Food for thought …
Thomas Hartung
Pyrogen testing revisited on occasion of the 25th anniversary of the whole blood monocyte activation test

Concept Article
Martin Paparella et al.
Limitations and uncertainties of acute fish toxicity assessments can be reduced using alternative methods

Research Article
Emily Golden et al.
Evaluation of the global performance of eight in silico skin sensitization models using human data

Research Article
Désirée H. Veening-Griffioen et al.
Tradition, not science, is the basis of animal model selection in translational and applied research

Research Article
Matthias Mack et al.
Automated screening for oxidative or methylation-induced DNA damage in human cells

Research Article
Stefanie Klima et al.
Examination of microcystin neurotoxicity using central and peripheral human neurons

Research Article
Alessandra Marrella et al.
3D fluid-dynamic ovarian cancer model resembling systemic drug administration for efficacy assay

Research Article
Karsten R. Mewes et al.
Extending the applicability domain of the human cell line activation test (h-CLAT)

Research Article
Stevie van der Mierden et al.
Measuring endogenous corticosterone in laboratory mice – a mapping review, meta-analysis, and open source database

Research Article
John S. House et al.
Grouping of UVCB substances with new approach methodologies (NAMs) data

BenchMarks
Marcel Leist
Identifying, naming and documenting of test and tool compound stocks

Letter
Meeting Reports
Corners
Calendar of Events
Dear readers,

We hope that this new issue of ALTEX will distract you from coronavirus-related restrictions for a while and remind you that promising developments driven ahead by dedicated scientists are continuing to progress towards the goals of reduction, refinement and replacement of animal experiments.

At long last, monocyte activation tests are causing a drop in the number of rabbits used in pyrogen testing in Europe, and the German Paul-Ehrlich-Institute has announced that it will no longer accept animal data for this endpoint. Thomas Hartung reviews the developments in this field over the past five years, explains the challenges to achieving regulatory acceptance and implementation, and discusses the open issues that still remain 25 years after he published his first paper on the human whole blood assay in ALTEX.

The article by Martin Paparella and colleagues exemplifies the challenges faced by alternative methods when they aim to replace animal tests that were never similarly validated themselves. The authors methodically summarize the limitations and uncertainties of the acute fish toxicity test and argue that environmental extrapolation models combined with alternative methods can provide at least the same level of environmental protection with higher reliability and throughput.

Next to in vitro alternatives that have been described and validated for the assessment of skin sensitization potency of chemical compounds, strategies to replace in vivo testing include in silico models, which predict skin sensitization based on a compound’s structure and physicochemical properties. Emily Gold and colleagues compare how well eight such in silico models predict two sets of human data on skin sensitization and find that their accuracy is overall comparable to that of the LLNA, a refined animal test, and even better when combined.

Asking on what basis an animal model is selected to address a research question, Désirée Veening-Griffioen et al. examine 110 Dutch project applications for translational and applied research. They conclude that selection is mostly determined by a model and/or related expertise being available rather than whether it has proven predictive value. The need to work with a model of high complexity and intactness often is used as a blanket justification, and 3R statements appear to be used to support the model selection rather than to question it. The authors call on ethical committee members and funding bodies to champion change in this area.

The FADU assay is an alternative to the comet assay for the in vitro detection of genotoxins, i.e., chemicals that damage DNA. Matthias Mack et al. describe an enzyme-modified automated version of the FADU assay, which can differentiate between different types of DNA lesions. It can be applied both to adherent and suspension cells and thus could also be employed for population studies, e.g., in blood samples, as well as studies on DNA repair.

Cyanobacteria produce liver-toxic microcystins, which are suspected of also being neurotoxic. Stefanie Klima and colleagues investigate this claim by challenging neurons representing the central or the peripheral nervous system with microcystins. They report selective neurotoxicity only at high concentrations unlike-

ly to be achieved upon nutritional or environmental exposure but possible after excessive intake of algae supplements.

