# Chemical Concentrations in Cell Culture Compartments (C5) - Free Concentrations 

## Supplementary Data

Table of contents
Box S1: Concentrations then and now. ..... 1
Derivation of the "extracellular biokinetics" formula. ..... 2
Box S2: Example use of Equation S13 with an acidic and basic drug ..... 7
Table S1: Cell composition data essential for biokinetics calculations ..... 7
Table S2: Measured and predicted human plasma $f_{u}$ values. ..... 8
References. ..... 13

## Box S1: Concentrations then and now

Dose: The concept of dose has been defined extensively before (Kisitu et al., 2019). It describes an absolute amount per experimental system (e.g., per mouse or per human patient). When the concept is applied to NAM, it describes the amount of chemical per cell culture well. Example, if a chemical concentration in the medium is 1 mM and the well contains 1 mL of medium, then the dose is $1 \mu$ mole; if the same well contains 2 mL medium, then the concentration is the same, but the dose doubles.
Weight-normalized doses: Already in Paracelsus' time it must have been clear that a dose tolerated by a tall and heavy adult may be lethal to a small child. This made clear that normalization to overall weight or volume is an important concept. Often normalized doses are expressed in dose per kg body weight (see Kisitu et al., 2019). Nominal concentration: If a dose in an in vitro system is normalized to the volume of the system, then a nominal concentration is obtained. This measure indicates what the drug/toxicant concentration would be if all chemical was freely dissolved and no losses/distribution occurred. It can also be defined as the concentration that the experimental operator believes to have applied to the test system. It is liable to variations arising from volatility, plastic binding, and pipetting variability during the preparation of stock solutions and their addition to experimental compartments.
Free concentration: Relative to the nominal concentration, chemical molecules may be lost (e.g., by evaporation). Also, some chemical may be adsorbed to biomolecules. Only a fraction of the drug/toxicant will then be freely dissolved (free concentration). Free drug theory assumes that only the free fraction ( $\mathrm{f}_{\mathrm{u}}$ ) of test compound is available for reversible interactions with "receptors" at the target site.
Receptors: We use here the term "receptor" in a wide sense, describing a biomolecule or biological structure (protein, DNA, carbohydrate) that shows affinity to a test chemical and usually binds it reversibly (irreversible interactions may also occur, see below). The concept does not differ between intentional targets and off-targets; it also does not consider what the result of the chemical-receptor interaction is (simple binding, triggering of a biological effect, transport of the chemical or metabolism of the chemical if the "receptor" is an enzyme). It is worth noting that receptors can be defined differently, e.g., in pharmacology, the definition would include the requirement that binding of a compound to a "receptor" evokes or prevents a biological response.
Macromolecular interactions: The concept that compounds only have a pharmacological or toxicological effect, when they interact with a biomolecule (= a "receptor" in the above broad sense) goes back to Paul Ehrlich's side chain theory. This provides the basis for the law of mass action that is used to define equilibrium constants. The concentrations of test compound and its receptor, together with the affinity constant, determine the effect - and this is why the considerations of concentrations are of such extreme importance.
Total concentrations and their effect: The total concentration $\left(\mathrm{C}_{\mathrm{T}}\right)$ is the concentration of both bound and unbound compound in a given matrix. A very practical approach is to define it empirically as the concentration that can be measured in a body fluid, not taking into account which part was free or bound. We suggest here for NAM to define the total concentration as the amount (in moles) of chemical in a medium divided by the medium volume. Sometimes, the effect of a test chemical can be related to the total concentration (rather than to the free concentration). For biological effects to be dependent on the total concentration, the underlying processes should be slow relative to the binding/unbinding of chemical to protein/lipid. For instance, if test compound is metabolized or transported into cells, then more and more of the compound initially bound to biomolecules will be released (following physicochemical laws) and can therefore become available to transport or metabolism. Similarly, if a chemical triggers cytotoxicity by
oxidizing cell constituents (and it is thereby "used-up"), then some of the bound chemical will shift to the free fraction and become available to maintain the irreversible reactions linked to cytotoxicity.
Concentrations in vivo: In a standard pharmacological or toxicological situation (oral, pulmonary or dermal exposure) and assuming that the bioavailability of the test compound is $>0$ (and a first pass effect of $<100 \%$ ), there is an initial uptake phase and a terminal elimination phase. This often leads to a concentration time course of the compound in blood that first increases, then reaches a peak ( $\mathrm{C}_{\max }$ ), and later decreases (given a single exposure event). Such time courses can differ between body compartments, and there can even be pronounced differences between blood (which consists of about $42 \%$ cells) and plasma (cell-free part of blood). When scientists speak of "in vivo concentrations", they may mean $\mathrm{C}_{\text {max }}$ in plasma. However, this is not universally defined. Ideally, the time point and body compartment referred to should be indicated. Instead of $C_{m a x}$, other measures sometimes are used (e.g., the average concentration ( $\mathrm{C}_{\text {avg }}$ ) over a defined time period). For many bioactive compounds, it is not known whether the in vivo effect is most related to the $\mathrm{C}_{\text {max }}$, the $\mathrm{C}_{\text {avg }}$ or some other, time-dependent concentration measure. This timeand compartment-dependency of in vivo concentrations adds to the complexity of free vs total concentrations and makes in vivo to in vitro comparisons challenging.
Irreversible effects of chemicals: The law of mass action assumes reversible interactions between drug/toxicant and its various receptors. However, in some cases, such interactions may be irreversible. For instance: the drug deprenyl interacts covalently with its target monoamine oxidase; the thrombin receptor on platelets is irreversibly modified by its ligand (proteolytic cleavage); biomolecules are oxidatively modified by hydrogen oxide (which is consumed by this process). In such reactions, not just the concentration, but also time plays a role (time is not a factor in the law of mass action after equilibrium has been reached). For the field of toxicology, it was recognized about 100 years ago (Haber's rule) that the damage is proportional to the concentration of the agent $x$ time of exposure to the agent.
Qualitative vs quantitative hazard: For reversible interactions, hazard is a function of the compound concentration. This is universally accepted in toxicological research. However, the relationship needs not necessarily be monotonic. In the field of regulatory toxicology, hazard is often used with a different connotation. Here, it is meant to describe a theoretical propensity of a compound to trigger a certain type of damage. Often, such effects are seen at very high concentrations/doses only. The observation is accepted as true if it occurs in at least one of the test concentrations/doses/exposure situations. This approach has been criticized, as it neglects concentrations (doses). When animals were the only experimental systems used, there was at least some limitation of the concentrations that could be reached, as they are limited in animals by several factors (e.g., solubility in the dosing vehicle). The concept should not be transferred to NAM without giving consideration to the upper limits of the concentrations considered and without diligent controls for unspecific effects (e.g., cell death).

## Derivation of the "extracellular biokinetics" formula

The concentration of a chemical in a culture dish is a theoretical construct, as explained earlier (Kisitu et al., 2019). It is obtained by dividing the amount of chemical added by the volume of medium in the dish (or by the volume of buffer in any type of vessel). More practically, it is derived from the nominal concentration of a chemical in a stock solution, divided by the dilution factor of stock in the medium. Both measures do not necessarily reflect the real free concentration of a chemical in the medium. One aspect may be that a chemical is taken up by cells, but this will not be considered here. In the present manuscript, only cell-free conditions are considered. Fisher et al. (2019) derived an equation for predicting the free fraction in an in vitro test system, and this will be illustrated here for non-specialists. The free concentration of a chemical can be calculated from Equation S 12 (below) assuming no volatility, plastic binding or distribution into cells. Accordingly, the free fraction can be calculated from Equation S13.

Several different processes affect the free concentration, i.e., the concentration of molecules truly in solution and not bound (or lost) elsewhere (Fig. 1). These factors need to be taken into account to calculate the free concentration $\left(\mathrm{C}_{f}\right)$. For most biochemical or cell biological processes, $\mathrm{C}_{f}$ is the relevant physical quantity (= physical measure). For instance, it is relevant in the interaction with a "receptor" with which there is a non-covalent interaction. The fraction of chemical that is not free (e.g., bound to plastic) is normally considered to not interact with a toxicological or pharmacological target.

## Assumptions 1

- Chemicals bind reversibly to other medium components (B). The law of mass action applies.
- The concentration of $B([B])$ is very high (compared to chemical $C)$ : no binding processes are saturated.
- The equilibrium constant K of the reversible binding (i.e., the interaction constant between the chemical and, e.g., protein (albumin), lipids, culture well surface, medium-air) is the ratio of adducts ( $\mathrm{B} \times \mathrm{C}_{\mathrm{f}}$ ) and product (the bound concentration $\mathrm{C}_{\mathrm{b}}$ ).
The tested concentrations are within the aqueous solubility range of the test compounds in the culture medium.

