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are complex, and varying sources of crude oil are used at dif-
ferent times in manufacturing facilities. For this reason, petro-
leum substance groupings and CAS numbers are typically based 
on physicochemical properties and performance characteristics 
rather than chemical characterization of the constituents (Salvito  
et al., 2020), albeit petroleum substances are made up of a few 
classes of hydrocarbons (alkanes, iso-alkanes, cyclo-alkanes and 
(poly)aromatics), and the actual chemical variation is highly de-
termined by the physicochemical properties. Current practice to 
harmonize the identification of potential hazards among petro-

1  Introduction

Substances classified as UVCBs (unknown or variable composi-
tion, complex reaction products, and biological materials) com-
prise over 20% of chemical registrations in Europe and pres-
ent difficult challenges for hazard and risk evaluations (ECHA, 
2017). Petroleum substances are UVCBs with a complexi-
ty that arises primarily from the presence of very large – hun-
dreds to as many as millions – numbers of isomeric chemical 
constituents. The physicochemical processes during oil refining 
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Abstract
The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB 
(unknown or variable composition, complex reaction products, and biological materials) substances has recently been 
demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper 
mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However,  
the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 
141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent 
stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and 
A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further char-
acterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum 
substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petro-
leum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), 
especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bio-
activity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic 
information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs 
for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of sub-
stances for further testing that may be required for registration.
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2020). For example, data from iPSC-derived cardiomyocytes 
were among the most sensitive with respect to their ability to 
provide concordance with a manufacturing category (House et 
al., 2021). When aggregating across several in vitro data types,  
iPSC-derived hepatocytes showed a strong concordance between 
overall activity and PAC content, a known in vivo indicator of 
potential human health hazard (McKee et al., 2015). These ob-
servations further support the use of in vitro bioactivity assays as 
providing a potential framework for prioritization of substances 
within manufacturing categories but also highlight the need for 
additional mechanistic, such as gene expression, evidence of the 
effects to enable in vivo translation.

Overall, the previous results have strongly supported the util-
ity of in vitro NAM for interrogating and grouping complex 
substances, including petroleum-based UVCBs. The eventual 
purpose of these groupings is to support read-across, and mech-
anistic evidence for the nature of perturbations underlying the 
bioassay phenotype responses to chemicals is gaining promi-
nence in decision-making (Samet et al., 2020). In this context, 
we expect these data to inform read-across hypotheses and pri-
oritize substances for in vivo testing. A refined understanding 
of the chemical effects at the intracellular level could poten-
tially provide more informative in vitro models to characterize 
UVCBs, reducing the number of cell types and assays even fur-
ther while retaining the ability to prioritize UVCBs for further 
testing within categories and to serve as a basis for read-across. 
The use of in vitro transcriptomic profiling of UVCBs is a nat-
ural step to provide this biological context. Indeed, the use of 
transcriptomics in toxicology is now well-established (Joseph, 
2017), and this data stream is an increasingly popular NAM 
(Harrill et al., 2019). High-throughput transcriptomics has been 
used to interrogate biological effects of a large number of chem-
icals and perform transcriptomics dose-response analyses (Har-
rill et al., 2021; House et al., 2017). Previous high-throughput 
transcriptomic data of some petroleum-derived UVCBs showed 
that in vitro gene expression changes were specific to broad cat-
egories (e.g., heavy fuel oils vs. straight run gas oils) (Grimm et 
al., 2016). 

In this study, we tested the hypothesis that transcriptomic pro-
files can be used to support grouping of petroleum substances 
and provide informative mechanistic data for existing groupings 
based on manufacturing class. For this, 141 petroleum substanc-
es, previously analyzed using extensive bioassays across a mul-
titude of human cell types, were used as representative UVCBs. 
These substances were interrogated using transcriptomic profil-
ing in six cell types in a dose-response design. 

2  Materials and methods

Chemicals
All chemicals used in these studies, except for petroleum sub-
stances, were obtained from Sigma-Aldrich (St. Louis, MO), un-
less otherwise noted. Samples of petroleum substances were sup-
plied by Concawe (Brussels, Belgium). To enable in vitro studies 

leum UVCBs is based on broad product categories (CONCAWE, 
2020) that are largely informed by the product performance cri-
teria, manufacturing processes, and the presence of polycyclic 
aromatic compounds (PAC) and other potentially hazardous 
constituents (Clark et al., 2013; McKee et al., 2015). However, 
regulatory agencies question the application of groupings and 
read-across for UVCB product categories due to insufficient jus-
tification for considerations of chemical or biological sameness 
of the products in each category (ECHA, 2020). Therefore, al-
ternative data streams have been proposed as potentially relevant 
for supporting grouping of petroleum UVCBs to improve chem-
ical (Grimm et al., 2017; Roman-Hubers et al., 2021; Onel et al., 
2019) and hazard characterization (House et al., 2021), and to 
ultimately reduce and refine the need for new animal testing for 
registration of these products.

