines 
equivalent to 1 ml of medium were added to each well. Cells 
were stimulated with benzo[a]anthracene at day 6-7.

MUTZ-LC
Immature MUTZ-LCs (MUTZ-derived Langerhans Cells) 
were generated from MUTZ-3 progenitor cells. MUTZ-3 cells 
were cultured at a density of 1x105 cells/ml in 12-well plates 
for 9 days in Minimum Essential Medium alpha (MEM-α) + 
GlutaMAX™ (Gibco/Invitrogen, Darmstadt, Germany) sup-
plemented with ribonucleosides and deoxyribonucleosides,  
20% FCS (Biochrom, Berlin, Germany), 2 mM L-Glutamine (Life 
Technologies, Darmstadt, Germany), 50 µM β-mercaptoethanol 
(Sigma-Aldrich, Munich, Germany) without conditioned medi-
um of 5637 cells supplemented with 100 ng/ml GM-CSF, 10 ng/
ml TGF-β and 2.5 ng/ml TNF-α (R&D Systems, Wiesbaden, 
Germany). On day 3 and 6, cytokines equivalent to 1 ml of 
medium were added to each well. Cells were stimulated with 
benzo[a]anthracene at day 9.

THP-1
Human THP-1 monocytic-like cells were obtained from the 
German Collection of Microorganisms and Cell Cultures 
(Braunschweig, Germany) and cultured as suspension cells in 
RPMI-1640 (Gibco/Invitrogen, Darmstadt, Germany) supple-
mented with 10% FCS (Biochrom, Berlin, Germany) at 37°C in 
a 5% CO2 humidified incubator. The cells were subcultured at a 
split ratio of 1:4 to 1:6 and passaged every 3-4 days. Cells were 
transferred to new 6-well-plates and stimulated with benzo[a]
anthracene.
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Fig. 1: Expression of AhR and ARNT in monocytes, iDC and LC and in the myeloid cell lines MUTZ-3, MUTZ-DC,  
MUTZ-LC, THP-1 and U937 
mRNA expression of AhR A) and ARNT B) was measured by TaqMan real-time PCR analysis. The relative RNA levels are presented  
as x-fold regulation compared to immature monocyte-derived dendritic cells (iDC) (= 1) and were normalized against cyclophilin A. Data 
of three blood donors are displayed for primary cells except for LC. Mean values and standard deviation of three biological replicates 
are displayed for the myeloid cell lines. C) Immunocytological representative analysis of AhR protein expression. Cytospin preparations 
of iDC, LC, MUTZ-3, THP-1 and U937 cells were stained with a monoclonal antibody against AhR and protein expression was detected 
using the Dako REAL Detection System. Counterstaining was performed using haematoxilin. Magnification x10, framed regions are 
separately enlarged (x20)
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method according to the manufacturer’s instructions (“Dako 
REAL™ Detection System, Alkaline Phosphatase/RED, Rab-
bit/Mouse” kit, Dako, Hamburg, Germany). Counterstaining 
was performed with hematoxylin (Sigma Aldrich, Munich, Ger-
many). Negative controls were stained with isotype mouse IgG1 
(Dako; Hamburg, Germany) (see supplementary file at http://
dx.doi.org/10.14573/altex.1502041s).

2.6  Statistical analysis
Data of primary cells are displayed as single experiments of 3 
biological replicates except for LC. Only one LC experiment 
was performed exemplarily. Data of 3 biological replicates of 
the cell lines are given as arithmetical means +/- standard devia-
tion. A paired t-test was performed to test for statistical signifi-
cance between unstimulated cells and benzanthracene-stimulat-
ed cells with respect to AhR-dependent genes. *p < 0.05; **p < 
0.01; ***p < 0.001. 

3  Results

We measured AhR and ARNT expression as well as the expres-
sion of AhR-dependent genes and additional CYP enzymes to 
compare the metabolizing capacity of primary dendritic cells 
(iDC) with the cell lines THP-1, MUTZ-3, MUTZ-DC, MUTZ-
LC and U937 used in in vitro assays for the detection of skin 
sensitization.

Figure 1 displays the relation of AhR expression in primary 
dendritic cells (iDC), monocytes, Langerhans cells (LC) and the 
cell lines THP-1, MUTZ-3, MUTZ-DC, MUTZ-LC and U937. 
Monocytes express the highest level of AhR (Fig. 1A) while 
the expression of AhR in iDC and in the single LC sample was 
comparable (Fig. 1A,C). Although there was an interindividual 
donor-dependent variance in gene expression of primary cells, 
the tendency of the observed gene regulation was similar. Re-
garding the cell lines, MUTZ-3 and THP-1 cells showed a lower 
expression of AhR compared to iDC and monocytes (Fig. 1A). 
This result was also confirmed on protein level by immunostain-
ing (Fig. 1C). MUTZ-DC, MUTZ-LC and U937 cells express 
about half the amount of AhR compared to iDC (Fig. 1A,C). 