These assumptions allow defining by the following equation:
$C_{b}=K \times C_{f} \times[B]$

Considering the binding to several components within the in vitro system, the nominal concentration is defined as the sum of the individual binding processes and the free concentration.
$C_{t}=C_{f}+\{[$ bound to protein $]+[$ bound to lipids $]+[$ bound to culture well plastic $]+[$ evaporated $]\}$
For a total concentration $C_{t}$, a chemical's free concentration $\left(C_{f}\right)$ is:
$C_{f}=C_{t}-C_{b}$
simply expanded as
$C_{f}=C_{t}-\{[$ bound to protein $]+[$ bound to lipids $]+[$ bound to culture well plastic $]+[$ evaporated $]\}$
or put in terms of $\mathrm{C}_{\mathrm{b}}$ in Equation S 1 and defining the interaction terms for proteins, lipids, plastic and the headspace:
$C_{f}=C_{t}-\left\{\left[K_{\text {prot }} \times C_{f} \times[P]\right]+\left[P_{\text {ow }} \times C_{f} \times[L]\right]+[\right.$ Bound to plastic $]+[$ Evaporated $\left.]\right\}$

## Assumptions 2

- Binding to albumin and lipid in complete culture media are the only significant processes limiting the availability of test compound for distribution into the treated cells.
- Loss of compound due to volatility or binding to the plastics used in cell culture is not accounted for here. It is assumed that logPow >>>>>Kaw \& Kplastic (the air-water and water-plastic distribution equilibria constants).
- Lipid is a little-defined term. It may be the triglyceride fraction (TG) or the cholesterol fraction (Chol) or a combined fraction, or whatever measure is available.

Considering Assumptions 2 and Equation S1, Equation S2d then becomes:
$C_{f}=C_{t}-\left\{K_{\text {prot }} \times C_{f} \times[P]+P_{\text {ow }} \times C_{f} \times[L]\right\}$
With the latter two terms standing for the concentration bound to protein and the concentration bound to lipid.
This can further be transformed to
$C_{f}=\frac{C_{t}}{1+K_{\text {prot }} \times[P]+P_{o w} \times[L]}$
Where:
$K_{\text {prot }}=$ protein binding constant
$[P]=$ concentration of protein present in the medium
$P_{\text {ow: octanol-water partition coefficient }}$
$[L]=$ concentration of lipids present in the medium
Medium is often supplemented with serum or a serum substitute (FCS) that acts as a source of protein and lipids. Notably, the extracellular matrix may also act as a binding target. In human plasma, the predominant drug-binding protein is albumin. Amongst plasma lipids, TG form the major lipid component of lipoproteins (Nichols, 1969).

## Assumptions 3

- Binding in the protein phase is predominantly to albumin while that in the lipid phase is to neutral lipids (TG).
- The binding to the neutral lipids is considered only for the non-ionized form of the chemical.

The total concentration of protein in the medium $[\mathrm{P}]$ is given by:
$[\mathrm{P}]=\frac{\text { mass of protein }}{\text { total vol. of medium }}$, this translates to: $=\frac{V_{\text {protein }} \times D_{\text {protein }}}{\text { total vol. of medium }}$, or simply:
$[\mathrm{P}]=f_{\text {protein }} \times D_{\text {protein }}$
Where:
$f_{\text {protein }}$ is the volume fraction of proteins in the medium. $\mathrm{V}_{\text {protein }}$ is the protein volume and $\mathrm{D}_{\text {protein }}$ is the protein density

Strictly speaking, albumin is not the only relevant protein. Within the bulk of the overall protein phase, the relative concentration of albumin is related to that of other proteins by its partial specific volume ( $\mathrm{PSV}_{\text {alb }}$ ).
The concentration of albumin [Alb] as a component of total protein is given by:
$[\mathrm{Alb}]=f_{\text {protein }} \times D_{\text {protein }} \times P S V_{\text {alb }}$
If albumin is the dominant protein in the medium, then, $D_{\text {protein }} \sim D_{\text {alb }}$ and $f_{\text {protein }} \sim f_{\text {alb }}$.
$[\mathrm{Alb}]=f_{\text {alb }} \times D_{a l b} \times P S V_{a l b}$

## Note:

1) The specific volume of a solution/mixture is the ratio of its volume to the mass of the mixture/solution, i.e., specific volume is inversely proportional to density.
2) The specific volume is the sum of the partial specific volumes of the components of the mixture or solution.

By substituting $D_{\text {alb }}=\frac{1}{P S V_{a l b}}$ in (S4b) above, the concentration of albumin in the medium can thus be taken to be directly proportional or represented by its volume fraction;
$[\mathrm{Alb}] \propto f_{\text {alb }}$
Where:
$f_{\text {alb }}$ is the volume fraction of albumin in the culture medium

## Assumptions 4

- Chemicals bind only to neutral lipids ([L]NL).
- Neutral lipids are assumed to constitute the majority of the lipid phase in the medium (others to be neglected).

The neutral lipid concentration is similarly derived from the total lipid concentration as follows:
$[\mathrm{L}]=\frac{\text { mass of lipids }}{\text { total vol.of medium }}$
$[\mathrm{L}]=\frac{V_{L} \cdot D_{L}}{\text { total vol.of medium }}$, or simply: $\approx f_{L} \times D_{L}$
Where, [L], $f_{L}$ and $D_{\llcorner }$are the total lipid concentration, the volume fraction and density of lipids in the culture medium respectively.
The concentration of neutral lipids in the bulk lipid phase is related to the total lipid concentration by the $\mathrm{PSV}_{\mathrm{NL}}$.
$[L]_{N L}=f_{L} \times D_{L} \times P S V_{N L}$
If neutral lipids are assumed to dominate over other lipids, such that;
$D_{N L} \approx D_{L}$ and $f_{N L} \approx f_{L}$ then
$[L]_{N L} \approx f_{N L} \times P S V_{N L} \times D_{N L}$ OR $f_{N L} \times P S V_{N L} \times \frac{1}{P S V_{N L}}$, from which
$[L]_{N L} \propto f_{N L}$
Where:
$V_{L}$ : is the volume of lipids in medium
$D_{L}$ and $D_{N L}$ are the densities of lipids and neutral lipids in the medium
$P S V_{N L}$ are the partial specific volume fractions of trioleate, a TG representative of neutral lipids, in $\mathrm{mL} / \mathrm{g}$
$F_{L}$ and $F_{N L}$ is the volume fraction of total lipids and neutral lipids in the culture medium
Fitting the new parameters derived in Equations S4-S6 into Equation S3, the free concentration is predicted by the following equation:
$C_{f}=\frac{C_{t}}{1+K_{a l b \times} f_{a l b}+P_{o w \times} \times f_{N L}}$

## Correcting for Kow

The terms octanol-water distribution constant (Kow or $\mathrm{Pow}_{\text {ow }}$ ) and the volume fraction of neutral lipids ( $f_{N L}$ ) need further consideration and modification (Fisher et al., 2019). First, $f_{N L}$ will be addressed by considering that:
a) the binding to neutral lipids is limited to the non-ionized species. Thus, the distribution coefficient ( P ow) needs to be corrected for to account only for the non-ionized form of the chemical that is present at a certain pH .
b) the ratio $(Y)$ of the ionized species and non-ionized species can be calculated by the Henderson-Hasselbalch equation.
For a monoprotic acid:
$Y_{\text {monoprotic acid }}=\frac{[\text { ionized species }]}{[\text { non-ionized species }]}=10^{(p H-p K a)}$
For other compound types,
$Y_{\text {neutral }}=0 \quad Y_{\text {monoprotic base }}=10^{(p K a-p H)}$
For a diprotic acid/base and ampholyte, $Y$ is the summation of the sub-fractions ( $Y_{1}$ and $Y_{2}$ ) from the ionizing species (Berezhkovskiy, 2011)
$Y_{\text {diprotic acid }}: \mathrm{Y} 1=10^{(p H-p K a 1)}+10^{(p H-p K a 2)}$ and $\mathrm{Y} 2=10^{2 p H-(p K a 1+p K a 2)}$
$Y_{\text {diprotic base }}: \mathrm{Y} 1=10^{(p \mathrm{Ka1}-\mathrm{pH})}+10^{(p \mathrm{Ka} 2-\mathrm{pH})}$ and $\mathrm{Y} 2=10^{(p \mathrm{Ka} 1+p \mathrm{Ka} 2)-2 p \mathrm{H}}$
For ampholytes or zwitterions (i.e., considering one site to be acidic and the other basic), Y is defined as:
$Y_{\text {ampholyte }}: \mathrm{Y} 1 \mathrm{a}=10^{(p H-p K a 1)}, \mathrm{Y} 1 \mathrm{~b}=10^{(p K a 2-p H)}$ and $\mathrm{Y} 2=10^{(p K a 2-p K a 1)}$
In this case, pKa1 and pKa2 correspond to the acidic and basic groups respectively.
Here, we exemplify further steps with a monoprotic acid (e.g. valproic acid)
$\frac{[\text { ionized species }]}{[\text { non }- \text { ionized species }]}=10^{(p H-p K a)}$
N.B.: The ratio of the concentration of ionized species to the non-ionized species is the same as the ratio of the ionized fraction (l) to the non-ionized fraction (Ni)
Then, $l=N_{i} \times 10^{p H-p K a}$
But also, $l=1-N i$
Therefore,

$$
\begin{array}{r}
1-N i=N_{i} \times 10^{p H-p K a} \\
N_{i}=\frac{1}{1+10^{p H-p K a}}
\end{array}
$$

From which

$$
\begin{equation*}
N_{i}=\frac{1}{1+Y} \tag{S8}
\end{equation*}
$$

The distribution coefficient, expressed as $\mathrm{D}^{\mathrm{pH}}$, is a pH -dependent simple descriptor for ionizable solutes and results from the weighted contributions of all electrical forms/spp present at this pH , as illustrated by the following equation (Caron et al., 2007):
$D^{p H}=P^{N} \times F^{N}+\sum P^{i} \times F^{i}$
Where:
$P^{N}$ and $P^{i}$ are the respective partition coefficients for the neutral and ionized spp. $P^{N}$ would be the same as the $P_{\text {ow }}$ $F^{N}$ and $F^{i}$ are the respective molar fractions of the neutral and ionized forms.