In line with the strong trend towards microphysiological 3D in vitro models to better represent in vivo physiological and pathophysiological processes, Alessandra Marrella et al. present a 3D fluid-dynamic in vitro model of ovarian cancer using a cancer cell line supported by an alginate scaffold. They find the efficacy of cisplatin treatment to follow that observed in a mouse model, quite different to that in the static equivalent, and suggest that this model could be useful to predict in vivo efficacy of new cancer drugs.

Karsten Mewes et al. report a proficiency exercise showing that the human cell line activation test (h-CLAT) can be used to detect skin sensitizing chemical compounds using antibodies with fluorescent tags that do not interfere with the green autofluorescence of some chemicals including hair dyes, thereby extending the applicability domain of the test.

A large database on the measurement of the stress marker corticosterone in mice in scientific papers has been compiled by Stevie van der Mieren and colleagues. In addition, a meta-regression of a part of the data explores how parameters such as the time of day and the method used affect measured endogenous corticosterone concentrations. These outputs can be used to better plan more robust experiments but also to answer research questions in this field by meta-analysis.

John House et al. approach the challenge of characterizing UVCBs (unknown or variable composition, complex reaction products and biological materials), using the example of petroleum substances, based on biological activity signatures derived from highly quality-controlled tests in 15 human cell types. This strategy identifies groups of chemicals of similar biological activity that agree with the hazard potential expected on the basis of their chemical composition. This study impressively demonstrates that such new approach methodologies can be used to group UVCBs, which can allow groups to be characterized based on lead substances and data-gaps to be filled by read-across.

The BenchMarks contribution by Marcel Leist identifies the possible pitfalls associated with working with chemical solutions that are too easily overlooked and may often contribute to failures to reproduce data.

No fewer than seven Meeting Reports testify to the fact that virtual solutions have been found to host scientific symposia despite the Covid-19 pandemic, and the Corners report recent activities of CAAT, Cruelty Free International, EUSAAT, EU-Tox-Risk, and LUSH Prize. Please consult https://www.altex.org for upcoming 3R-related events including webinars.

Wishing you a healthy and successful 2021.

Sonja von Aulock
Editor in chief, ALTEX
TIERethik wird 10 Jahre alt
» Besuchen Sie unsere neu gestaltete Website www.TIERethik.net
» Alle Artikel als Open Access kostenlos zum Download
» Der Newsletter informiert Sie über die Erscheinungstermine

Zwei Ausgaben kosten pro Jahr 36 € (print) / 28,80 € (online).
Studierende zahlen pro Jahr 26,40 € (print) / 21,20 € (online).
Für Abonnenten von ALTEX und TIERethik gelten Sonderkonditionen.
Preise unter: www.TIERethik.net

Nächstes Heft: 2021/1 "Tiere in der Theologie"

ALTEX Edition
Romanshornerstr. 90
8280 Kreuzlingen, Schweiz
E-Mail: subs@altex.org
Subscribe to ALTEX
Support open access publication of 3Rs research

SUBSCRIPTION SERVICE
ALTEX Edition,
Romanshornerstrasse 90,
8280 Kreuzlingen, Switzerland
e-mail: subs@altex.org

ALTEX is available online:
http://www.altex.org

First name ____________________________________________

Last name ____________________________________________

Institute/Library (if applicable)
____________________________________________________

Address ______________________________________________

State _________________________________________________

Zip code ______________________________________________

Country ______________________________________________

e-mail _________________________________________________

Date/signature _________________________________________

ALTEX (four issues):
☐ Individual subscription
102 €

☐ Library
204 €
(companies, institutes, libraries)

☐ Reduced
55 €
(students, animal protection organizations, selected scientific societies)

Prices include postage for all countries.

The subscription is automatically renewed unless it is cancelled by the end of the year.

I want to pay by
☐ credit card ☐ check

☐ electronic bank transfer ☐ please send me an invoice

Please send completed form to the above address.