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The molecular events leading to skin sensitization and conse-
quently to ACD can be characterized by a number of sequential 
key events (KE) triggered by a chemical, and have been sum-
marized in an adverse outcome pathway (AOP) as described 
by the OECD (2012). The initiating event (KE1) is defined as 
covalent protein modification by the skin sensitizing chemical 
after it has gained access to deeper skin layers. The following 
KE2 represents the inflammatory responses upon activation of 
keratinocytes. KE3 corresponds to the activation of dendritic 
cells, which in turn leads to activation and proliferation of T 
cells (KE4). Upon re-exposure to the sensitizer, the develop-
ment of ACD may be triggered, which is characterized by skin 
lesions induced by specific Th1 and CD8+ T cells. While the KE 
in the AOP are well described, a detailed mechanistic under-
standing of the underlying biology of the individual key events 
is still missing (OECD, 2012).

The murine Local Lymph Node Assay (LLNA) (Gerberick 
et al., 2007), followed by the Guinea Pig Maximization Test 
(Magnusson and Kligman, 1969), has for many years been the 

1  Introduction

Skin sensitization and associated diseases such as contact al-
lergy affect a substantial portion of the general population with 
an estimated prevalence of 15-20% in industrialized countries 
(Peiser et al., 2012). Allergic contact dermatitis (ACD), a type 
IV hypersensitivity reaction, is common among certain occupa-
tional groups such as those regularly exposed to chemicals or 
involved in wet work (Behroozy and Keegel, 2014). However, 
also cosmetics and household products can contain numerous 
skin sensitizing chemicals. The European Union has imposed 
requirements for testing of > 60,000 chemicals in the context 
of REACH (Hartung and Rovida, 2009), and prohibited animal 
testing for cosmetics and their ingredients (European Parlia-
ment, 2009). Information on both the skin sensitizing capacity 
and the potency of a chemical has to be provided to meet the 
regulatory requirements for classification and sub-categoriza-
tion. Animal-free alternative assays that meet these require-
ments are urgently needed. 
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The CLP Regulation is based on the Globally Harmonised 
System (CLP, 2016), and uses three categories for chemical 
classification: no category (no cat) for non-sensitizers, category 
1B for weak and 1A for strong sensitizers. In light of the above 
described observations, it was hypothesized that GARD can 
be developed further into a tool for the prediction of chemical 
skin sensitizer potency, targeting the CLP categories. As the 
established GARD SVM model cannot be applied to multiclass 
problems, we used another approach based on random forest 
modelling (Breiman, 2001). Random forest is a decision-tree 
based method and well-suited for microarray data (Díaz-Uriarte 
and Alvarez de Andrés, 2006). It divides the dataset internal-
ly and repeatedly into a training and test set through random 
sub-sampling (bootstrapping). Samples in the test set, referred 
to as out-of-bag samples, comprise approximately one third of 
the entire dataset, and are used in order to estimate the out-of-
bag (OOB) error, i.e., the classification error.

Here, we present a new approach to predict skin sensitizer po-
tency according to CLP categories based on supervised machine 
learning using a random forest model. Firstly, the global gene 
expression data from a training set comprising 68 unique chemi-
cals and 2 vehicle control samples were used as input into a ran-
dom forest model. The random forest model was subsequently 
combined with an algorithm for backward variable elimination. 
The algorithm initially ranked the variable importance of each 
transcript from the microarrays, and then iteratively fitted new 
random forests, while removing the least important variables 
from the previous iteration. Using this strategy, we were able to 
identify a set of 52 transcripts with the smallest OOB error rate 
when predicting the out-of-bag samples from the training set. 
The predictive performance of the 52 transcripts was challenged 
with an independent test set containing 18 chemicals previously 
unseen to the model. The chemicals in this test set could be pre-
dicted with an overall accuracy of 78%. In addition to the pre-
dictive model, we also demonstrated the versatility of analyzing 
whole transcriptomes of cells by performing pathway analysis 
to further improve the mechanistic understanding of skin sensi-
tizing potency on a cellular level, confirming the hypothesis that 
different chemical reactivity classes induce distinct signaling 
pathways.

2  Materials and methods

Cells and flow cytometry
The myeloid cell line used in this study was derived from 
MUTZ-3 (DSMZ, Braunschweig, Germany) and maintained 
as described (Johansson et al., 2011, 2013). A phenotypic  
control analysis of the cells prior to each experiment was car-
ried out by flow cytometry in order to confirm the cells’ im-
mature state. The following monoclonal antibodies were used: 
CD1a (DakoCytomation, Glostrup, Denmark), CD34, CD86,  
HLA-DR (BD Biosciences, San Jose, USA), all FITC-conjugat-
ed; CD14 (DakoCytomation), CD54, CD80 (BD Biosciences), 
all PE-conjugated. FITC- and PE-conjugated mouse IgG1 (BD 
Biosciences) served as isotype controls and propidium iodide as 
a marker for non-viable cells (BD Biosciences). Three batches 

preferred assay for skin sensitization testing as the LLNA is able 
to provide data for both hazard identification and characteriza-
tion, including skin sensitizer potency information. However, it 
is characterized by certain limitations such as susceptibility to 
vehicle effects and issues with false-positive results (Anderson 
et al., 2011). Several non-animal predictive methods have been 
developed to reduce animal experimentation used for chemical 
testing including computational approaches to integrate data 
from different test platforms for hazard identification as re-
cently reviewed (Ezendam et al., 2016). Three test methods for 
skin sensitization are accepted as test guidelines at the OECD; 
the ARE-NRF2 luciferase method (KeratinoSens™) assay 
(Andreas et al., 2011; Natsch and Emter, 2008), the Direct Pep-
tide Reactivity Assay (DPRA) (Gerberick et al., 2004) and the 
human Cell Line Activation Test (h-CLAT) (Ashikaga et al., 
2006). In addition to hazard identification, information on skin 
sensitizer potency is imperative in order to allow quantitative 
risk assessment and to define exposure limits. Approaches for 
the prediction of skin sensitizer potency have been published 
and were recently reviewed by Ezendam et al. (2016), such as 
assays targeting KE2 (epidermal equivalent sensitizer potency 
assay (Teunis et al., 2014), SENS-IS (Cottrez et al., 2015)) 
and the U-SENS assay modelling KE3 (Piroird et al., 2015). 
Furthermore, in silico models, often combining information 
from several in vitro methods, have been described, for ex-
ample QSAR (Dearden et al., 2015), artificial neural networks 
(Tsujita-Inoue et al., 2014), probabilistic models and integrated 
testing strategy (ITS) approaches including a Bayesian model 
(Jaworska et al., 2013, 2015; Luechtefeld et al., 2015; Natsch 
et al., 2015).

The alternative assay Genomic Allergen Rapid Detection 
(GARD) for the binary classification of chemicals into skin 
sensitizers and non-sensitizers is based on global transcriptomic 
analysis of differential expression in a human myeloid cell line, 
induced by sensitizing chemicals in comparison to non-sensi-
tizing controls. The resulting biomarker signature, the GARD 
prediction signature (GPS), consists of 200 transcripts, which 
are used as input into a support vector machine (SVM) model 
trained on a set of reference chemicals (Johansson et al., 2011). 
The changes in transcription can be linked to the maturation 
and activation of dendritic cells (KE3) during sensitization. In 
an in-house study based on 26 blinded chemicals, the accuracy 
of the assay was estimated to be 89% (Johansson et al., 2014) 
primarily based on LLNA reference data. 