Here, we come back to the assumption that the binding to neutral lipids is only for the non-ionized component of the compound.
Based on this assumption, the equation by (Caron et al., 2007) can be reduced to
$D^{p H}=P^{N} \times F^{N}$
From Equation S8, $F^{N}$ can be defined as: $\quad F^{N}=\frac{1}{1+Y}$
From which,

$$
\begin{equation*}
D^{p H}=P^{N} \times \frac{1}{1+Y} \text { OR simply } D^{p H}=P_{o w} \times \frac{1}{1+Y} \tag{S9}
\end{equation*}
$$

Substituting the correction for $P_{\text {ow }}$ in Equation $S 9$ into Equation S7, the free concentration in the medium is given by:
$C_{f}=\frac{C_{t}}{1+K_{a l b} \times f_{\text {alb }}+\frac{P_{o w} \times f_{N L}}{1+Y}}$
A further correction for $K_{o w}$ is necessary as octanol is not an ideal representative of cellular membranes and lipids. Olive oil was proposed to be a better surrogate for neutral lipids than n-octanol, and a way of obtaining an olive oil corrected value of $P$ ow was reported by Poulin and Theil (2002) to be of the following relationship:

$$
\begin{equation*}
\log D_{v o w}=1.115 \times \log P_{o w}-1.35 \tag{S11}
\end{equation*}
$$

Where:
Pow: n-octanol: water partition coefficient of non-ionized species.
$D_{\text {vow }}$ : the olive oil-water partition coefficient of the non-ionized species. It is used in the derived equation as an anti-log of log $D_{\text {vow. }}$ Since we consider here the binding of the non-ionized form of the compound to be predominantly to the neutral lipids, $\log D_{\text {vow }}$ can be referred to as the neutral lipid partition coefficient.
Therefore, the free concentration in the complete culture medium can be calculated as:
$C_{f}=\frac{C_{t}}{1+K_{a l b} \times f_{a l b}+\frac{D_{\text {vow }} \times f_{N L}}{1+Y}}$
The Dvow required for Equation S 12 can be derived from logPow values (easier to find in databases) from Equation S11.
Equation S12 can be further transformed to give the in vitro free fraction $\left(f_{u}\right)$ of the compound:

$$
\begin{equation*}
f_{u}=\frac{C_{f}}{C_{t}} \quad \text { or }=\frac{1}{1+K_{\text {alb }} \times f_{\text {alb }}+\frac{D_{\text {vow }} \times f_{N L}}{1+Y}} \tag{S13}
\end{equation*}
$$

The culture medium can have negligible amounts of lipids or protein. In this case, the equation can be simplified as follows:
Only proteins in the medium:
$f_{u}=\frac{1}{1+K_{a l b} \times f_{a l b}}$
Only lipids in the medium:
$f_{u}=\frac{1}{1+\frac{D_{\text {vow }} \times f_{N L}}{1+Y}}$

## Deriving albumin ( $f_{\text {alb }}$ ) and lipid ( $f_{\mathrm{NL}}$ ) fractions

$f_{\text {alb }}$ and $f_{N L}$ are calculated using the experimentally determined partial specific volume values of these biomolecules, i.e., $F_{N L}$ : the volumetric fraction of medium comprised of neutral lipids as TG.

The total volume $(\mathrm{V})$ of cell culture medium at constant temperature $(\mathrm{T})$ and pressure $(\mathrm{P})$ can be expressed using the partial specific volumes (PSV in units of $\mathrm{mL} / \mathrm{g}$ ) of the number of component biomolecules $(\mathrm{n})$ and their masses in grams (g) (Durchschlag, 1986).
$V=\sum_{i=\rightarrow 1}^{n} P S V_{i} \times g_{i}$
Where $P S V_{i} \times g_{i}$ represents the volume contribution of a specific component $i$ in the system.
The change in volume attribute to the addition of component $i$ can thus be expressed as
$P S V_{i}=\left(\frac{\Delta V}{\Delta g_{i}}\right) \quad$ Or simply $\Delta V=P S V_{i} \times \Delta g_{i}$

## Assumptions 5

- To take into account the total volume of the system, we hereby express the mass of the component $i$ as a concentration (C in mg/mL)
- To further simplify the equation, we define the volume fraction $\left(\mathrm{V}_{\mathrm{f}}\right)$ of a specific component biomolecule (the term 1000 being a conversion factor between mg and g ):
$V_{f}=\frac{P S V_{i} \times C_{i}}{1000}$
Taking neutral lipids to be represented mainly by TG in the culture medium, the volume fraction of neutral lipids is defined here as:
$f_{N L} \approx f_{T A G}=\frac{[T A G] \times P S V_{T A G}}{1000}$
$f_{a l b}$ : the volumetric fraction of medium comprised of protein, mainly being present as albumin, is defined as:
$f_{\text {alb }}=\frac{[\text { albumin }] \times P S V_{\text {albumin }}}{1000}$
Where:
$P S V_{T G}$ is $1.093 \mathrm{~mL} / \mathrm{g}$;
[TG] is expressed in $\mathrm{mg} / \mathrm{mL}$;
$P S V_{\text {albumin }}$ is $0.73 \mathrm{~mL} / \mathrm{g}$;
[albumin] is expressed in $\mathrm{mg} / \mathrm{mL}$.
The binding strength of a compound to albumin is described as its albumin binding affinity. In this equation, since we are working with volumetric fractions of proteins (albumin), we here express the binding of a compound to albumin as an albumin-water partition coefficient in the aqueous environment of an in vitro culture system. The binding affinity and albumin-water partition coefficient can be interconverted based on the assumptions considered here that the concentration of compound-bound albumin is far less than the total albumin concentration. Thus, taking Kalb as an albumin-water partition coefficient, it is derived from the octanol-water partition coefficient (logPow) as reported by Endo and Goss (2011) such that:
If $\log P_{o w}<4.5$, then; $\log k_{\text {albumin }}=1.08 \times \log P-0.7$
If $\log P_{o w} \geq 4.5$, then; $\log k_{\text {albumin }}=0.37 \times \log P+2.56$
Box S2: Example use of Equation S13 with an acidic and basic drug

| Test method terms | UKN5 test method | Compound related terms | Valproic acid | Amphetamine |
| :--- | :--- | :--- | :--- | :--- |
| Protein | $3.3 \mathrm{mg} / \mathrm{mL}$ | logPow | 2.75 | 1.76 |
| Lipid | $0.025 \mathrm{mg} / \mathrm{mL}$ | pKa | 4.8 | 10 |
| $f_{\text {alb }}$ | $2.43 \times 10^{-3}$ | $K_{\text {alb }}$ | 186 | 16 |
| $f_{N L}$ | $2.73 \times 10^{-5}$ | D $_{\text {vow }}$ | 52 | 4.1 |
|  |  | Y | 398 | 398 |
|  |  | Predicted $f_{u}$ | 0.69 | 0.96 |

The terms $f_{\text {alb }}$ and $f_{N L}$ can be derived from the concentrations of protein and lipid (see Equations S5 and S6 in the supplementary material). To convert the concentrations (standard test system information) to the volume fractions, one needs to have information on the density of the biomolecules. More specifically, one uses the partial specific volume (PSV) values as shown in Equations S19 and S20. For all test systems and situations, the same fixed, experimentally determined values (Durchschlag, 1986; Redgrave and Calson, 1979; Fisher et al., 2019) can be used, i.e., $P S V_{T G}=1.093 \mathrm{~mL} / \mathrm{g}$ (lipid density) and $P S V_{\text {albumin }}=0.73 \mathrm{~mL} / \mathrm{g}$ (protein density). More data and background information is given in Table S2 (below) and Fisher et al. (2019). Using this calculation approach, $f_{\text {alb }}$ of the UKN5 test is $2.43 \times 10^{-3}$ (with a protein content of 3.3 mg per mL of the medium). This means that within 1 mL of medium, albumin (protein) occupies a volume of $2.43 \mu \mathrm{~L}$. Similarly, $\mathrm{F}_{\mathrm{NL}}$ can be calculated to be $2.73 \times 10^{-5}$. Thus, the volume attribute to neutral lipids in 1 mL medium would be only $0.027 \mu \mathrm{~L}$ (with a lipid content in UKN5 medium of 0.025 $\mathrm{mg} / \mathrm{mL}$ ).

Taking an example of 1 mM VPA, with $\mathrm{Y}\left(\mathrm{Y}=10^{(\mathrm{pH}-\mathrm{pKa})}\right)$ at $\mathrm{pH}=7.4$, this would mean that 0.9974 mM is ionized and 0.0026 mM is in the non-ionized form. Or, for $50 \mu \mathrm{M}$ VPA, this would mean that there is $49.87 \mu \mathrm{M}$ negatively charged drug and $0.13 \mu \mathrm{M}$ in the neutral form. Only the unionized fraction binds to lipids. If one returns to Equation $S 13$, you appreciate that the correction term Y is only linked to the lipid-binding part of the equations, but not to the protein binding part. The explanation is that the equation assumes that proteins (albumin) bind both the ionized and non-ionized forms of a drug.