Several previous studies tested the hypothesis that grouping of 
complex substances and environmental mixtures can be achieved 
using data from in vitro assays in induced pluripotent stem cell 
(iPSC)-derived and other cell types (Grimm et al., 2016, 2019; 
Chen et al., 2020). This previous work demonstrated that despite 
the inherent complexity and the variability of samples, in vitro 
data can be used to discern informative biological patterns corre-
sponding to chemical composition or manufacturing categories. 
In addition, these studies suggested that the diversity and phys-
iological relevance of the data from studies in only a few iPSC- 
derived cell types such as hepatocytes (Grimm et al., 2015) 
and cardiomyocytes (Burnett et al., 2019) can yield sensitive 
multi-dimensional information to aid in grouping, providing a 
strong rationale and basis for future read-across efforts and prior-
itization of substances within manufacturing categories. 

More recently, House et al. (2021) combined all these aspects 
in a comprehensive effort to investigate 141 substances, a com-
pendium of samples comprising the majority of petroleum-based 
UVCBs registered under the Regulation on Registration, Evalu-
ation and Authorisation of Chemicals (REACH) in the European 
Union (CONCAWE, 2019). That study generated in vitro bioac-
tivity data from 15 human cell types as new approach method-
ologies (NAM) data to support substance grouping into 16 ma-
jor categories of petroleum-based UVCBs. Extensive quality 
control was used to determine assays, including those specific to 
cell type, that were most informative and provided discernible 
dose-response relationships. The outcomes of this study showed 
that overall summaries of bioactivity yielded substance rankings 
concordant with their chemical composition and expected haz-
ard potential as obtained from physical and analytical chemistry 
data. Moreover, unsupervised and supervised analyses suggested 
that the bioassay data provided important additional information 
relevant to the substance categorization; bioassay data alone ap-
peared as informative to this categorization as traditional physi-
cochemical data. 

These observations were critical in identifying the most infor-
mative cell types and bioassays, providing potential cost savings 
in future studies. It is important to recognize that the ability of in 
vitro bioassays to provide relevant information may have only a 
partial relationship to in vivo relevance and health risk (ECHA, 
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Study design 
Overall, this study conducted concentration-response over 4 
points (3 serial 1-log10 dilutions of each extract performed in 
duplicate, and ~45 vehicle controls for each extract). All sam-
ples were aliquoted into 384-well “master” plates (Masterblock 
384-well, V bottom, Deepwell polypropylene plate; Cat. No. 
781271; Greiner Bio-One North America, Monroe, NC) as de-
tailed elsewhere (House et al., 2021). Plates were sealed with 
aluminum film and stored at -80°C until use. Copies of each  
master plate were prepared for use in all in vitro experiments. 
The final concentration of DMSO in assay wells following ad-
dition of test substances was 0.25-0.5% (v/v), depending on the 
cell type, see House et al. (2021) for details. 

Cell types
A total of 6 human cell types were used in these experiments 
(Tab. S11). Cell type and vendor selections were based on the fol-
lowing considerations. Cells were chosen to be of human origin 
and to represent diverse organs/tissues. We used both iPSC-de-
rived cells as well as established cell lines. These in vitro mod-
els had to be reproducible (i.e., a particular cell/donor can be ob-
tained from a commercial source) and suitable for evaluation of 
both “functional” and “cytotoxicity” endpoints so that the speci-
ficity of the effects of test compounds could be assessed. Four of 
these cell types (hepatocytes, endothelial cells, neurons, and car-