Previous observations indicated that the GARD assay is 
able to provide information relevant also for potency assess-
ment. Firstly, signaling pathways were differentially regulated 
depending on the potency of a subset of chemical reactivity 
groups (Albrekt et al., 2014). Secondly, we observed that more 
potent sensitizers were generally assigned higher GARD SVM 
decision values compared to weaker sensitizers, indicating that 
there were genes within the signature contributing with potency 
information (unpublished observations). However, the infor-
mation in the GARD prediction signature was not sufficient 
to completely stratify chemicals into the well-defined potency 
groups as described by the Classification, Labelling and Pack-
aging (CLP) Regulation (CLP, 2016). 
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Tab. 1: The 37 novel chemicals with CLP annotations used to complement existing GARD data 

Name	 CAS# 	 CLP 	 Cytotox	 GARD input (M)	 Binary class (HP*)	 GARD binary prediction

2,4-dinitrofluorobenzene	 70-34-8	 1A	 yes	 0.00001	 S	 S

3-methylcatechol	 488-17-5	 1A	 yes	 0.00004	 S	 S

bisphenol A-diglycidyl ether	 1675-54-3	 1A	 yes	 0.00005	 S	 S

chlorpromazine	 50-53-3	 1A	 yes	 0.0000125	 S	 S

cyanuric chloride	 108-77-0	 1A	 yes	 0.00005	 S	 NS

glutaraldehyde	 111-30-8	 1A	 yes	 0.00002	 S	 S

hexyl salicylate	 6259-76-3	 1A	 yes	 0.00007	 S	 S

iodopropynyl butylcarbamate	 55406-53-6	 1A	 yes	 0.00001	 S	 S

methyl heptine carbonate	 111-12-6	 1A	 yes	 0.0001	 S	 S

p-benzoquinone	 106-51-4	 1A	 yes	 0.00005	 S	 S

propyl gallate	 121-79-9	 1A	 yes	 0.000125	 S	 S

abietic acid	 514-10-3	 1B	 no	 0.000125	 S	 S

amylcinnamyl alcohol	 101-85-9	 1B	 yes	 0.0003	 S	 S

anethole	 104-46-1	 1B	 no	 0.0005	 NS	 S

aniline	 62-53-3	 1B	 no	 0.0005	 S	 NS

anisyl alcohol	 105-13-5	 1B	 no	 0.0005	 NS	 NS

benzocaine	 94-09-7	 1B	 no	 0.0005	 S	 NS

benzyl benzoate	 120-51-4	 1B	 yes	 0.0003	 NS	 S

butyl glycidyl ether	 2426-08-6	 1B	 yes	 0.0005	 S	 NS

citral	 5392-40-5	 1B	 yes	 0.0000625	 S	 S

citronellol	 106-22-9	 1B	 no	 0.0005	 NS	 S

diethanolamine	 111-42-2	 1B	 no	 0.0005	 NS	 NS

imidazolidinyl urea	 39236-46-9	 1B	 yes	 0.00005	 S	 S

isopropyl myristate	 110-27-0	 1B	 no	 0.0005	 NS	 NS

lilial	 80-54-6	 1B	 yes	 0.0001875	 S	 S

limonene	 5989-27-5	 1B	 no	 0.0005	 S	 NS

linalool	 78-70-6	 1B	 no	 0.0005	 S	 NS

lyral	 31906-04-4	 1B	 yes	 0.0001	 S	 S

pentachlorophenol	 87-86-5	 1B	 no	 0.0000625	 NS	 NS

pyridine	 110-86-1	 1B	 no	 0.0005	 NS	 NS

1-bromobutane	 109-65-9	 no cat	 no	 0.0005	 NS	 NS

benzoic acid	 65-85-0	 no cat	 no	 0.0005	 NS	 NS

benzyl alcohol	 100-51-6	 no cat	 no	 0.0005	 NS	 NS

citric acid	 77-92-9	 no cat	 no	 0.0005	 NS	 NS

dextran	 9004-54-0	 no cat	 no	 0.00003	 NS	 NS

kanamycin A	 25389-94-0	 no cat	 no	 0.000125	 NS	 NS

tartaric acid	 87-69-4	 no cat	 no	 0.0005	 NS	 NS

* NS, non-sensitizer; S, sensitizer; based on Basketter et al. (2014) where available; HP, human potency (1-4 = S; 5-6 = NS).  
Otherwise according to CLP, see also Table 4.
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with the Skin Tolerance Task Force of Cosmetics Europe (CE), 
who kindly provided 27 chemicals. In order to build a random 
forest model, the new microarray data were merged with histor-
ical data (Johansson et al., 2011, 2014), resulting in information 
from 86 unique chemicals and two vehicle controls (Tab. 2). 
Thereof, 68 samples were defined as a training set, and 18 sam-
ples, corresponding to six chemicals from each CLP category, 
were included in the independent test set. For four chemicals, 
CLP classification 1B was changed to no category / non-sen-
sitizer according to the sources indicated in Table 2 for one of 
three reasons: i) for retaining consistency with previous GARD 
projects (benzaldehyde, xylene), ii) for being used as vehicle at a 
non-sensitizing concentration (DMSO), and for being a well-de-
scribed false-positive in the LLNA (sodium dodecyl sulfate). 

Binary classifications
Binary classifications of the 37 chemicals summarized in 
Table 1 into sensitizers or non-sensitizers were performed 
with the previously established model based on SVM, using 
SCAN-normalized (Piccolo et al., 2012, 2013) expression da-
ta from the GPS as variable input into the learning algorithm 
(Johansson et al., 2011). Prior to model construction, potential 
batch effects between training set and test chemicals were 
eliminated by scaling array expression values for test chemi-
cals against the training set. A scaling factor was generated by 
calculating the ratio of the average expression value for each 
transcript in DMSO vehicle control samples of the training 
set and the average expression value for same transcript in  
DMSO samples in the batch where the test chemical originated. 
The scaling factor for each transcript was then multiplied with 
the expression values for the corresponding transcript in the 
test chemical. SVM predictions were performed as described 
previously (Forreryd et al., 2016; Johansson et al., 2011). In 
short, an SVM model based on a linear kernel was trained on 
reference chemical stimulations from the original training set 
used during identification of the GPS (Johansson et al., 2011). 
The trained model was subsequently applied to assign each test 
chemical with an SVM decision value (SVM DV). Resulting 
SVM DV for all test chemicals were used to construct a re-
ceiver operating characteristics (ROC) curve, and the resulting 
area under the curve (AUC) was used as a classification mea-
sure (Lasko et al., 2005). SVM modeling and ROC curve visu-
alizations were performed in R statistical environment, using 
the additional packages e1071 (Dimitriadou, 2011) and ROCR 
(Sing et al., 2005). Prior to evaluating final predictive perfor-
mance of the model, SVM DVs for each individual replicate 
of the test chemicals were calibrated against the cut-off for 
maximal predictive performance obtained during classification 
of benchmark samples in Table 3, as described by Forreryd et 
al. (2016). The calibrated SVM DVs were subsequently used 
for final classifications, and test chemicals were classified as 
sensitizers if the median output value of replicates > 0. Accu-
racy, sensitivity and specificity was estimated using Cooper 
statistics (Cooper et al., 1979). The non-parametric two-sam-
ple Wilcoxon test was performed in order to determine if the 
SVM DV distributions between CLP categories 1A, 1B and no 
cat differed significantly. 

of cells, representing three biological replicates, were exposed 
for 24 h in independent experiments and viability and CD86 
expression were assessed by flow cytometry. All FACS samples 
were analyzed on a FACSCanto II instrument with FACS Diva 
software for data acquisition. 10,000 events were acquired and 
further analysis was performed in FCS Express V4 (De Novo 
Software, Los Angeles, CA). Cells for RNA extraction were 
lysed in TRIzol® (Life Technologies/Thermo Fisher Scientific, 
Waltham, USA) and stored until further use at -20°C.