If we choose amphetamine as a drug, the $f_{u}$ prediction would be 0.96 , i.e., only $4 \%$ of the drug would be bound. In this we note that:
a) amphetamine (logPow 1.76) is less hydrophobic than VPA, with a smaller Dow (olive oil-water distribution)
b) the drug contains a basic amino group. At pH 7.4, most of the amino group would be protonated (positively charged ammonium group). Here Y is calculated as $\mathrm{Y}=\left(10^{(\mathrm{pKa}-\mathrm{pH})}\right)$. From the table above, this means that only a $400^{\text {th }}$ part of the dissolved amphetamine is available for lipid binding.
It needs to be noted that this is a simplified model. It may apply to cell culture media that contain mainly neutral lipids. In the presence of cells, bases may actually bind extensively to negatively-charged phospholipids.

Tab. S1: Cell composition data essential for biokinetics calculations
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Cell type } & \begin{array}{l}\text { Cell weight } \\ \text { [ng/cell] }\end{array} & \begin{array}{l}\text { Cell volume } \\ \text { [pl] }\end{array} & \begin{array}{l}\text { Cell protein } \\ \text { [pg/cell] }\end{array} & \begin{array}{l}\text { Cell lipid } \\ \text { [pg/cell] }\end{array} & \begin{array}{l}\text { Cell_lipid } \\ \text { [pg/cell] }\end{array} \\ \hline \text { Cell water } \\ \text { (pL) } \\ \text { [\% of cell } \\ \text { weight] }\end{array}\right]$

MDA-MB231, human mammary adenocarcinoma; A549, adenocarcinoma alveolar epithelial; MIA PaCa-2, human pancreatic carcinoma; RTgill-Wi, gill epithelial cells; HL-60, human promyelocytic leukemia; U-937, human histiocytic leukemia; MCF-7, mammary adenocarcinoma; MCF-7-p51, mammary adenocarcinoma GPx4 overexpressor; PC-3, prostate adenocarcinoma; HCT116, human colon carcinoma cell line; Me-180, human cervical cancer cells; IMA, immortalised mouse astrocytes; oct3-IMA, immortalized mouse astrocytes with an introduced organic cation transporter 3.
${ }^{\text {n }}$ Own data - the cell volume was estimated by taking a million cells in an Eppendorf vial and filling up a parallel vial with an equal volume of medium. The volume of medium was then equated to be the volume of a million cells (Schildknecht et al., 2015);
${ }^{\text {j }}$ Total cell volume of soma plus processes
${ }^{k}$ Cell volume of soma; cell density was assumed to be the same as that of water ( $1 \mathrm{~g} / \mathrm{mL}$ or $1 \mathrm{ng} / \mathrm{pL}$ ).
${ }^{m}$ Cell volume calculated assuming the cell in 2D cultures take up a dome shape (half-sphere) $=(4 / 3 \pi r 3) \times 0.5$; cell diameter was obtained from the corresponding publication.
${ }^{n}$ Water content by weight was found to average $\approx 82 \%$ of the cell weight. Cell water volume was calculated from the given cell weight as a 0.82 fraction by weight and a water density of $1 \mathrm{~g} / \mathrm{mL}$ or $1 \mathrm{ng} / \mathrm{pL}$.
${ }^{\circ}$ Cell weight (in cases not reported; it was taken to be $82 \%$ of total cell weight) was derived from cell volume and water density (V x p); total cell weight was then scaled to $100 \%$ by multiplying by $1.2=(100 / 82)$. In calculating the cell weight from cell volume, the cell volume is taken for a full sphere.
${ }^{p}$ Cell weight derived from the fraction of cell lipid + protein $\approx 18 \%$.
${ }^{\text {a }}$ Cell volume was calculated as the sum of cell lipid, cell protein and cell water volumes
'Lipid content in the Balb/c 3T3 cells and RTgill-W1 was calculated as assumed by both Gulden et al. (2002) and Kramer et al. (2012) that there is 0.23 mg lipid $/ \mathrm{mg}$ protein in the cells.
${ }^{\text {s }}$ Cell_Lipid-lipid content extrapolated from cellular protein.
 Delp et al., 2018; ' ${ }^{\text {own }}$ data; 'Wagner et al., 2011; ;,k Williams et al., 1980; 'Chapman et al., 1981

Tab. S2: Measured and predicted human plasma $f_{u}$ values

| Drug | CAS | logPow | Predicted $\mathrm{f}_{\mathrm{u}}$ | Measured $\mathrm{f}_{\mathrm{u}}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Acebutolol | 37517-30-9 | 1.53 | 0.79 | 0.74 | Varma et al., 2010 |
| Acyclovir | 59277-89-3 | -1 | 1.00 | 0.91 | Varma et al., 2010 |
| Adefovir | 106941-25-7 | -4.5 | 0.81 | 0.96 | Varma et al., 2010 |
| Adinazolam | 37115-32-5 | 2.24 | 0.38 | 0.31 | Varma et al., 2010 |
| Alfentanil | 71195-58-9 | 2.81 | 0.13 | 0.09 | Varma et al., 2010 |
| Allopurinol | 000315-30-0 | 0.031 | 0.99 | 0.97 | Varma et al., 2010 |
| Alprazolam | 28981-97-7 | 2.37 | 0.31 | 0.29 | Varma et al., 2010 |
| Alprenolol | 13655-52-2 | 2.69 | 0.18 | 0.18 | Varma et al., 2010 |
| Amantadine ${ }^{\text {a }}$ | 768-94-5 | 2.44 | 0.28 | 0.33 | Varma et al., 2010 |
| Amiodarone | 1951-25-3 | 7.64 | 7E-05 | 0.0002 | Varma et al., 2010 |
| Amisulpride | 71675-85-9 | 0.25 | 0.99 | 0.84 | Varma et al., 2010 |
| Amitriptyline | 50-48-6 | 4.81 | 0.002 | 0.07 | Varma et al., 2010 |
| Amlodipine ${ }^{\text {a }}$ | 88150-42-9 | 3 | 0.090 | 0.005 | Varma et al., 2010 |
| Amoxicillin | 26787-78-0 | -2.3 | 1.00 | 0.85 | Varma et al., 2010 |
| Amphotericin B | 1397-89-3 | -2.3 | 1.00 | 0.04 | Varma et al., 2010 |
| Ampicillin | 69-53-4 | -2 | 1.00 | 0.85 | Varma et al., 2010 |
| Antipyrine | 000060-80-0 | 1.22 | 0.89 | 0.93 | Varma et al., 2010 |
| Atenolol | 29122-68-7 | 0.43 | 0.98 | 0.94 | Varma et al., 2010 |
| Atomoxetine | 83015-26-3 | 3.81 | 0.013 | 0.02 | Varma et al., 2010 |
| Atovaquone | 95233-18-4 | 5 | 0.001 | 0.001 | Varma et al., 2010 |
| Atropine | 51-55-8 | 1.57 | 0.78 | 0.61 | Varma et al., 2010 |
| Azithromycin | 83905-01-5 | 2.44 | 0.28 | 0.71 | Wishart et al., 2006 |
| Aztreonam | 78110-38-0 | -0.68 | 1.00 | 0.44 | Wishart et al., 2006 |
| Betaxolol | 63659-18-7 | 2.54 | 0.24 | 0.4 | Varma et al., 2010 |
| Biperiden | 514-65-8 | 3.54 | 0.025 | 0.097 | Varma et al., 2010 |
| Bisoprolol | 66722-44-9 | 2.2 | 0.42 | 0.66 | Varma et al., 2010 |
| Bromazepam | 1812-30-2 | 2.54 | 0.23 | 0.3 | Wishart et al., 2006 |
| Bromfenac | 91714-94-2 | 3.66 | 0.019 | 0.11 | Varma et al., 2010 |
| Budesonide | 51333-22-3 | 2.73 | 0.15 | 0.13 | Varma et al., 2010 |
| Buflomedil | 55837-25-7 | 1.88 | 0.62 | 0.4 | Varma et al., 2010 |
| Bufuralo | 54340-62-4 | 2.99 | 0.092 | 0.19 | Varma et al., 2010 |
| Bumetanide | 28395-03-1 | 2.57 | 0.22 | 0.031 | Varma et al., 2010 |
| Bupivacaine | 2180-92-9 | 4.52 | 0.002 | 0.056 | Varma et al., 2010 |
| Busulphan | 55-98-1 | -0.76 | 1.00 | 1 | Varma et al., 2010 |
| Caffeine | 58-08-2 | -0.55 | 1.00 | 0.64 | Varma et al., 2010 |
| Captopril | 62571-86-2 | 0.73 | 0.97 | 0.73 | Varma et al., 2010 |
| Carbaryl | 63-25-2 | 2.5 | 0.24 | 0.69 | CompTox ${ }^{\text {b }}$ |
| Carboplatin | 41575-94-4 | 0 | 0.99 | 1 | Varma et al., 2010 |
| Carvedilol | 72956-09-3 | 3.42 | 0.034 | 0.05 | Wishart et al., 2006 |
| Cefadroxil | 50370-12-2 | -0.6 | 1.00 | 0.79 | Wishart et al., 2006 |
| Cefatrizine | 51627-14-6 | -0.07 | 1.00 | 0.4 | Varma et al., 2010 |
| Cefazolin ${ }^{\text {a }}$ | 25953-19-9 | -0.58 | 1.00 | 0.18 | Varma et al., 2010 |
| Cefepime | 88040-23-7 | -4.3 | 1.00 | 0.78 | Varma et al., 2010 |
| Cefetamet | 65052-63-3 | -0.65 | 1.00 | 0.78 | Varma et al., 2010 |
| Cefixime ${ }^{\text {a }}$ | 79350-37-1 | -0.4 | 1.00 | 0.35 | Wishart et al., 2006 |
| Ceftriaxone ${ }^{\text {a }}$ | 073384-59-5 | -1.7 | 1.00 | 0.054 | Varma et al., 2010 |
| Cefuroxime ${ }^{\text {a }}$ | 55268-75-2 | -0.16 | 1.00 | 0.5 | Wishart et al., 2006 |
| Cephalexin | 15686-71-2 | -2.1 | 1.00 | 0.9 | Wishart et al., 2006 |
| Cephradine | 38821-53-3 | -2.4 | 1.00 | 0.95 | Varma et al., 2010 |
| Cerivastatin ${ }^{\text {a }}$ | 145599-86-6 | 3.4 | 0.035 | 0.01 | Varma et al., 2010 |
| Chlorambucil | 305-03-3 | 3.94 | 0.009 | 0.01 | Varma et al., 2010 |
| Chloramphenicol ${ }^{\text {a }}$ | 56-75-7 | 1.14 | 0.91 | 0.5 | Wishart et al., 2006 |
| Chlordiazepoxide | 58-25-3 | 5.5 | 0.0006 | 0.056 | Varma et al., 2010 |
| Chloroquine ${ }^{\text {a }}$ | 54-05-7 | 4.63 | 0.002 | 0.26 | Wishart et al., 2006 |
| Chlorpheniramine ${ }^{\text {a }}$ | 132-22-9 | 3.38 | 0.04 | 0.28 | Wishart et al., 2006 |
| Chlorpromazine ${ }^{\text {a }}$ | 50-53-3 | 5.41 | 0.001 | 0.056 | Varma et al., 2010 |
| Chlorpropamide ${ }^{\text {a }}$ | 94-20-2 | 2.27 | 0.38 | 0.03 | Varma et al., 2010 |
| Chlorthalidone | 77-36-1 | 1.77 | 0.67 | 0.25 | Wishart et al., 2006 |
| Cibenzoline | 53267-01-9 | 3 | 0.09 | 0.5 | Varma et al., 2010 |
| Cidofovir ${ }^{\text {a }}$ | 113852-37-2 | -3.9 | 1.00 | 1 | Varma et al., 2010 |
| Cilomilast | 153259-65-5 | 3.9 | 0.010 | 0.006 | Varma et al., 2010 |
| Cimetidine ${ }^{\text {a }}$ | 051481-61-9 | 0.4 | 0.98 | 0.85 | Wishart et al., 2006 |
| Ciprofloxacin | 85721-33-1 | 1.55 | 0.78 | 0.8 | Wishart et al., 2006 |
| Citalopram ${ }^{\text {a }}$ | 59729-33-8 | 3.76 | 0.015 | 0.2 | Varma et al., 2010 |
| Clarithromycin ${ }^{\text {a }}$ | 81103-11-9 | 3.16 | 0.062 | 0.23 | Varma et al., 2010 |