of petroleum substances, extraction of petroleum substances in-
to dimethyl sulfoxide (DMSO) was performed using American 
Society for Testing and Materials standard procedures (ASTM 
International, 2014). The DMSO extraction used herein was de-
signed to concentrate the “biologically active” fraction (i.e., 
mostly 3-7 ring PAC, but also other polar constituents) of each 
petroleum substance; the extracts obtained using this method are 
used routinely for safety testing (e.g., mutagenicity) and chemi-
cal characterization of the refinery streams (CONCAWE, 1994). 
Briefly, 4 g of each tested petroleum substance (Tab. 1) was first 
dissolved in 10 mL of cyclohexane; 10 mL of DMSO (Fisher  
Scientific, Waltham, MA) was added, and the mixture was vigor-
ously shaken for several minutes. The DMSO layer was removed 
using a glass pipette, and the cyclohexane was re-extracted with 
an additional 10 mL of DMSO. Both PAC-enriched DMSO  
layers were combined and diluted 2:1 with two volumes of 4% 
(w/v) sodium chloride solution. Following subsequent extraction 
with 20 mL and 10 mL cyclohexane to isolate the PAC fraction, 
the organic layers were washed twice with distilled water and  
filtered through anhydrous sodium sulfate. The procedure of ex-
traction was also performed without addition of the petroleum 
substances, and the resulting fraction was designated as “vehi-
cle” (method blank) to be used as a reference for comparisons. 
Petroleum substance extracts were further diluted to enable con-
centration-response testing.              

1 doi:10.14573/altex.2107051s

Tab. 1: Petroleum substance categories and substances used in this study  
See Table S11 of House et al. (2021) for a complete listing of substance names, CAS and EC numbers, and other information.

Petroleum substance category Category abbreviation N of samples in category

Residual aromatic extracts RAE 2

Untreated distillate aromatic extracts UDAE 4

Treated distillate aromatic extracts TDAE 2

Heavy fuel oil components HFO 27

Cracked gas oils CGO 8

Unrefined/acid treated oils UATO 4

Vacuum gas oils, hydrocracked gas oils & distillate fuels VHGO 10

Straight-run gas oils SRGO 6

Foots oils FO 3

Other gas oils OGO 4

Bitumens/oxidized asphalt BIT 5

Other lubricant base oils/highly refined base oils BO 33

Kerosines/MK1 diesel fuel KER 10

Low boiling point naphthas (gasolines) NAPHTHA 10

Paraffin and hydrocarbon waxes/slack waxes WAX 10

Petrolatums P.LAT 3

https://doi.org/10.14573/altex.210705s
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group (House et al., 2017). Samples with < 100K counts were 
removed, as were probes not expressed across at least 5% of the 
sample space. For the few genes with more than 1 probe, counts 
were summed to the gene level. At the gene level, these steps 
resulted in ~2,500 genes per cell type assessed for differential 
gene expression (DEG) and concentration response (CRG) for 
each of 141 UVCBs. Each plate contained three types of con-
trols: media alone – “media”, media with DMSO – “DMSO”, 
and method blanks – “vehicle”. See House et al. (2021) for more 
detail. Within a cell type, these three types of controls were ex-
amined for correlation between each other (across the transcrip-
tomic space), and controls whose correlation exceeded 3 stan-
dard deviations from mean correlation were removed as outliers. 
All three control types were examined with principal component 
analysis (PCA) of the top 500 expressed genes. PCA scatter plots 
(Fig. 1) revealed little difference between vehicle and DMSO, 
and thus vehicle controls were used as the most appropriate ref-
erence for all subsequent data analyses. For this publication, after 
quality control (QC), vehicle controls included 40-48 replicates  
(23-24 for iCell cardiomyocytes), providing a solid anchor for 
dose-response quantification followed by treatment dose re-
sponse replication of the remaining serial dilutions. We highlight 
that this approach, applied over multiple doses, six cell lines, 
and ~2,500 genes provides considerable resolution for analyses 

diomyocytes) were human iPSC-derived (FujiFilm-CDI, Madi-
son, WI). Two cell types (A375 malignant melanoma cells and 
MCF7 breast cancer cells) were from ATCC (Manassas, VA). All 
cells were cultured as detailed elsewhere (House et al., 2021), 
and additional cell culturing information is given in the supple-
mentary information1. Cells were plated in 384-well plates in 
densities recommended by the supplier, using optimized media 
supplied by the same company or optimized for density by exper-
imentation for each cell line. Cells were cultured without treat-
ment for a period of time required to achieve functional capacity. 
Plating density, cell culture conditions and duration are detailed 
elsewhere (House et al., 2021). Cells were treated with test sub-
stances in a series of dilutions to evaluate concentration-response 
as described above.