Chemicals and stimulations
All chemicals were purchased from Sigma Aldrich (Saint Louis, 
USA) in high purity quality or they were provided by Cosmetics 
Europe. All chemicals were stored according to the recommen-
dations of the supplier. The chemical stimulation of cells was 
performed as described earlier (Johansson et al., 2013). In short, 
GARD input concentrations were defined by solubility and 
cytotoxicity characteristics of the chemicals. An end concen-
tration of 500 µM was targeted for non-cytotoxic and soluble 
chemicals and the highest possible concentration for chemi-
cals with limited solubility (lower than 500 µM in medium). 
Cytotoxic chemicals were used at a concentration targeting a 
relative viability of cells of 90%. Most chemicals were used 
from a 1,000x pre-dilution in dimethyl sulfoxide (DMSO) or 
autoclaved MilliQ water. DMSO concentration as vehicle never 
exceeded 0.1%. DMSO and MilliQ samples were included as 
vehicle controls in this study and thus belong to the group of 
non-sensitizer samples.

RNA extraction, cDNA and array hybridization
RNA isolation from cells lysed in TRIzol® was performed ac-
cording to the manufacturer’s instructions. All samples were 
subjected to quality control using a Bioanalyzer 2100 (Agilent, 
Santa Clara, United States) prior to hybridization to the mi-
croarrays. Labeled sense DNA was synthesized according to 
Affymetrix (Affymetrix, Cleveland, USA) protocols using the 
recommended kits and controls. The cDNA was hybridized 
to Human Gene 1.0 ST arrays (Affymetrix) and further pro-
cessed and scanned as recommended by the supplier. The new 
microarray data were merged with historical data (Johansson 
et al., 2011, 2014) and together subjected to quality control. 
The low-quality arrays excluded from downstream processing 
were identified from the normalized unscaled standard error 
(NUSE), which is an established measure to estimate overall 
variation for a specific array. An array was defined as poor 
quality if it was centered around 1.1 or had an overall higher 
spread of the NUSE distribution than the others, according to 
recommendations provided by Affymetrix. Additionally, the 
poor quality was also confirmed from the distribution of the 
arrays in a PCA plot.

Chemical classifications and dataset overview
A novel dataset comprising 37 well-characterized chemicals 
(Tab. 1) was selected in order to complement historical GARD 
data for 49 chemicals. The novel chemicals were selected based 
on European Chemicals Agency CLP databases and literature 
(Basketter et al., 2014; Piroird et al., 2015) and in cooperation 
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Tab. 2: Controls and 86 unique chemicals used to train and test the random forest model for the prediction of CLP categories

Stimulation	 HP	 CLP	 Binary class	 Set	 Toxtree protein binding class

1-brombutane	 na	 no cat	 NS	 test	 SN2

anethole	 5	 1B	 S	 test	 MA

benzoic acid	 na	 no cat	 NS	 test	 no binding

benzyl benzoate	 5	 1B	 S	 test	 AT

bisphenol A-diglycidyl ether	 3	 1A	 S	 test	 SN2

butyl glycidyl ether	 3	 1B	 S	 test	 SN2

citric acid	 na	 no cat	 NS	 test	 no binding

cyanuric chloride	 na	 1A	 S	 test	 SNAr

diethyl maleate	 2	 1B	 S	 test	 MA

diethyl phthalate	 6	 no cat	 NS	 test	 no binding

ethyl vanillin	 nf	 no cat	 NS	 test	 SB

glutaraldehyde 	 2	 1A	 S	 test	 SB

iodopropynyl butylcarbamate	 4	 1A	 S	 test	 AT

linalool	 4	 1B	 S	 test	 no binding

lyral	 2	 1B	 S	 test	 SB

p-benzochinone	 na	 1A	 S	 test	 MA

propyl gallate	 2	 1A	 S	 test	 MA

xylene1	 6	 no cat	 NS	 test	 no binding

1-butanol	 6	 no cat	 NS	 train	 no binding

2,4-dinitrochlorobenzene	 1	 1A	 S	 train	 SNAr

2,4-dinitrofluorobenzene	 na	 1A	 S	 train	 SNAr

2-aminophenol	 2	 1A	 S	 train	 MA

2-hydroxyethyl acrylate	 3	 1A	 S	 train	 MA

2-mercaptobenzothiazole	 3	 1A	 S	 train	 AT

2-nitro-1,4-phenylenediamine	 2	 1A	 S	 train	 MA

3-methylcatechol	 na	 1A	 S	 train	 MA

4-methylaminophenol sulfate	 3	 1A	 S	 train	 MA

4-nitrobenzylbromide	 na	 1A	 S	 train	 SN2

abietic acid	 3	 1B	 S	 train	 no binding

amylcinnamyl alcohol	 4	 1B	 S	 train	 MA

aniline	 4	 1B	 S	 train	 no binding

anisyl alcohol	 5	 1B	 S	 train	 MA/SN2

benzaldehyde2	 5	 no cat	 NS	 train	 SB

benzocaine	 4	 1B	 S	 train	 no binding

benzyl alcohol	 na	 no cat	 NS	 train	 no binding

chloroanilin	 na	 1B	 S	 train	 no binding

chlorobenzene	 na	 no cat	 NS	 train	 no binding

chlorpromazine	 3	 1A	 S	 train	 SB

cinnamaldehyde	 2	 1A	 S	 train	 MA

cinnamyl alcohol	 3	 1B	 S	 train	 MA

citral	 3	 1B	 S	 train	 SB

citronellol	 5	 1B	 S	 train	 no binding

dextran	 6	 no cat	 NS	 train	 SB
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diethanolamine	 5	 1B	 S	 train	 no binding