| Clavulanic Acid ${ }^{\text {a }}$ | 58001-44-8 | -2.3 | 1.00 | 0.91 | Varma et al., 2010 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Clinafloxacin | 105956-97-6 | -0.42 | 1.00 | 0.96 | Varma et al., 2010 |
| Clindamycin ${ }^{\text {a }}$ | 18323-44-9 | 2.16 | 0.44 | 0.4 | Wishart et al., 2006 |
| Clofibrate | 637-07-0 | 3 | 0.085 | 0.05 | CompTox ${ }^{\text {b }}$ |
| Clonazepam ${ }^{\text {a }}$ | 1622-61-3 | 2.41 | 0.29 | 0.18 | Wishart et al., 2006 |
| Clozapine ${ }^{\text {a }}$ | 5786-21-0 | 3.23 | 0.051 | 0.055 | Varma et al., 2010 |
| Colchicine | 64-86-8 | 1.46 | 0.81 | 0.66 | Wishart et al., 2006 |
| Conivaptan | 210101-16-9 | 6.3 | 0.0002 | 0.01 | Varma et al., 2010 |
| Cyclophosphamide ${ }^{\text {a }}$ | 000050-18-0 | 0.8 | 0.96 | 0.87 | Varma et al., 2010 |
| Cyclosporine A | 59865-13-3 | 2.92 | 0.10 | 0.068 | Wishart et al., 2006 |
| Dapsone ${ }^{\text {a }}$ | 80-08-0 | 1.31 | 0.86 | 0.3 | Wishart et al., 2006 |
| Desipramine | 50-47-5 | 3.64 | 0.004 | 0.08 | Wishart et al., 2006 |
| Dexamethasone ${ }^{\text {a }}$ | 50-02-2 | 1.83 | 0.63 | 0.32 | Varma et al., 2010 |
| Dexloxiglumide | 119817-90-2 | 3.37 | 0.038 | 0.024 | Varma et al., 2010 |
| Diazepam | 439-14-5 | 3.08 | 0.071 | 0.023 | Varma et al., 2010 |
| Diazoxide ${ }^{\text {a }}$ | 364-98-7 | 1.81 | 0.65 | 0.1 | Wishart et al., 2006 |
| Diclofenac ${ }^{\text {a }}$ | 15307-86-5 | 4.51 | 0.002 | 0.005 | Varma et al., 2010 |
| Dicloxacillin ${ }^{\text {a }}$ | 3116-76-5 | 2.91 | 0.11 | 0.033 | Varma et al., 2010 |
| Didanosine ${ }^{\text {a }}$ | 69655-05-6 | -1.24 | 1.00 | 0.95 | Varma et al., 2010 |
| Digoxin | 20830-75-5 | 1.26 | 0.88 | 0.75 | Wishart et al., 2006 |
| Diltiazem ${ }^{\text {a }}$ | 33286-22-5 | 2.8 | 0.14 | 0.18 | Varma et al., 2010 |
| Disopyramide ${ }^{\text {a }}$ | 05/09/3737 | 2.58 | 0.22 | 0.16 | Varma et al., 2010 |
| Domperidone ${ }^{\text {a }}$ | 57808-66-9 | 3.9 | 0.010 | 0.082 | Varma et al., 2010 |
| Doxifluridine | 05/09/3094 | 0.07 | 0.99 | 0.61 | Varma et al., 2010 |
| Doxorubicin ${ }^{\text {a }}$ | 23214-92-8 | 1.27 | 0.88 | 0.28 | Varma et al., 2010 |
| Doxycycline ${ }^{\text {a }}$ | 564-25-0 | 0.63 | 0.97 | 0.12 | Varma et al., 2010 |
| Drotaverine | 14009-24-6 | 3.54 | 0.024 | 0.12 | Varma et al., 2010 |
| Enalaprilat | 76420-72-9 | 1.73 | 0.70 | 0.62 | Varma et al., 2010 |
| Encainide | 66778-36-7 | 4 | 0.0082 | 0.26 | Varma et al., 2010 |
| Entacapone ${ }^{\text {a }}$ | 130929-57-6 | 2.8 | 0.14 | 0.02 | Varma et al., 2010 |
| Epristeride | 119169-78-7 | 3.93 | 0.0097 | 0.03 | Varma et al., 2010 |
| Eprosartan | 133040-01-4 | 3.9 | 0.01 | 0.017 | Varma et al., 2010 |
| Erythromycin ${ }^{\text {a }}$ | 114-07-8 | 2.6 | 0.21 | 0.2 | Wishart et al., 2006 |
| Etilefrine | 709-55-7 | 0.23 | 0.99 | 0.77 | Varma et al., 2010 |
| Etoposide | 33419-42-0 | 0.67 | 0.97 | 0.12 | Varma et al., 2010 |
| Felodipine ${ }^{\text {a }}$ | 72509-76-3 | 3.86 | 0.01 | 0.0036 | Varma et al., 2010 |
| Finasteride ${ }^{\text {a }}$ | 98319-26-7 | 3.03 | 0.08 | 0.095 | Varma et al., 2010 |
| Flecainide | 54143-55-4 | 2.8 | 0.14 | 0.52 | Varma et al., 2010 |
| Fleroxacin ${ }^{\text {a }}$ | 79660-72-3 | 0.24 | 0.99 | 0.73 | Varma et al., 2010 |
| Fluconazole ${ }^{\text {a }}$ | 86386-73-4 | 0.5 | 0.98 | 0.89 | Varma et al., 2010 |
| Flucytosine ${ }^{\text {a }}$ | 2022-85-7 | -1.1 | 1.00 | 1 | Varma et al., 2010 |
| Flumazenil ${ }^{\text {a }}$ | 78755-81-4 | 1 | 0.93 | 0.58 | Varma et al., 2010 |
| Flupirtine | 56995-20-1 | 2.67 | 0.18 | 0.15 | Varma et al., 2010 |
| Fluvastatin ${ }^{\text {a }}$ | 93957-54-1 | 4.5 | 0.002 | 0.0079 | Varma et al., 2010 |
| Folinic acid | 1492-18-8 | -1.31 | 1.00 | 0.87 | Varma et al., 2010 |
| Foscarnet | 63585-09-1 | -2.1 | 1.00 | 0.85 | Varma et al., 2010 |
| Fosfomycin ${ }^{\text {a }}$ | 23155-02-4 | -1.6 | 1.00 | 1 | Varma et al., 2010 |
| Frovatriptan ${ }^{\text {a }}$ | 158747-02-5 | 0.9 | 0.95 | 0.85 | Varma et al., 2010 |
| Furosemide | 54-31-9 | 2.03 | 0.52 | 0.04 | Wishart et al., 2006 |
| Gabapentin ${ }^{\text {a }}$ | 60142-96-3 | 1.25 | 0.88 | 0.97 | Varma et al., 2010 |
| Ganciclovir ${ }^{\text {a }}$ | 82410-32-0 | -1.66 | 1.00 | 0.99 | Varma et al., 2010 |
| Gatifloxacin | 160738-57-8 | 1.73 | 0.70 | 0.8 | Varma et al., 2010 |
| Gentamicin ${ }^{\text {a }}$ | 1405-41-0 | -3.1 | 1.00 | 1 | Varma et al., 2010 |
| Glimepiride ${ }^{\text {a }}$ | 93479-97-1 | 3.12 | 0.068 | 0.005 | Varma et al., 2010 |
| Glipizide | 29094-61-9 | 3.35 | 0.040 | 0.02 | Varma et al., 2010 |
| Glyburide ${ }^{\text {a }}$ | 10238-21-8 | 3.754 | 0.015 | 0.021 | Varma et al., 2010 |
| Granisetron ${ }^{\text {a }}$ | 109889-09-0 | 2.6 | 0.21 | 0.35 | Varma et al., 2010 |
| Guanfacine | 29110-47-2 | 1.89 | 0.60 | 0.28 | Varma et al., 2010 |
| Haloperidol ${ }^{\text {a }}$ | 52-86-8 | 4.3 | 0.0038 | 0.08 | Varma et al., 2010 |
| Hexachlorophene ${ }^{\text {a }}$ | 70-30-4 | 7.54 | 0.0001 | 0.08 | Wishart et al., 2006 |
| Hydroxyurea ${ }^{\text {a }}$ | 127-07-1 | -1.8 | 1.00 | 1 | Varma et al., 2010 |
| Ibuprofen | 15687-27-1 | 3.8 | 0.013 | 0.01 | Wishart et al., 2006 |
| Ifosfamide ${ }^{\text {a }}$ | 3778-73-2 | 0.86 | 0.95 | 1 | Varma et al., 2010 |
| Imipenem | 64221-86-9 | -3.9 | 1.00 | 0.86 | Varma et al., 2010 |
| Indomethacin ${ }^{\text {a }}$ | 53-86-1 | 4.27 | 0.0042 | 0.01 | Varma et al., 2010 |
| Isosorbide-5-Mononitrate ${ }^{\text {a }}$ | 16051-77-7 | -0.15 | 1.00 | 1 | Varma et al., 2010 |
| Isoxicam ${ }^{\text {a }}$ | 34552-84-6 | 2.83 | 0.13 | 0.035 | Varma et al., 2010 |
| Itraconazole ${ }^{\text {a }}$ | 84625-61-6 | 5.66 | 0.0005 | 0.002 | Varma et al., 2010 |