ARNT, the AhR nuclear translocator, is expressed most 
prominently by monocytes followed by similar levels in iDC, 
MUTZ-3, MUTZ-DC and MUTZ-LC (Fig. 1B). The ARNT ex-
pression in the single LC sample and THP-1 cells was lower and 
in U937 cells ARNT expression was not detectable (Fig. 1B).

To measure the expression of AhR-dependent genes, the dif-
ferent cells were stimulated with the AhR-ligand benzo[a]an-
thracene for 24 h. The expression of CYP1A1, CYP1B1 and IL-
1β was increased in all samples of iDC, monocytes and LC by 
benzo[a]anthracene in comparison to unstimulated controls (Fig. 
2A,C,E). MUTZ-3, MUTZ-DC, MUTZ-LC and THP-1 cells 
also showed a statistically significantly increased expression of 
the AhR target gene CYP1A1 after incubation with benzo[a]
anthracene (Fig. 2B). CYP1B1 upregulation by benzo[a]anthra-
cene could be confirmed as statistically significant for MUTZ-
LC and THP-1 (Fig. 2D). However, CYP1B1 expression in 
unstimulated cells or cells treated with benzo[a]anthracene 

was significantly lower compared to iDC and monocytes (Fig. 
2D). U937 cells did not show an increased expression of either 
CYP1A1 or CYP1B1 after stimulation with benzo[a]anthracene. 
IL-1β is strongly expressed by LC, MUTZ-DC and MUTZ-LC 
compared to iDC (Fig. 2E, F). In contrast to the primary cells, 
no increased expression of IL-1β induced by benzo[a]anthra-
cene in the myeloid cell lines was detectable (Fig. 2F).

We further investigated the gene expression of AhR-inde-
pendent CYP isoenzymes in iDC, monocytes and LC as well 
as in the cell lines THP-1, MUTZ-3, MUTZ-DC, MUTZ-LC 
and U937, both in unstimulated cells and after incubation 
with the AhR-ligand benzo[a]anthracene for 24 h. Analysis of 
the expression of the CYP enzymes CYP2S1, CYP2E1 and 
CYP3A5 revealed no regulation by benzo[a]anthracene in all 
cell types analyzed except for a slight upregulation of CYP2S1 
in iDC (Fig. 3A), indicating that these CYP enzymes are no 
target genes of AhR (Fig. 3A-F). Figure 3A and B show that 
the cell lines THP-1, MUTZ-3 and U937 express less CYP2S1 
than iDC, monocytes and LC. On the other hand, CYP2S1 is 
approximately 2.5 and 4.4 fold expressed in MUTZ-DC and 
MUTZ-LC, respectively, compared to iDC (Fig. 3B). Mono-
cytes, LC, MUTZ-DC, MUTZ-LC and THP-1 cells show a 
trend towards a slightly higher expression of CYP2E1 com-
pared to iDC (Fig. 3C,D). In contrast, CYP2E1 is strongly 
expressed in the myeloid cell lines MUTZ-3 and U937 (Fig. 
3D). LC express a high amount of CYP3A5 compared to iDC 
(Fig. 3E). A strong expression of CYP3A5 is also detectable 
in MUTZ-3, MUTZ-DC and MUTZ-LC compared to iDC. In 
contrast, CYP3A5 expression is hardly detectable in mono-
cytes, iDC, THP-1 and U937 (Fig. 3E, F). 

4  Discussion

There is an urgent need for alternative in vitro test systems for 
assessment of skin sensitizing chemicals. Human primary den-
dritic cells as well as myeloid cell lines are used in in vitro ap-
proaches to predict skin sensitization (Basketter et al., 2008; Ott 
et al., 2010; Python et al., 2009), e.g., the Myeloid U937 Skin 
Sensitization Test (MUSST), which measures increase of CD86 
expression (Ade et al., 2006; Python et al., 2007), the human 
Cell Line Activation Test (h-CLAT), which assesses increase of 
CD86 and combined CD54 expression (Sakaguchi et al., 2006), 
or the Genomic Allergen Rapid Detection (GARD), which is 
based on a signature of predictive genes differentially regulated 
in the MUTZ3 cell line when stimulated with sensitizing com-
pared to non-sensitizing compounds (Johansson et al., 2013). 