dimethyl formamide	 nf	 no cat	 NS	 train	 nf

dimethyl sulfoxide3	 6	 no cat	 NS	 train	 no binding

diphenylcyclopropenone	 1	 1A	 S	 train	 MA

ethylenediamine	 3	 1B	 S	 train	 SB

eugenol	 3	 1B	 S	 train	 MA

formaldehyde	 2	 1A	 S	 train	 SB

geraniol	 4	 1B	 S	 train	 SB

glycerol	 6	 no cat	 NS	 train	 no binding

glyoxal	 2	 1A	 S	 train	 no binding

hexane	 6	 no cat	 NS	 train	 no binding

hexyl salicylate	 4	 1A	 S	 train	 no binding

hexylcinnamic aldehyde	 5	 1B	 S	 train	 MA

hydroquinone	 3	 1A	 S	 train	 MA

hydroxycitronellal	 4	 1B	 S	 train	 SB

imidazolidinyl urea	 3	 1B	 S	 train	 AT

isoeugenol	 2	 1A	 S	 train	 MA

isopropanol	 5	 no cat	 NS	 train	 no binding

isopropyl myristate	 5	 1B	 S	 train	 no binding

kanamycin A	 6	 no cat	 NS	 train	 no binding

Kathon CG	 1	 1A	 S	 train	 nf

lactic acid	 6	 no cat	 NS	 train	 no binding

lauryl gallate	 2	 1A	 S	 train	 MA

lilial	 4	 1B	 S	 train	 SB

limonene	 4	 1B	 S	 train	 no binding

methyl heptine carbonate	 2	 1A	 S	 train	 MA

methyl salicylate	 5	 no cat	 NS	 train	 no binding

methyldibromo glutaronitrile	 2	 1A	 S	 train	 MA/SN2

octanoic acid	 6	 no cat	 NS	 train	 no binding

pentachlorophenol	 5	 1B	 S	 train	 SNAr

phenol	 6	 no cat	 NS	 train	 no binding

phenyl benzoate	 3	 1B	 S	 train	 AT

phenylacetaldehyde	 na	 1B	 S	 train	 SB

p-hydroxybenzoic acid	 nf	 no cat	 NS	 train	 no binding

potassium dichromate	 1	 1A	 S	 train	 no binding

potassium permanganate	 nf	 no cat	 NS	 train	 nf

p-phenylenediamine	 1	 1A	 S	 train	 MA

pyridine	 5	 1B	 S	 train	 no binding

resorcinol	 4	 1B	 S	 train	 MA

salicylic acid	 6	 no cat	 NS	 train	 no binding

sodium dodecyl sulfate4	 6	 no cat	 NS	 train	 SN2

tartaric acid	 na	 no cat	 NS	 train	 no binding

tetramethylthiuram disulfide	 3	 1B	 S	 train	 no binding

Tween 80	 6	 no cat	 NS	 train	 na

unstimulated	 6	 no cat	 NS	 train	 nf

AT, acyl transfer agent; HP, human potency; MA, Michael acceptor; na, not available; nf, not found; NS, non-sensitizer;  
S, sensitizer; SB, Schiff base formation; SN2, bi-molecular nucleophilic substitution; SNAr, nucleophilic aromatic substitution 
1,3,4 NS according to Basketter et al. (2014); 2 NS according to Sens-it-iv project (Roggen and Blaauboer, 2013)
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er signature was identified by feeding normalized and batch 
corrected transcript intensities from individual samples in the 
training set into a random forest model (Breiman, 2001) com-
bined with a backward elimination procedure in the varSelRF 
package (Diaz-Uriarte, 2007) in R/Bioconductor version 
3.1.2. The initial forest used for ranking of variable impor-
tance was grown to 2,000 trees and all other parameters were 
kept at the default settings. The package iteratively fits and 
evaluates random forest models, at each iteration dropping 
20% of the least important variables. The best performing set 
of variables was selected based on OOB error rates from all 
fitted random forests as the smallest number of transcripts 
within one standard error from the minimal error solution 
(i.e., 1 s.e. rule). The variable selection procedure was val-
idated by estimating the prediction error rate by the .632+ 
bootstrap method of the varSelRF package using 100 boot-
strap samples, and the importance of individual transcripts 
in the biomarker signature was validated by the frequency 
of appearance in bootstrap samples (referred to as validation 
call frequencies (VCF)). The predictive performance of the 
identified biomarker signature was validated by building a 
new forest in the random forest package (Liaw and Wiener, 
2002), based on previous parameters, using only the samples 
in the training set and the selected transcripts in the biomarker 
signature as variable input. The model was applied to assign 
each individual replicate sample in the test set to a CLP cat-

Data handling and statistical analysis
In order to build a random forest model, 68 chemical and two 
vehicle control samples analyzed as described above with 
Human Gene 1.0 ST arrays (33,297 transcripts, partly named 
genes, more commonly referred to as variables) were defined as 
a training set, and 18 samples, six chemicals from each CLP cat-
egory, were included in the independent test set. Samples in the 
test set were not included in the construction of the model. The 
aim was to obtain a balanced training set representing all three 
CLP categories (Tab. 4) and different chemical reactivity groups 
as listed in Table 2 (“Toxtree protein binding class”; Patlewicz 
et al., 2008; Piroird et al., 2015). Most of the chemicals in the 
test set (14 out of 18) originated from the latest experimental 
campaign (Tab. 1), comprising 37 chemicals previously not 
investigated using the GARD assay. In the training set, roughly 
one third of samples (23 out of 68) were from this latest dataset. 
The vehicle samples were part of all projects and are thus pres-
ent with higher replicate numbers. 

The new microarray data were merged with historical data 
(Johansson et al., 2011, 2014), and four arrays were removed 
due to poor quality; however, no chemical was present in 
less than biological duplicates, i.e., based on cells derived 
from at least two different batches. Array data was imported 
into the R statistical environment and normalized using the 
SCANfast algorithm (Piccolo et al., 2012, 2013). As several 
experimental campaigns needed to be combined, this dataset 
was normalized using the ComBat method (Leek et al., 2014; 
Johnson et al., 2007) in order to remove batch effects between 
samples. At this time, the samples in the training set were sep-
arated from the samples in the test set. To avoid overfitting, 
only samples in the designated training set were used during 
identification of the predictive biomarker signature and for 
fitting of parameters to the classifier, and samples in the test 
set were set aside to validate the performance of the identified 
signature and the specified classifier. The predictive biomark-

Tab. 3: Benchmark chemicals

Chemical	 CAS	 CLP	 Binary class	 HP	 GARD input (M)

2,4-dinitrochlorobenzene	 97-00-7	 1A	 S	 1	 0.000004

p-phenylenediamine	 106-50-3	 1A	 S	 1	 0.000075

2-hydroxethylacrylate	 818-61-1	 1A	 S	 3	 0.0001

2-nitro-1,4-phenylenediamine	 5307-14-2	 1A	 S	 2	 0.0003

2-aminophenol	 95-55-6	 1A	 S	 2	 0.0001

resorcinol	 108-46-3	 1B	 S	 4	 0.0005

geraniol	 106-24-1	 1B	 S	 4	 0.0005

hexylcinnamic aldehyde	 101-86-0	 1B	 S	 5	 0.000032

benzaldehyde*	 100-52-7	 no cat	 NS	 5	 0.00025

chlorobenzene	 108-90-7	 no cat	 NS	 6	 0.000098

1-butanol	 71-36-3	 no cat	 NS	 6	 0.0005

*NS according to Basketter et al. (2014). HP, human potency; NS, non-sensitizer; S, sensitizer

Tab. 4: Training and test set composition

	 Total	 CLP	 CLP	 CLP 
	 number	 1A	 1B	 no cat

Training set	 70	 23	 25	 22

Test set	 18	 6	 6	 6
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3  Results

3.1  Binary classifications of 37 chemicals
A novel dataset comprising 37 well-characterized chemicals 
(Tab. 1) was selected in order to complement historical GARD 
data for 51 chemicals and to represent a relevant choice of 
chemicals, balanced in terms of chemical reactivity class 
and use in consumer products. The 37 novel chemicals were 
predicted as sensitizers or non-sensitizers using the GPS and 
previously established protocols based on SVM classifica-
tions. The SVM model was applied to assign each individual 
replicate sample with a SVM DV. Prior to final classifications, 
SVM DVs from the 37 samples were first calibrated against  
11 benchmark samples (Tab. 3) included in the same sample 
batch as the test chemicals. For the purpose of evaluating bina-
ry predictions, we here decided to prioritize human data (Bas-
ketter et al., 2014) when available, where classes one to four 
correspond to sensitizers and five and six to non-sensitizer, 
instead of CLP classifications. Model performance predicting 
the 37 chemicals is summarized by an AUC ROC of 0.88, indi-
cating a good discriminatory ability, and as illustrated in Figure 
1A. The sensitivity, specificity and accuracy based on Cooper 
statistics were estimated as 73%, 80% and 76%, respectively. 
In combination with previously published data (Johansson et 
al., 2014) the updated predictive accuracy of GARD for binary 
classification of skin sensitizers is estimated as 84% based on 
a dataset comprising a total of 74 chemicals. When the chem-
icals in Table 1 were grouped according to CLP classification,  
and the respective SVM DV values obtained during classifica-
tion of the 37 chemicals were summarized in a boxplot as pre-
sented in Figure 1B, a potency gradient emerged, as the stron-
ger sensitizers were assigned higher SVM DVs in comparison 
to the weaker sensitizers in category 1B and the non-sensi-
tizers in no cat. According to non-parametric two-sample  
Wilcoxon tests comparing SVM DV sample distributions, these  
groups differed significantly (no cat vs 1B: p = 2.8-5; 1B vs  
1A: p = 2.8-6, no cat vs 1A: p = 3.5-12). Although the differ-

egory, and the majority vote across the biological replicate 
stimulations for each chemical was accepted as the predicted 
category. Heatmaps and PCA plots were constructed in Qlu-
core Omics Explorer (Qlucore AB, Lund, Sweden) in order to 
visualize the RNA expression data.    