| Ketanserin | 74050-98-9 | 3.61 | 0.021 | 0.055 | Varma et al., 2010 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ketoprofen ${ }^{\text {a }}$ | 22071-15-4 | 3.12 | 0.068 | 0.008 | Varma et al., 2010 |
| Ketorolac ${ }^{\text {a }}$ | 74103-06-3 | 2.1 | 0.48 | 0.0068 | Varma et al., 2010 |
| Lamivudine ${ }^{\text {a }}$ | 134678-17-4 | -1.4 | 1.00 | 0.94 | Varma et al., 2010 |
| Lansoprazole | 103577-45-3 | 3.03 | 0.079 | 0.021 | Varma et al., 2010 |
| Letrozole ${ }^{\text {a }}$ | 112809-51-5 | 2.5 | 0.24 | 0.41 | Varma et al., 2010 |
| Levofloxacin | 100986-85-4 | 2.1 | 0.48 | 0.62 | Wishart et al., 2006 |
| Linezolid | 165800-03-3 | 0.9 | 0.95 | 0.69 | Varma et al., 2010 |
| Lisinopril | 76547-98-3 | -1.01 | 1.00 | 1 | Varma et al., 2010 |
| Lorazepam ${ }^{\text {a }}$ | 846-49-1 | 2.39 | 0.30 | 0.25 | Wishart et al., 2006 |
| Lorcainide ${ }^{\text {a }}$ | 59729-31-6 | 4.85 | 0.002 | 0.15 | Varma et al., 2010 |
| Lormetazepam | 848-75-9 | 3.26 | 0.05 | 0.12 | Varma et al., 2010 |
| Losartan | 114798-26-4 | 5.32 | 0.001 | 0.01 | Varma et al., 2010 |
| Lovastatin ${ }^{\text {a }}$ | 075330-75-5 | 4.08 | 0.006 | 0.043 | Varma et al., 2010 |
| Mebendazole ${ }^{\text {a }}$ | 31431-39-7 | 2.83 | 0.12 | 0.086 | Varma et al., 2010 |
| Melagatran | 159776-70-2 | -1.3 | 1.00 | 0.93 | Varma et al., 2010 |
| Meloxicam ${ }^{\text {a }}$ | 71125-38-7 | 3.43 | 0.033 | 0.01 | Wishart et al., 2006 |
| Metformin ${ }^{\text {a }}$ | 657-24-9 | -2.6 | 1.00 | 1 | Varma et al., 2010 |
| Methadone ${ }^{\text {a }}$ | 76-99-3 | 3.93 | 0.010 | 0.1 | Wishart et al., 2006 |
| Methotrexate | 59-05-2 | 0.17 | 0.99 | 0.53 | Wishart et al., 2006 |
| Methyldopa ${ }^{\text {a }}$ | 555-30-6 | -1.7 | 1.00 | 0.85 | Varma et al., 2010 |
| Metoclopramide | 364-62-5 | 1.09 | 0.92 | 0.7 | Wishart et al., 2006 |
| Metolazone | 17560-51-9 | 2.92 | 0.10 | 0.05 | Varma et al., 2010 |
| Metoprolol | 37350-58-6 | 1.49 | 0.81 | 0.88 | Varma et al., 2010 |
| Metronidazole ${ }^{\text {a }}$ | 000443-48-1 | -0.02 | 0.99 | 0.96 | Varma et al., 2010 |
| Midazolam | 59467-70-8 | 3.33 | 0.04 | 0.03 | Wishart et al., 2006 |
| Miglitol ${ }^{\text {a }}$ | 72432-03-2 | -2.7 | 1.00 | 1 | Varma et al., 2010 |
| Milrinone | 78415-72-2 | 1.17 | 0.90 | 0.35 | Varma et al., 2010 |
| Mirtazapine ${ }^{\text {a }}$ | 61337-67-5 | 2.9 | 0.11 | 0.15 | Varma et al., 2010 |
| Moclobemide | 71320-77-9 | 1.1 | 0.91 | 0.77 | Varma et al., 2010 |
| Montelukast ${ }^{\text {a }}$ | 158966-92-8 | 7.9 | 0.0001 | 0.002 | Varma et al., 2010 |
| Moxifloxacin | 354812-41-2 | 1.85 | 0.63 | 0.6 | Varma et al., 2010 |
| Moxonidine | 75438-57-2 | 1.54 | 0.78 | 0.9 | Wishart et al., 2006 |
| MPP ${ }^{+a}$ |  | -2.28 | 1.00 |  |  |
| Nadolol ${ }^{\text {a }}$ | 42200-33-9 | 0.81 | 0.96 | 0.7 | Wishart et al., 2006 |
| Naratriptan ${ }^{\text {a }}$ | 121679-13-8 | 1.6 | 0.76 | 0.72 | Wishart et al., 2006 |
| Nateglinide | 105816-04-4 | 3.91 | 0.01 | 0.02 | Wishart et al., 2006 |
| Nefazodone | 83366-66-9 | 4.7 | 0.0016 | 0.01 | Varma et al., 2010 |
| Nevirapine | 129618-40-2 | 2.5 | 0.24 | 0.32 | Varma et al., 2010 |
| Nicardipine | 55985-32-5 | 3.82 | 0.013 | 0.01 | Varma et al., 2010 |
| Nicotine ${ }^{\text {a }}$ | 54-11-5 | 1.17 | 0.90 | 0.95 | Varma et al., 2010 |
| Nifedipine ${ }^{\text {a }}$ | 21829-25-4 | 2.2 | 0.41 | 0.08 | Wishart et al., 2006 |
| Nimodipine ${ }^{\text {a }}$ | 66085-59-4 | 3.05 | 0.08 | 0.05 | Wishart et al., 2006 |
| Nisoldipine ${ }^{\text {a }}$ | 63675-72-9 | 3.26 | 0.05 | 0.01 | Wishart et al., 2006 |
| Nitrazepam | 146-22-5 | 2.25 | 0.38 | 0.13 | Varma et al., 2010 |
| Nizatidine | 76963-41-2 | 1.1 | 0.91 | 0.65 | Varma et al., 2010 |
| Nomifensine | 24526-64-5 | 2.62 | 0.20 | 0.4 | Varma et al., 2010 |
| Nortriptyline ${ }^{\text {a }}$ | 894-71-3 | 3.9 | 0.01 | 0.07 | Wishart et al., 2006 |
| Ofloxacin | 82419-36-1 | 1.51 | 0.80 | 0.75 | Varma et al., 2010 |
| Omeprazole ${ }^{\text {a }}$ | 73590-58-6 | 2.23 | 0.39 | 0.05 | Varma et al., 2010 |
| Ondansetron ${ }^{\text {a }}$ | 99614-02-5 | 2.4 | 0.30 | 0.27 | Varma et al., 2010 |
| Oseltamivir acid | 187227-45-8 | -1.8 | 1.00 | 0.97 | Varma et al., 2010 |
| Oxazepam | 604-75-1 | 2.98 | 0.09 | 0.11 | Wishart et al., 2006 |
| Pantoprazole ${ }^{\text {a }}$ | 102625-70-7 | 2.05 | 0.50 | 0.38 | Varma et al., 2010 |
| Papaverine | 58-74-2 | 3 | 0.09 | 0.073 | Varma et al., 2010 |
| Paracetamol | 103-90-2 | 1.1 | 0.91 | 0.9 | Wishart et al., 2006 |
| Paraquat | 1910-42-5 | -4.22 | 1.00 | 1 | Houzé et al., 1990 |
| Paricalcitol ${ }^{\text {a }}$ | 131918-61-1 | 4.5 | 0.002 | 0.0016 | Varma et al., 2010 |
| Pefloxacin ${ }^{\text {a }}$ | 70458-92-3 | 0.27 | 0.99 | 0.8 | Wishart et al., 2006 |
| Penciclovir ${ }^{\text {a }}$ | 39809-25-1 | -1.1 | 1.00 | 0.84 | Varma et al., 2010 |
| Phencyclidine ${ }^{\text {a }}$ | 77-10-1 | 4.69 | 0.002 | 0.35 | Varma et al., 2010 |
| Phenobarbital | 50-06-6 | 1.56 | 0.78 | 0.8 | Wishart et al., 2006 |
| Phenoxymethylpenicillin | 000087-08-1 | 2.09 | 0.49 | 0.45 | Varma et al., 2010 |
| Pindolola ${ }^{\text {a }}$ | 13523-86-9 | 1.75 | 0.69 | 0.6 | Wishart et al., 2006 |
| Pirmenol | 61447-94-9 | 3.93 | 0.010 | 0.13 | Varma et al., 2010 |
| Practolol ${ }^{\text {a }}$ | 6673-35-4 | 0.79 | 0.96 | 0.01 | Varma et al., 2010 |
| Pravastatin | 81093-37-0 | 2.18 | 0.43 | 0.52 | Wishart et al., 2006 |
| Prazosin | 19216-56-9 | 1.45 | 0.82 | 0.06 | Varma et al., 2010 |