Transcriptomics – Quality control
Overall plate design was explained previously in detail (House 
et al., 2021). In brief, the transcriptomic experiments were 
treated similarly but with only 6 cell types (iCell hepatocytes, 
iCell cardiomyocytes, iCell neurons, iCell endothelial, MCF7, 
and A375) and without the highest dose (undiluted extracted 
UVCBs) that elicited cellular toxicity for some cell type/treat-
ment combinations in phenotypic assays. Raw sequenced reads 
were aligned and counted using the pipeline developed by our 

Fig. 1: Overview of the multi-cell in vitro transcriptomic analysis of the effects of 141 petroleum substances 
(A) Summary of the dataset and data processing pipeline. (B) Principal component analysis of negative control (vehicle (method blank), 
media, or DMSO, see Section 2 for description) gene expression signatures in each cell type.
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amount of each extract was then determined using the weight 
difference of the empty flask and following solvent evapora-
tion. The extract was then dissolved in cyclohexane to a final 
concentration of 50 mg/mL and used for analytical assays. Sam-
ple separation was achieved on a Zebron-5HT capillary column  
(30 m; 0.25 mm; 0.25 mm; Phenomenex, Torrance, CA). Quanti-
tative integration of the chromatograms was achieved using stan-
dards of naphthalene, phenanthrene, 1,2-benzanthracene, ben-
zo[a]pyrene, bebenzo[g,h,i]perylene, and coronene. The result-
ing PAC profiles consist of weight percentages by ring number 
and are listed elsewhere (House et al., 2021). 

Establishing correspondence to bioactivity 
The focus of this study was to characterize changes in gene ex-
pression in response to treatment, and comparison across UVCB 
categories, and not the bioactivity measures that were the sub-
ject of the earlier report (House et al., 2021). However, to estab-
lish the relevance of the results with the current design and the 
effect of sampling variation, we computed overall summed bio-
activity across the 42 assays from the 15 cell types reported ear-
lier (House et al., 2021). Summed bioactivity was the summed 
values over the 42 assays, where each bioactivity phenotype was 
standardized to a common unit variance, and large values corre-
spond to high activity throughout. As the unit of study is each of 
the 141 UVCBs, we ran a cross-validated regression tree model 
for predicting bioactivity using gene responsiveness to treatment 
as a predictor for all ~2,500 TempOSeq genes, where the mod-
el was trained within each of the cell types. For regression trees, 
we used the xgboost R package (v 04.4) with default settings, 
and leave-one-out cross-validation to obtain predictions with-
out overfitting. Prediction accuracy was recorded as the Pearson 
correlation r between true and predicted summed bioactivity. We 
interpret high correlations between predicted and actual bioac-
tivity as indicative of high experimental reproducibility in this 
NAM system, even when the ground truth of biological effects 
is unknown.

Supervised category analysis
As detailed in House et al. (2021), we trained a machine-learn-
ing statistical model to predict the existing categories (CON-
CAWE, 2019, 2020) of petroleum-based UVCBs under REACH 
(Tab. 1). As iCell hepatocytes appeared to be the most sensitive 
cell type in overall gene expression changes in this experiment, 
we performed analysis using the Prediction Analysis of Microar-
rays (PAM) package in Rv3.6 (Tibshirani et al., 2002) using iCell  
hepatocyte expression data for the 141 UVCBs, along with the 
8 PAC and 42 bioassay phenotypic measurements from House 
et al. (2021), using (a) expression data alone, (b) expression + 
PAC, (c) expression + bioassay measurements, and (d) expres-
sion + PAC + bioassay measurements. Leave-one-out cross-val-
idation was performed due to the small minimum category sizes 
in some instances, and we used a PAM shrinkage threshold of  
z = 1.28 for construction of the classifier. For each instance, 
we computed two measures of classification accuracy: the ex-
act matching accuracy (proportion of matches of cross-validat-
ed category assignment vs. true assignment) from the associated 

of substances used in this study. In this study, the primary unit 
of observation was not a gene, but a substance. Each substance 
was interrogated over multiple doses and cell types, with nearly 
90,000 expression data points, providing substantial replication 
for the observations of interest.          

Transcriptomics – Differential gene expression
For each cell type, the complete normalized count matrix of 
141 UVCBs and vehicle controls was calculated using DESeq2 
(Love et al., 2014). The maximum dose was compared to vehi-
cle controls for each cell type/treatment/gene combination, and 
log2-fold-change values and p-values were calculated with an 
equal variance assumption. False discovery q-values were cal-
culated from the p-values of each vector using the R v4.1 p.ad-
just function (method=”BH”) of roughly 2,500 genes for a given 
UVCB treatment/cell type combination; and FDR ≤ 0.1 was con-
sidered as a cut-off to identify expression-responsive gene(s) for 
a given cell type/UVCB combination. Normalized counts from 
DESeq2 were subsequently used for examination of dose-re-
sponse criteria.