Pathway analysis
Pathway analysis was performed with the Key Pathway Ad-
visor (KPA) tool version 16.6 (KPA, 2016), which provides a 
pathway analysis workflow to investigate, e.g., gene expres-
sion data. It associates differentially expressed genes with both 
upstream and downstream processes in order to allow biolog-
ical interpretation. The investigated dataset, consisting of the 
SCANfast- and ComBat-normalized expression values of the 
test set and the training set, in total 308 samples, was first vari-
ance-filtered in order to remove variables with consistently low 
variance until approximately a third was left (10,009 variables, 
σ/σmax = 0.1478). A multigroup comparison (ANOVA) com-
paring samples belonging to CLP no cat, 1B, and 1A was then 
applied in order to identify transcripts that were differentially 
regulated. The most significant 883 transcripts (false discovery 
rate FDR = 10-9; p = 8.53 x 10-11) were used as input into KPA 
(Affymetrix Exon IDs and respective p-value, overconnectivity 
analysis). In order to identify pathways associated with pro-
tein reactivity, the same variance-filtered dataset was filtered 
based on two-group comparisons (t-tests, Toxtree binding class 
“no binding” non-sensitizers (81 samples) versus “Michael 
acceptor” sensitizers (MA, 63 samples), “no binding” versus 
“Schiff base formation” (SB, 29 samples), “no binding” versus 
combined “bi-molecular nucleophilic substitution/nucleophilic 
aromatic substitution” (SN, 25 samples). Lists with the 500 
most significantly regulated variables from each comparison, 
together with p-value and fold change (causal reasoning analy-
sis), were then entered into the KPA tool for each protein reac-
tivity group. The lowest p-value was reached when comparing  
MA samples to “no binding” (FDR = 3.65 x 10-7), followed by 
SB (FDR = 2.3 x 10-5) and SN (FDR = 2.44 x 10-5).

Fig. 1: Binary predictions using  
the GARD assay 
ROC evaluation for (A) binary predictions 
of benchmark chemicals (filled line)  
and of 37 new chemicals (dotted line).  
(B) GARD SVM decision values (DVs) 
correlate with CLP potency (37 chemicals, 
11 1A, 19 1B, 7 no cat). Increasing  
potency is associated with increasing DVs.
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A random forest model for the prediction of three CLP cat-
egories was developed based on a training set consisting of 
70 unique samples, including two vehicle controls. From an 
input of > 30,000 transcripts based on whole-genome array 
analysis, 52 predictive variables (transcripts) (Tab. 5) were 
identified as optimal for CLP classification. The model’s pre-
diction error rate, derived from bootstrapping, was estimated 
as 0.225, which provides an indication of model performance. 
In order to visualize the dataset used to develop the model, 
principal component analysis (PCA) was performed. The 
52 variables identified by random forest were used as input, 
and the PCA was built on the training set (Fig. 2A). Figure 
2A is based on chemicals with biological replicates colored 
according to CLP categories and a clear gradient from no cat 
to strong sensitizers (1A) can be observed along the first prin-
cipal component. The heatmap of the training set with hierar-
chical clustering of the variables in Figure 2B illustrates the 
regulation of transcripts in relation to the respective chemical 
and CLP category.   

ences between groups were significant, some overlap existed 
between individual chemicals, indicating that the information 
was not sufficient to completely stratify samples into well-de-
fined potency groups.  

3.2  A random forest model for the prediction  
of CLP categories
In order to establish a biomarker signature for prediction of CLP 
categories, the dataset comprising the 37 novel chemicals was 
merged with the historical dataset comprising 51 chemicals. In 
total, the dataset consisted of 86 unique chemicals (Tab. 2) and 
two vehicle controls, balanced with regards to categories 1A 
and 1B and non-sensitizers (no cat) as described by CLP (Tab. 
4). For four chemicals CLP classification 1B was changed to 
no category/non-sensitizer according to the sources indicated in 
Table 2 for one of three reasons: i) for retaining consistency 
with previous GARD projects (benzaldehyde, xylene), ii) for 
being used as vehicle in non-sensitizing concentration (DMSO), 
and for being a well-described false-positive in the LLNA (so-
dium dodecyl sulfate). 

Fig. 2: Visualization of the training dataset used to develop the random forest model, using the 52 transcripts as input variables 
(A) PCA plot of the training set (n = 70) with separate biological replicates (n = 254) colored according to CLP classifications of  
the chemicals. (B) Heatmap of the training set with replicates of the samples (x-axis) hierarchically clustered, where the grey scale 
represents the relative transcript expression intensity (y-axis).
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Tab. 5: The 52 variables identified by random forest modeling as optimal for CLP classification  
The variables marked in bold text are also found in the GARD GPS.

Transcript cluster ID	 VCF (%)	 Gene title	 Gene symbol

8117594	 93	 histone cluster 1, H2bm	 HIST1H2BM

8124385	 86	 histone cluster 1, H4b	 HIST1H4B

8004804	 83	 phosphoribosylformylglycinamidine synthase	 PFAS

8124430	 81	 histone cluster 1, H1d	 HIST1H1D

8095221	 80	 phosphoribosylaminoimidazole carboxylase, 	 PAICS 
		  phosphoribosylaminoimidazole succinocarboxamide synthetase	

8124413	 69	 histone cluster 1, H4d	 HIST1H4D

8005839	 63	 transmembrane protein 97	 TMEM97

7916432	 61	 24-dehydrocholesterol reductase	 DHCR24

8117608	 56	 histone cluster 1, H2al /// histone cluster 1, H2bn	 HIST1H2AL ///  
			   HIST1H2BN

7994109	 51	 polo-like kinase 1	 PLK1

7904433	 44	 phosphoglycerate dehydrogenase	 PHGDH

8040843	 44	 carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, 	 CAD 
		  and anddihydroorotase	

8082350	 44	 minichromosome maintenance complex component 2	 MCM2

8141395	 43	 minichromosome maintenance complex component 7	 MCM7

7898549	 42	 MRT4 homolog, ribosome maturation factor	 MRTO4

7901091	 41	 target of EGR1, member 1 (nuclear)	 TOE1

7903893	 41	 CD53 molecule	 CD53

8118669	 41	 kinesin family member C1	 KIFC1

7900699	 40	 cell division cycle 20	 CDC20

7938348	 40	 WEE1 G2 checkpoint kinase	 WEE1

8121087	 36	 peptidase M20 domain containing 2	 PM20D2

8084630	 35	 NmrA-like family domain containing 1 pseudogene	 LOC344887

7957737	 34	 thymopoietin	 TMPO

8146357	 34	 minichromosome maintenance complex component 4	 MCM4

7918300	 33	 proline/serine-rich coiled-coil 1	 PSRC1

8054329	 31	 ring finger protein 149	 RNF149

8055426	 31	 minichromosome maintenance complex component 6	 MCM6

7948656	 30	 ferritin, heavy polypeptide 1	 FTH1

7958455	 30	 uracil DNA glycosylase	 UNG

8117408	 30	 histone cluster 1, H2ae	 HIST1H2AE

8072687	 29	 minichromosome maintenance complex component 5	 MCM5

8119088	 27	 cyclin-dependent kinase inhibitor 1A (p21, Cip1)	 CDKN1A

8117395	 26	 histone cluster 1, H2bf	 HIST1H2BF

8124527	 25	 histone cluster 1, H1b	 HIST1H1B

7896697	 21	 ---	 ---

8003503	 20	 Fanconi anemia complementation group A	 FANCA
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8097417	 20	 jade family PHD finger 1	 JADE1