| Prednisolone | 50-24-8 | 1.62 | 0.74 | 0.35 | Wishart et al., 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prednisone | 53-03-2 | 2.21 | 0.40 | 0.5 | Wishart et al., 2006 |
| Probenecid ${ }^{\text {a }}$ | 57-66-9 | 3.21 | 0.06 | 0.05 | Wishart et al., 2006 |
| Procainamide ${ }^{\text {a }}$ | 51-06-9 | 0.88 | 0.95 | 0.84 | Varma et al., 2010 |
| propranolol | 525-66-6 | 3.48 | 0.029 | 0.04 | Wishart et al., 2006 |
| Propylthiouracil | 51-52-5 | 1.14 | 0.91 | 0.18 | Varma et al., 2010 |
| Pyridostigmine | 155-97-5 | -3.16 | 1.00 | 1 | Varma et al., 2010 |
| Quinaprilat | 82768-85-2 | 3.16 | 0.06 | 0.32 | Varma et al., 2010 |
| Quinidine | 56-54-2 | 2.88 | 0.12 | 0.12 | Wishart et al., 2006 |
| Quinine | 130-95-0 | 2.32 | 0.35 | 0.3 | Varma et al., 2010 |
| Rabeprazole | 117976-89-3 | 2.99 | 0.09 | 0.037 | Varma et al., 2010 |
| Ranitidine | 66357-35-5 | 0.88 | 0.95 | 0.95 | Varma et al., 2010 |
| Reboxetine ${ }^{\text {a }}$ | 98769-81-4 | 3.1 | 0.07 | 0.019 | Varma et al., 2010 |
| Remoxipride | 80125-14-0 | 2.1 | 0.48 | 0.16 | Varma et al., 2010 |
| Repaglinide | 135062-02-1 | 5.04 | 0.001 | 0.015 | Varma et al., 2010 |
| Rifabutin | 72559-06-9 | 3.58 | 0.022 | 0.15 | Wishart et al., 2006 |
| Rifampin | 13292-46-1 | 2.7 | 0.17 | 0.2 | Varma et al., 2010 |
| Risedronate ${ }^{\text {a }}$ | 105462-24-6 | -3.3 | 1.00 | 0.76 | Varma et al., 2010 |
| Risperidone ${ }^{\text {a }}$ | 106266-06-2 | 2.63 | 0.20 | 0.1 | Varma et al., 2010 |
| Rosiglitazone | 122320-73-4 | 3.13 | 0.066 | 0.002 | Varma et al., 2010 |
| Rosuvastatin | 287714-41-4 | 2.05 | 0.51 | 0.12 | Varma et al., 2010 |
| Rotenone ${ }^{\text {a }}$ | 83-79-4 | 4.01 | 0.0075 | 0.02 | CompTox ${ }^{\text {b }}$ |
| salbutamol | 18559-94-9 | 0.61 | 0.97 | 0.92 | Varma et al., 2010 |
| Saquinavir ${ }^{\text {a }}$ | 127779-20-8 | 3.8 | 0.013 | 0.028 | Varma et al., 2010 |
| Selegiline ${ }^{\text {a }}$ | 14611-52-0 | 2.7 | 0.17 | 0.13 | Varma et al., 2010 |
| Sematilide | 101526-62-9 | 0.11 | 0.99 | 0.96 | Varma et al., 2010 |
| Sildenafil ${ }^{\text {a }}$ | 139755-83-2 | 2.75 | 0.15 | 0.04 | Varma et al., 2010 |
| Sitafloxacin | 127254-12-0 | 2.18 | 0.43 | 0.51 | Varma et al., 2010 |
| Sitagliptin ${ }^{\text {a }}$ | 790712-60-6 | 1.5 | 0.80 | 0.62 | Varma et al., 2010 |
| Solifenacin | 242478-38-2 | 3.98 | 0.009 | 0.02 | Varma et al., 2010 |
| Sotalol | 3930-20-9 | 0.16 | 0.99 | 1 | Wishart et al., 2006 |
| Sparfloxacin | 110871-86-8 | 2.4 | 0.31 | 0.55 | Wishart et al., 2006 |
| Sufentanil | 56030-54-7 | 3.17 | 0.06 | 0.075 | Varma et al., 2010 |
| Sulfadiazine | 68-35-9 | 0.37 | 0.99 | 0.44 | Varma et al., 2010 |
| Sulfamethoxazole | 723-46-6 | 1.04 | 0.93 | 0.3 | Wishart et al., 2006 |
| Sulfinpyrazone | 57-96-5 | 3.3 | 0.04 | 0.02 | Wishart et al., 2006 |
| Sulfisoxazole ${ }^{\text {a }}$ | 127-69-5 | 1.01 | 0.93 | 0.079 | Varma et al., 2010 |
| Sulpiride ${ }^{\text {a }}$ | 15676-16-1 | 0.57 | 0.98 | 0.72 | Varma et al., 2010 |
| Sumatriptan ${ }^{\text {a }}$ | 103628-46-2 | 0.93 | 0.94 | 0.83 | Varma et al., 2010 |
| Suprofen | 40828-46-4 | 3.28 | 0.05 | 0.006 | Varma et al., 2010 |
| Suramin | 145-63-1 | 3.48 | 0.03 | 0.003 | Varma et al., 2010 |
| Tacrolimus ${ }^{\text {a }}$ | 104987-11-3 | 3.3 | 0.04 | 0.01 | Varma et al., 2010 |
| Talinolol | 57460-41-0 | 2.8 | 0.14 | 0.39 | Varma et al., 2010 |
| Tamsulosin | 106133-20-4 | 2.47 | 0.27 | 0.01 | Varma et al., 2010 |
| Taxol | 33069-62-4 | 3.3 | 0.042 | 0.02 | Wishart et al., 2006 |
| Tebuconazole | 80443-41-0 | 3.3 | 0.042 | 0.07 | CompTox ${ }^{\text {b }}$ |
| Tegaserod | 145158-71-0 | 3.81 | 0.01 | 0.02 | Varma et al., 2010 |
| Telmisartan ${ }^{\text {a }}$ | 144701-48-4 | 7.7 | 0.0001 | 0.004 | Varma et al., 2010 |
| Tenoxicam | 59804-37-4 | 2.4 | 0.29 | 0.01 | Wishart et al., 2006 |
| Terazosin | 60-87-7 | 1.47 | 0.81 | 0.1 | Wishart et al., 2006 |
| Terbutaline | 23031-25-6 | 1.16 | 0.91 | 0.75 | Varma et al., 2010 |
| Terodiline | 15793-40-5 | 5.01 | 0.0013 | 0.08 | Varma et al., 2010 |
| Tesaglitazar | 251565-85-2 | 3.05 | 0.08 | 0.0011 | Varma et al., 2010 |
| Tetracycline | 60-54-8 | -1.3 | 1.00 | 0.78 | Varma et al., 2010 |
| Theophylline ${ }^{\text {a }}$ | 58-55-9 | -0.02 | 0.99 | 0.61 | Varma et al., 2010 |
| Tiagabine | 115103-54-3 | 5.28 | 0.001 | 0.04 | Varma et al., 2010 |
| Tilidine | 20380-58-9 | 3.35 | 0.04 | 0.21 | Varma et al., 2010 |
| Timolol | 26839-75-8 | 1.17 | 0.90 | 0.9 | Varma et al., 2010 |
| Tinidazole | 19387-91-8 | -0.64 | 1.00 | 0.88 | Wishart et al., 2006 |
| Tizanidine ${ }^{\text {a }}$ | 51322-75-9 | 1.72 | 0.70 | 0.7 | Wishart et al., 2006 |
| Tocainide ${ }^{\text {a }}$ | 41708-72-9 | 0.76 | 0.96 | 0.9 | Wishart et al., 2006 |
| Tolbutamide | 64-77-7 | 2.3 | 0.36 | 0.05 | Wishart et al., 2006 |
| Tolterodine ${ }^{\text {a }}$ | 124937-51-5 | 5.6 | 0.0008 | 0.03 | Wishart et al., 2006 |
| Torsemide ${ }^{\text {a }}$ | 56211-40-6 | 3.356 | 0.04 | 0.01 | Wishart et al., 2006 |
| Tramadol ${ }^{\text {a }}$ | 27203-92-5 | 1.34 | 0.86 | 0.8 | Wishart et al., 2006 |
| Triazolam | 28911-01-5 | 3.31 | 0.04 | 0.1 | Varma et al., 2010 |
| Trimethoprim | 738-70-5 | 1.05 | 0.92 | 0.56 | Wishart et al., 2006 |
| Triphenylphosphate | 115-86-6 | 5.6 | 0.0006 | 0.01 | CompTox ${ }^{\text {b }}$ |