The current study focused on the comparison of the metabo-
lizing capacity of human primary dendritic cells with the cell 
lines THP-1, MUTZ-3, MUTZ-DC, MUTZ-LC and U937. We 
investigated the expression of AhR and its cofactor ARNT and 
measured the mRNA levels of AhR-dependent genes (CYP1A1, 
CYP1B1, IL-1β) and of AhR-independent metabolizing CYP 
enzymes (CYP2S1, CYP2E1, CYP3A5) in unstimulated cells 
and cells stimulated with the AhR-ligand benzo[a]anthracene.

Our data show that monocytes have the highest expression of 
AhR followed by iDC, LC, MUTZ-LC, MUTZ-DC and U937. 
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Fig. 2: Benzo[a]anthracene induced mRNA expression of AhR-dependent genes in monocytes, iDC and LC  
and in the myeloid cell lines MUTZ-3, MUTZ-DC, MUTZ-LC, THP-1 and U937
mRNA expression of CYP1A1 (A/B), CYP1B1 (C/D) and IL-1β (E/F) was measured by TaqMan real-time PCR analysis in unstimulated cells 
and after stimulation with 10-6 M benzo[a]anthracene for 24 h. Measurement was performed in triplicates. Data of primary cells from three 
single blood donors is displayed except for LC (one donor). Data of myeloid cell lines is presented as mean value ± standard deviation. 
The relative RNA levels of the primary cells are displayed as x-fold regulation compared to unstimulated immature monocyte-derived 
dendritic cells (iDC) (= 1), whereas RNA levels of the myeloid cell lines are displayed as x-fold regulation compared to the mean value of 
iDC from three blood donors (= 1). RNA levels were normalized against cyclophilin A. A paired t-test was performed to test for statistical 
significance between unstimulated cells and benzo[a]anthracene-stimulated cells. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Fig. 3: Benzo[a]anthracene induced mRNA expression of AhR-independent genes in monocytes, iDC and LC and  
in the myeloid cell lines MUTZ-3, MUTZ-DC, MUTZ-LC, THP-1 and U937 
mRNA expression of CYP2S1 (A/B), CYP2E1 (C/D) and CYP3A5 (E/F) was measured by TaqMan real-time PCR analysis in unstimulated 
cells and after stimulation with 10-6 M benzo[a]anthracene for 24 h. Measurement was performed in triplicates. Data of primary cells  
from three single blood donors is displayed except for LC. Data of myeloid cell lines is presented as mean value ± standard deviation. The 
relative RNA levels of the primary cells are displayed as x-fold regulation compared to unstimulated immature monocyte-derived  
dendritic cells (iDC) (= 1), whereas RNA levels of the myeloid cell lines are displayed as x-fold regulation compared to the mean value of 
iDC from three blood donors (= 1). RNA levels were normalized against cyclophilin A.
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cal coal tar induces cutaneous CYP2S1 expression in vivo and 
identified multiple xenobiotic-response-elements consensus se-
quences in the CYP2S1 promotor, leading them to the predic-
tion that PAHs are also metabolized by CYP2S1. Yeager et al. 
(2009) demonstrated that Nrf2, in addition to AhR, is required 
for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induction of 
classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well 
as most Ugt and Gst isoforms in liver of mice. AhR and Nrf2 are 
transcription factors that control Nqo1/NQO1 expression (Lin 
et al., 2011). It is hypothesized that NQO1 induction occurs via 
AhR-dependent Nrf2 activation (Haarmann-Stemmann et al., 
2012). Ott et al. (2010) and Python et al. (2009) have identified 
NQO1 as a marker gene up-regulated after stimulation of moD-
Cs with cinnamic aldehyde by microarray analysis. NQO1 was 
modulated by most sensitizers after exposure of MUTZ-3 cells 
and PBMDCs (peripheral blood mononuclear-derived dendritic 
cells) with selected sensitizers for 24 h (Python et al., 2009). 
NQO1 expression was also affected by β-lactam antibiotics in 
moDCs, suggesting a direct role of AhR signal transduction in 
contact hypersensitivity reactions (Sebastian et al., 2012). Jux 
et al. (2009) found that Ahr-/- mice mounted a lower contact 
hypersensitivity response against FITC but it appeared not due 
to an inability of LC or dermal DC to leave the skin and reach 
the draining lymph nodes after antigen uptake. 

The different levels of AhR and ARNT expression measured 
in this study and the different levels of induced AhR-dependent 
gene expression indicate that some cell lines may have a more 
limited applicability domain for assessment of skin sensitizing 
chemicals than others. It is therefore critically important to in-
vestigate the metabolic capability of cell lines used in in vitro 
models for the prediction of skin sensitization. Otherwise, aller-
gens, especially pro-haptens, could escape APC-based in vitro 
detection. Additional studies are required regarding the combi-
nation of cutaneous xenobiotic metabolizing enzymes and APC-
sensitization for the development of valid in vitro models for 
skin sensitization assessment.
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