7977445	 18	 KIAA0125	 KIAA0125

7985213	 17	 cholinergic receptor, nicotinic alpha 5	 CHRNA5

8002303	 17	 NAD(P)H dehydrogenase, quinone 1	 NQO1

8068478	 17	 chromatin assembly factor 1, subunit B (p60) /// 	 CHAF1B /// 
		  MORC family CW-type zinc finger 3	  MORC3

8099721	 16	 sel-1 suppressor of lin-12-like 3 (C. elegans)	 SEL1L3

7948192	 14	 structure specific recognition protein 1	 SSRP1

7960340	 14	 forkhead box M1	 FOXM1

8107706	 14	 lamin B1	 LMNB1

8124524	 14	 histone cluster 1, H2ak	 HIST1H2AK

8040712	 11	 centromere protein A	 CENPA

8043602	 10	 non-SMC condensin I complex subunit H	 NCAPH

7939341	 8	 CD44 molecule (Indian blood group)	 CD44

8124394	 7	 histone cluster 1, H2bb	 HIST1H2BB

8144931	 7	 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2	 ATP6V1B2

7999025	 5	 TNF receptor-associated protein 1	 TRAP1

VCF, variable call frequency

Fig. 3: Visualization of the test dataset (n = 18) using the 52 transcripts 
(A) PCA plot of the test set with separate biological replicates (n = 3) colored according to CLP classifications. The PCA was built on the 
training set and the test set plotted without influencing the PCA. (B) Heatmap of the test set with samples (x-axis) hierarchically clustered, 
where the grey scale represents relative transcript expression intensity (y-axis).
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as described above. Dependent on the number of replicate sam-
ples available for each chemical stimulation, the total number 
of samples in each training and test set varied, but the number 
of chemicals in each set and their CLP distribution were kept 
constant. The alternative models were all significant and the 

3.3  Prediction of an independent test set 
The model performance was further evaluated by predicting 
the CLP categories of an independent test set, which comprised  
18 chemicals previously unseen by the model. The test set col-
ored according to CLP categories was visualized in the PCA 
plot (Fig. 3A), without influencing the PCA components based 
on the 52 identified variables. Figure 3B visualizes the regu-
lation of the 52 transcripts in the normalized test set in form 
of a heatmap. When replicates were predicted separately and 
majority voting was used to classify the respective chemicals, 
14 out of 18 chemicals were assigned into the correct CLP cate-
gory (Tab. 6; Tab. S1 at doi:10.14573/altex.1701101s), resulting 
in an overall accuracy of 78% (Tab. 7). The four misclassified 
chemicals were diethyl maleate, butyl glycidyl ether, lyral and 
cyanuric chloride. The only false-negative prediction was cy-
anuric chloride, which is classified as 1A in CLP and as no cat in 
our model, whereas the remaining three chemicals are classified 
as CLP 1B but were predicted as 1A. In a subsequent step to 
confirm that our selections of training and test set were unbiased 
and that the predictive model was not entirely dependent on the 
composition of the training set, we constructed 18 alternative 
random forest models, where the composition of chemicals in 
the training and test set were randomly shuffled. For each new 
model, we repeated the complete process of variable selection 

Tab. 7: Statistics by class for separate replicates in  
the test set predictions  
Six chemicals per category; three biological replicates each;  
n (test set) = 18.

	 no cat	 1A	 1B

Sensitivity	 0.889	 0.833	 0.556

Specificity	 0.917	 0.806	 0.917

Positive predictive value	 0.842	 0.682	 0.769

Negative predictive value	 0.943	 0.902	 0.805

Prevalence	 0.333	 0.333	 0.333

Detection rate	 0.296	 0.278	 0.185

Detection prevalence	 0.352	 0.407	 0.241

Balanced accuracy	 0.903	 0.819	 0.736

Tab. 6: Test set predictions using majority voting  
Three biological replicates per chemical; for replicate predictions see Tab. S1. GARD misclassifications are highlighted in italics. 

Chemical	 true CLP 	 GARD predicted CLP	 HP	 Toxtree protein binding class

1-brombutane	 no cat	 no cat 	 na	 SN2

benzoic acid	 no cat	 no cat	 na	 no binding

citric acid	 no cat	 no cat	 na	 no binding

diethyl phthalate	 no cat	 no cat	 6	 no binding

ethyl vanillin	 no cat	 no cat	 nf	 SB

xylene 	 no cat	 no cat	 6	 no binding

anethole 	 1B	 1B	 5	 MA

benzyl benzoate 	 1B	 1B	 5	 AT

linalool 	 1B	 1B	 4	 no binding

lyral 	 1B	 1A	 2	 SB

butyl glycidyl ether 	 1B	 1A	 3	 SN2

diethyl maleate 	 1B	 1A	 2	 MA

cyanuric chloride	 1A	 no cat	 na	 SNAr

propyl gallate 	 1A	 1A	 2	 MA

bisphenol A-diglycidyl ether 	 1A	 1A	 3	 SN2

glutaraldehyde 	 1A	 1A	 2	 SB

iodopropynyl butylcarbamate 	 1A	 1A	 4	 AT

p-benzochinone	 1A	 1A	 na	 MA

AT, acyl transfer agent; HP, human potency; MA, Michael acceptor; na, not available; nf, not found; SB, Schiff base formation;  
SN2, bi-molecular nucleophilic substitution; SNAr, nucleophilic aromatic substitution

https://doi.org/10.14573/altex.1701101s
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in purine biosynthesis (Lane and Fan, 2015; Li et al., 2007), 
and TMEM97 (part of GPS) is a regulator of cholesterol levels 
(Bartz et al., 2009), which is further described to be involved 
in cell cycle regulation, cell migration and invasion in a glioma 
cell model according to RNA interference experiments (Qiu 
et al., 2015). DHCR24 (another GPS transcript) represents a 
multifunctional enzyme localized to the endoplasmic reticu-
lum (ER) that catalyzes the final step in cholesterol-synthe-
sis (Waterham et al., 2001) but also possesses anti-apoptotic 
activity as, for example, shown for neuronal cells under ER 
stress (Lu et al., 2014). PLK1, a kinase, has been shown to be 
phosphorylated in response to TLR activation and results from 
RNA interference suggested that PLK1 signaling was involved 
in the TLR-induced inflammatory response (Hu et al., 2013). 
PLK1 was further reported to be involved in cell cycle reg-
ulation by inhibiting TNF-induced cyclin D1 expression and 
it could reduce TNF-induced NF-κB activation (Higashimoto 
et al., 2008). Many of the remaining transcripts are nuclear 
proteins and thus likely involved in DNA-dependent processes 
such as replication, transcription, splicing and cell cycle regu-
lation. There are several further transcripts in the signature that 
code for proteins known for their involvement in immune re-
sponses and/or sensitization, such as NQO1, which is well-de-
scribed for its role in the cellular response to skin sensitizers 
(Ade et al., 2009) and also part of the GPS. CD53 belongs to 
the tetraspanin family, transmembrane proteins that have mul-
tiple functions in, e.g,. cell adhesion, migration and signaling, 
which has been shown to be elevated on FcƐRI-positive skin 
DCs from atopic dermatitis patients (Peng et al., 2011) as well 
as on peripheral blood-derived monocytes from patients with 
atopic eczema (Jockers and Novak, 2006) in comparison to 
respective healthy controls. CD44 is a cell surface glycopro-
tein, adhesion and hyaluronan receptor (Lee-Sayer et al., 2015) 
expressed by numerous cell types and, for example, involved 
in inflammatory responses (Johnson and Ruffell, 2009), e.g., 

average prediction error rate obtained from the bootstrapping 
procedure was identical to the initial model at 0.22, which sup-
ports that the presented model was not obtained due to a biased 
choice of training and test sets.      