| Trovafloxacin | 146836-84-2 | 2.69 | 0.18 | 0.24 | Wishart et al., 2006 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Valproic acid | 99-66-1 | 2.75 | 0.16 | 0.2 | Wishart et al., 2006 |
| Valsartan | 137862-53-4 | 1.499 | 0.026 | 0.05 | Wishart et al., 2006 |
| Vancomycin | 123409-00-7 | -2.27 | 1.00 | 0.7 | Varma et al., 2010 |
| Vardenafil | 224785-90-4 | 2.96 | 0.09 | 0.05 | Varma et al., 2010 |
| Venlafaxine | 93413-69-5 | 2.25 | 0.39 | 0.73 | Varma et al., 2010 |
| Verapamil | 52-53-9 | 3.79 | 0.014 | 0.06 | Wishart et al., 2006 |
| Vinblastine ${ }^{\text {a }}$ | 865-21-4 | 3.7 | 0.02 | 0.014 | Varma et al., 2010 |
| Warfarin | 81-81-2 | 2.7 | 0.17 | 0.015 | Varma et al., 2010 |
| Xamoterol | 81801-12-9 | -0.82 | 1.00 | 0.97 | Varma et al., 2010 |
| Zaleplon | 151319-34-5 | 1.59 | 0.76 | 0.4 | Varma et al., 2010 |
| Zanamivir ${ }^{\text {a }}$ | 139110-80-8 | -3 | 1.00 | 0.86 | Varma et al., 2010 |
| Ziprasidone ${ }^{\text {a }}$ | 146939-27-7 | 3.8 | 0.01 | 0.0012 | Varma et al., 2010 |
| Zolmitriptan ${ }^{\text {a }}$ | 139264-17-8 | 1.792 | 0.67 | 0.75 | Varma et al., 2010 |
| Zolpidem ${ }^{\text {a }}$ | 82626-48-0 | 3.02 | 0.08 | 0.08 | Varma et al., 2010 |
| Zopiclone | 43200-80-2 | 1.54 | 0.78 | 0.55 | Wishart et al., 2006 |

${ }^{\text {a }}$ Compound logPow taken from EpiSuite database V.4.1; ${ }^{\text {b }}$ CompTox, https://comptox.epa.gov/dashboard/
Predictions are as detailed in Equation S 13 above at a system pH of 7.4. A graphical display is shown in Figure 2.

## References

Berezhkovskiy, L. M. (2011). The corrected traditional equations for calculation of hepatic clearance that account for the difference in drug ionization in extracellular and intracellular tissue water and the corresponding corrected PBPK equation. J Pharm Sci 100, 1167-1183. doi:10.1002/jps. 22324
Caron, G., Ermondi, G. and Scherrer, R. A. (2007). Lipophilicity, polarity, and hydrophobicity. Compr Med Chem II, 425-452. doi:10.1016/B0-08-045044-X/00135-8
Chapman, E. H., Kurec, A. S. and Davey, F. R. (1981). Cell volumes of normal and malignant mononuclear cells. J Clin Pathol 34, 1083-1090. doi:10.1136/jcp.34.10.1083
Delp, J., Gutbier, S., Cerff, M. et al. (2018). Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicol Appl Pharmacol 354, 64-80. doi:10.1016/j.taap.2017.12.013
Doskey, C. M., Van, T. J., Erve, T. et al. (2015). Moles of a substance per cell is a highly informative dosing metric in cell culture. PLoS One 10, 1-24. doi:10.1371/journal.pone. 0132572
Durchschlag, H. (1986). Specific volumes of biological macromolecules and some other molecules of biological interest. In H. J. Hinz (ed.), Thermodynamic Data for Biochemistry and Biotechnology (45-128). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-71114-5_3
Endo, S. and Goss, K. U. (2011). Serum albumin binding of structurally diverse neutral organic compounds: Data and models. Chem Res Toxicol 24, 2293-2301. doi:10.1021/tx200431b
Fischer, F. C., Henneberger, L., König, M. et al. (2017). Modelling exposure in the Tox21 in vitro bioassays. Chem Res Toxicol 30, 1197-1208. doi:10.1021/acs.chemrestox.7b00023
Fisher, C., Siméon, S., Jamei, M. et al. (2019). VIVD: Virtual in vitro distribution model for the mechanistic prediction of intracellular concentrations of chemicals in in vitro toxicity assays. Toxicol In Vitro 58, 42-50. doi:10.1016/j.tiv.2018.12.017
Gülden, M., Mörchel, S. and Seibert, H. (2001). Factors influencing nominal effective concentrations of chemical compounds in vitro: Cell concentration. Toxicol In Vitro 15, 233-243. doi:10.1016/S0887-2333(01)00008-X
Gülden, M., Mörchel, S., Tahan, S. et al. (2002). Impact of protein binding on the availability and cytotoxic potency of organochlorine pesticides and chlorophenols in vitro. Toxicology 175, 201-213. doi:10.1016/S0300-483X(02)00085-9
Houzé, P., Baud, F. J., Mouy, R. et al. (1990). Toxicokinetics of paraquat in humans. Hum Exp Toxicol 9, 5-12. doi:10.1177/096032719000900103
Kisitu, J., Bennekou, H. S. and Leist, M. (2019). Chemical concentrations in cell culture compartments (C5) Concentration definitions. ALTEX 36, 154-160. doi:10.14573/altex. 1901031
Kramer, N. I., Krismartina, M., Rico-Rico, Á. et al. (2012). Quantifying processes determining the free concentration of phenanthrene in basal cytotoxicity assays. Chem Res Toxicol 25, 436-445. doi:10.1021/tx200479k
Nichols, A. V. (1969). Functions and interrelationships of different classes of plasma lipoproteins. Proc Natl Acad Sci U S A 64, 1128-1137. doi:10.1073/pnas.64.3.1128
Poulin, P. and Theil, F. P. (2002). Prediction of pharmacokinetics prior to in vivo studies. Mechanism-based prediction of volume of distribution. J Pharm Sci 91, 129-156. doi:10.1002/jps. 10005
Varma, M. V. S., Obach, R. S., Rotter, C. et al. (2010). Physicochemical space for optimum oral bioavailability: Contribution of human intestinal absorption and first-pass elimination. J Med Chem 53, 1098-1108. doi:10.1021/jm901371v
Wagner, B. A., Venkataraman, S. and Buettner, G. R. (2011). The rate of oxygen utilization by cells. Free Radic Biol Med 51, 700-712. doi:10.1016/j.freeradbiomed.2011.05.024
Williams, V., Grossman, R. G and Edmunds, S. H. (1980). Volume and surface area estimates of astrocytes in the sensorimotor cortex of the cat. Neuroscience 5, 1151-1159. doi:10.1016/0306-4522(80)90194-3

Wishart, D. S., Knox, C., Guo, A. C. et al. (2006). Drugbank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34 (Database Issue), D668-672. doi:10.1093/nar/gkj067
Worth, A. P., Louisse, J., Macko, P. et al. (2017). Virtual cell-based assay simulations of intra-mitochondrial concentrations in hepatocytes and cardiomyocytes. Toxicol In Vitro 45, 222-232. doi:10.1016/j.tiv.2017.09.009