3.4  The CLP potency model contains information 
relevant for human potency prediction
Next, PCA was utilized in order to illustrate how the 52 vari-
ables (Tab. 5) perform using information related to human po-
tency categories (Basketter et al., 2014). Notably, the PCA does 
not reflect the random forest model; it merely visualizes infor-
mation contained in the 52 transcripts, and it is not possible to 
apply the CLP potency model directly to predict human potency 
classes. The 70 training and 18 test set samples were colored 
according to human potency (class 1-6, 6 = true non-sensitizer,  
1 = strongest sensitizer), and samples for which no human po-
tency category was available were removed (see Tab. 2). Al-
though the model has been developed to predict CLP potency 
categories, the chosen 52 variables also contain information 
related to human potency as illustrated by the PCA visualization 
in Figure 4A, B.       

3.5  Identity of the random forest model variables
The 52 variables identified by random forest (Tab. 5) repre-
sent transcripts belonging to different cell compartments and 
have different functional roles. Five of them overlap with the 
GARD prediction signature (GPS). Five of the top 10 markers, 
which were most frequently chosen in the bootstrapping pro-
cess and have the highest validation call frequencies (Tab. 5), 
are histone cluster 1 members, such as HIST1H2AB (Singh et 
al., 2013). Histones are highly conserved and play an import-
ant role, not only for maintaining chromatin structure but also 
in gene regulation (Harshman et al., 2013). HIST1H2AE is 
both part of the GPS and the potency signature presented here. 
PFAS, also represented in the GPS, and PAICS are involved 

Fig. 4: The CLP potency model contains 
information related to human potency 
(A) PCA plot of replicate training and test 
set samples with available human potency 
classifications (n = 71, 254 replicates) 
colored according to human potency. The 
PCA is based on the 52 random forest 
variables (transcripts) as input and the 
PCA was built on the training set. (B) PCA 
plot visualizing test set only (n = 12, 36 
replicates). 



Zeller et al.

ALTEX 34(4), 2017552

only key hub identified for all three protein reactivity groups. 
NF-κB subunits (RelB or p52) were predicted key hubs in all 
reactivity groups except in MA chemicals.

In summary, there seem to be common mechanistic respons-
es to chemical exposures per se such as cell cycle and DNA 
damage-related, but the pathway analysis results also support 
the hypothesis that different chemical reactivity classes induce 
distinct signaling pathways as observed earlier by us (Albrekt 
et al., 2014) and in other experimental systems (Cottrez et al., 
2015; Migdal et al., 2013; Natsch et al., 2015; Chipinda et al., 
2011). Several pathways are linked to processes known to be 
relevant in skin sensitization.     

4  Discussion

The amount of chemical per exposed skin area that induces 
sensitization varies significantly (Basketter et al., 2014) among 
chemicals; thus, skin sensitizer potency information is impera-
tive for accurate risk assessment. Developers of alternative test 
methods should rely on human clinical data in order to achieve 
high predictivity of human sensitization, however, this type of 
data is rather scarce and most available data is derived from 
the LLNA (Basketter et al., 2009). Despite the fact that animal 
models reflect the complexity of systemic diseases such as skin 
sensitization, in vitro data has so far shown to correlate well 
with and to perform equally well or even better than animal 
models, especially when combined in an ITS (Urbisch et al., 
2015). Furthermore, alternative test systems may provide mech-
anistic insights that tests using whole animals cannot provide 
(Natsch et al., 2010). 

Here, an approach to predict skin sensitizer potency is present-
ed using the CLP system based on a dendritic cell (DC) model 
and transcriptional profiling. CLP categories are empirically 
determined and arbitrarily defined, which does not represent the 
diversity of different chemicals, their molecular features and 
mechanisms responsible for their sensitizing characteristics or 
the lack thereof. They are, however, what legislation currently 
requires in order to classify and label chemicals. We therefore 
investigated 37 additional chemicals previously not tested in 
the standard GARD assay in order to combine these new data 
with historical datasets. In the binary classifications of these 
new chemicals according to the established GARD model, four 
misclassified sensitizing chemicals were close to the cut-off as 
defined by the benchmark samples, namely aniline, benzocaine, 
limonene and butyl glycidyl ether. Three of these belong to 
human potency class 4, which shows that the model cut-off is 
critical in order to translate the SVM values, often correlating 
well with potency, into accurate classifications. Together with 
historical predictions, GARD shows an overall accuracy of  
84% for binary classifications.

We then used both new and historical data in order to de-
velop a random forest model for each CLP category, which 
displays balanced accuracies (Brodersen et al., 2010) of  
96% for no category, 79% for category 1A and 75% for 
category 1B (based on majority votes for performance on 

by mediating leukocyte migration into inflamed tissues, which 
has been shown in a mouse model of allergic dermatitis (Gon-
da et al., 2005).

3.6  Common and unique regulated 
pathways are induced by sensitizers 
differing in their protein reactivity
The 33 key pathways identified with an input of the 883 most 
significantly regulated transcripts after a multigroup compar-
ison (FDR = 10-9) between CLP categories in KPA analysis  
(Fig. 5) mirror several of the functional groups of the 52 vari-
ables defined by random forest, such as gene regulation, cell 
cycle control and metabolism. Immune response-associated 
pathways such as “IL-4-induced regulators of cell growth, sur-
vival, differentiation and metabolism” and “IL-3 signaling via 
JAK/STAT, p38, JNK and NF-κB” were among the 50% most 
significantly regulated ones. 

The analyses subsequently focused on the three largest 
chemical reactivity groups in the present dataset; nucleophil-
ic substitution (SN), Michael addition (MA) and Schiff base 
(SB) formation. Among the included chemicals, the majority of 
chemicals labeled as no cat possessed no protein binding prop-
erties; however, a few SB formation and SN chemicals were 
present. In category 1B, almost all protein reactivity types were 
represented, whereas there was a clear dominance of MA chem-
icals in category 1A. 

For each associated protein reactivity, unique pathways 
could be identified for sensitizing chemicals belonging to the 
respective protein reactivity group as presented in Figure 6. 
These results combine differentially regulated transcripts from 
the input data with so-called key hubs, molecules that are able 
to regulate the expression level of the input transcripts (KPA, 
2016). They cannot necessarily be identified themselves by 
gene expression experiments as their regulation may either be 
visible on other biological levels, such as activity changes (e.g., 
for kinases) or the changes may be very short-lived or of low 
magnitude. In total, 173 transcripts were common to all three 
reactivity groups (Fig. 7A) and six pathways were present in 
all three reactivity groups (Fig. 7B); “Cell cycle: Role of APC 
in cell cycle regulation”, “Cell cycle: Role of SCF complex in 
cell cycle regulation”, “Development: Transcription regulation 
of granulocyte development”, “Cell cycle: Cell cycle (gener-
ic schema)”, “DNA damage: ATM/ATR regulation of G1/S 
checkpoint”, and “Mitogenic action of Estradiol / ESR1 (nu-
clear) in breast cancer”. Again, cell cycle pathways were highly 
represented. Oxidative stress responses were identified as part 
of the key pathway results only for MA and SB chemicals  
(Fig. 6). In the MA sensitizer chemical group, KEAP1 and NRF2 
were found as key hubs as well as their target genes NQO1 and 
HMOX1 (Ade et al., 2009; Natsch, 2010) and AHR (Schulz et 
al., 2013; Kohle and Bock, 2007). For MA chemicals, the target 
genes NQO1, HMOX1 and CES1 (Roberts et al., 2007) were 
even present on the input transcripts level. On the input level, 
CES1 was present for SN chemicals as well, but only NQO1, 
NRF2 and AHR were identified as key hubs. KEAP1 was not 
found as key hub in SB and SN KPA analysis and AHR was the 
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Fig. 5: Pathway analysis based on an input of the 883 most significant transcripts from a multigroup comparison of  
the three CLP classes using the Key Pathway Advisor tool
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Fig. 6: Pathways unique for each protein reactivity group, as identified by pathway analysis using the Key Pathway Advisor tool

Fig. 7: Venn diagrams (Heberle et al., 2015) of common genes (A) and biological pathways (B) for the three different protein 
reactivity classes 
MA = Michael acceptors; SB = Schiff base formation; SN = bi-molecular nucleophilic substitution/nucleophilic aromatic substitution.
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KPA pathway analysis identified biologically relevant events 
in the presented dataset as several pathways regulated have a 
known role in skin sensitization, e.g., cytokine signaling and 
oxidative stress responses (Fig. 5, 6). Although DCs are not the 
primary target for protein modification in vivo, we hypothesized 
that different protein reactivity classes influence the DC tran-
scriptome differentially. Protein reactivity is one of the most 
important features of chemicals defining their skin sensitizing 
capacity and potency with certain limitations (Chipinda et al., 
2011). Protein reactivity-specific patterns were detectable as 
revealed by the comparison of the most significantly regulated 
transcripts induced by the reactivity groups MA, SB, and SN. 
Interestingly, NF-κB subunits were predicted key hubs for all 
reactivity groups except for MA chemicals, which may reflect 
the described inhibitory effect on NF-κB signaling of this type 
of chemicals (Natsch et al., 2011). Although some pathways 
do not seem to fit into the context, such as “Mitogenic action 
of Estradiol / ESR1 (nuclear) in breast cancer”, a closer look 
at regulated molecules reveals that those are certainly relevant 
also for other pathways. In this case, for example p21, c-myc, 
E2F1, SGOL2 (shugoshin 2) and CAD (carbamoyl phosphate 
synthetase) were involved, whereof the first ones are known 
cell cycle regulators/transcription factors (Buchmann et al., 
1998) and play a role in chromosome segregation (SGOL2) 
(Xu et al., 2009). CAD, an enzyme, which is rate-limiting in 
the biosynthesis of pyrimidine nucleotides, on the other hand, 
has more recently also been implicated to cooperate with cell 
signaling pathways (Huang and Graves, 2003) and seems to 
inhibit the bacterial sensor NOD2’s (nucleotide-binding oligo-
merization domain 2) antibacterial function in human intestinal 
epithelial cells (Richmond et al., 2012). These examples may 
illustrate that our transcriptomic data deserves further attention 
and more detailed analyses and this type of analysis, using 
different bioinformatics tools and, finally, functional analyses 
may contribute to elucidate mechanisms underlying biological 
processes and diseases.

As already discussed above, assigning correct potency classes 
to chemicals with weak or intermediate potency seems to be 
a more general problem. Benigni et al. (2016) presented data 
showing that even experimental in vivo systems, though in 
general correlating well with human data, perform worse for 
sensitizers of intermediate potency. They further argue that the 
protein modification step is the rate-limiting step of the whole 
sensitization process and that in vitro tests targeting other AOP 
events do not add much information. On the other hand, there is 
only a weak relationship between the rate constant of MA sen-
sitizers as determined by kinetic profiling with a model peptide 
and their potency in the LLNA (Natsch et al., 2011). This was 
described to be linked to the anti-inflammatory effect of MA 
chemicals by inhibiting NF-κB signaling, which increases with 
reactivity. However, considering the key events in the skin sen-
sitization AOP, the sensitization process as such can be under-
stood as a continuum and would thus not be characterized only 
by isolated events. Of course, in reality the process must start 
with the chemical penetrating the skin. In this context, it should 
be noted that the concept that a chemical’s ability to efficiently 
penetrate the stratum corneum is crucial for its skin sensitization 

replicate basis, see Tab. 7). Butyl glycidyl ether, diethyl ma-
leate, cyanuric chloride and lyral were misclassified; the only 
false-negative prediction was no cat instead of 1A for cyanuric 
chloride. However, cyanuric chloride reacts exothermally 
with water, forming hydrogen chloride and possibly other re-
action products. Due to this hydrolyzation reaction, probably 
already occurring in DMSO (containing water), the amount of 
cyanuric chloride and reaction products present in the assay 
are unknown. This chemical may fall outside the applicability 
domain of GARD platform-based assays. However, nothing 
in the quality control or other pre-modelling analyses moti-
vated a removal of these samples. Diethyl maleate and lyral 
are classified as 1B by CLP, but as 1A by our model, which 
again seems to fit better with their human potency category, 
category 2, as described by Basketter et al. (2014). The forth 
misclassified chemical butyl glycidyl ether is a human poten-
cy category 3. Obviously, predicting 1B, i.e., weak sensitizers, 
seemed the most challenging part. Also in the LLNA, potency 
predictions of weak sensitizers vary more than those of strong 
sensitizers (Dumont et al., 2016; Hoffmann, 2015; Ezendam 
et al., 2016). Furthermore, 1B is a very heterogeneous group, 
both considering the range of LLNA EC3 concentrations  
(> 2%; CLP, 2016) and human potency categories associat-
ed to chemicals summarized in category 1B. In the dataset 
presented here, chemicals in category 1B belong to potency 
classes 2 to 5. Five of the 52 transcripts forming the potency 
prediction signature developed to distinguish three catego-
ries are also part of the GPS, which consists of in total 200 
transcripts in order to predict two classes (Johansson et al., 
2011). This degree of overlap may at first appear low, but 
considering a) the inherent differences in the development of 
the two models, i.e., the aim, in chemicals used as training 
set, in the applied bioinformatical methods, and b) the known 
“multiplicity problem” (Díaz-Uriarte and Alvarez de Andrés, 
2006), it is not surprising. In short, the “multiplicity problem” 
describes the fact that variable selection with microarray data 
can result in several, equally good predictive models, in spite 
of sharing very few genes.

The U-SENS™ assay, formerly MUSST, uses another my-
eloid cell line, U937, and CD86 measurements in order to 
distinguish sensitizers and non-sensitizers. When the authors 
combined CD86 with cytotoxicity data and certain cut-off lev-
els in order to predict CLP categories, correct predictions of 
82% of Cat. 1A (41/50) and 73% of Cat. 1B/No Cat (85/116) 
were reported (Piroird et al., 2015). However, it remains un-
clear how the more challenging discrimination between no cat 
and 1B would turn out. Cottrez et al. (2016) recently published 
a study, where they report that their alternative assay SENS-
IS, a 3D reconstituted epidermis based model, performs very 
well for the prediction of skin sensitizer potency; however, they 
do not target CLP categories. Judging from Figure 4, purely 
based on the 52-variable input, which was defined in order to 
predict CLP categories, our model also seems to contain infor-
mation relevant for human potency classification. Once more 
chemicals receive human potency classifications, it should be 
possible to smoothly develop a human potency model based on 
the GARD platform.
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