Transcriptomics – Concentration response
We applied a set of statistical flags described in detail in House 
et al. (2017) to assess whether a concentration-response calcu-
lation was warranted for each cell type/gene/treatment combi-
nation. Linear modeling using DESeq2 (Love et al., 2014) was 
then conducted of log2(count + 0.5) transformed counts against 
log10(concentration) for each retained cell type/treatment/gene. 
In all cases, the control concentration was converted to the low-
est treatment concentration divided by 10. For example, if the 
three concentrations given were 1/10 stock, 1/100 stock, and 
1/1,000 stock, the vehicle control concentration was considered 
as 1/10,000, and concentration was coded as a predictor vector 
of -4, -3, -2, and -1 after log10 transformation. For a given treat-
ment and cell type, false discovery q-values for linear trend (pos-
itive or negative) for concentration were calculated across all as-
sessed genes as described above for a given cell type/treatment, 
and genes with FDR ≤ 0.1 were considered as concentration re-
sponsive.

Pathway analysis
Pathway analysis and visualization was conducted in R with the 
xgr package (Fang et al., 2016) version 1.1.8 using Reactome 
Ontologies as gene sets. For both differentially expressed genes 
(DEGs) and concentration responsive genes (CRGs), an FDR of 
5% was used to conduct pathway analysis. The gene set back-
ground was considered to consist of all TempOSeq-interrogat-
ed genes retained after low-count removal for a given cell type. 
Subsequently, pathway enrichment was conducted against the 
C2Reactome ontology sets.

Polycyclic aromatic compound (PAC) analysis 
Weight percentages of PAC in all tested samples were deter-
mined by gas chromatography-coupled mass selective detec-
tion (GC/MSD) as detailed previously (Roy et al., 1988). Briefly, 
each substance was extracted as detailed above and dried. The 
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riety of cell types in a dose-escalation design. While it is well es-
tablished that transcriptomics provides direct insight into under-
lying mechanisms of response (Harrill et al., 2021; Yauk et al., 
2020), the sensitivity and specificity of using expression profiles 
for grouping of complex UVCBs, in comparison with previous 
bioactivity measures, has not been explored. 

The overall schematic of the study design and data process-
ing pipeline are shown in Figure 1. Six cell types (iCell hepato-
cytes, iCell cardiomyocytes, iCell neurons, iCell endothelial, 
MCF7, and A375) were subjected to the 4-point treatment (3 di-
lution concentrations and controls) with 141 UVCB extracts as 
described in Section 2, performed in duplicate for each dilution, 
and compared to ~45 vehicle controls. The TempO-Seq probe 
sets used herein interrogate the transcription of ~2,900 (~2,500 
after collapsing to gene level and low-count removal) expressed 
transcripts, and the entire experiment provided ~28 million ex-
pression data points. The TempO-Seq preprocessing and analysis 
closely followed the pipeline of House et al. (2017), producing 

confusion matrix, and the proportion correctly assigned to one of 
two major hazard groups. For the latter, we used an ordering of 
the categories in comparison to PAC to establish a group cutpoint 
(between bitumens and base oils), as shown below in Section 3. 
For the exact match criterion, the 95th percentile of null permuta-
tions was computed in House et al. (2021) as 0.163 and used for 
statistical significance testing.

3  Results

Previous studies of petroleum-derived UVCBs have shown that 
combinations of analytical data (e.g., PAC content) and cell-
based bioassays can be used to group, categorize, and largely 
recapitulate manufacturing-based classifications (House et al., 
2021; Grimm et al., 2016). This study further extends knowledge 
on the application of in vitro data for grouping of complex sub-
stances by including transcriptional response measures for a va-

Fig. 2: Cell type-specific transcriptional responses to petroleum substances 
(A) Differentially expressed genes (DEG, DeSeq2 analysis and false discovery q ≤ 0.01) were derived by comparing expression between 
the highest concentration of each substance (n = 2) with that of vehicle-treated cells (n~45) for each expressed gene. Data are shown  
as average percent (across the 141 substances) of the total number of genes expressed in each cell type for up- (green) and down- 
(orange) regulated genes. Pathways that were significantly (false discovery q ≤ 0.1) affected among these genes were derived using the 
Reactome database in the xgr package. (B) Same as (A) but concentration-response genes (n = 2 for each concentration and ~45 vehicle-
treated) using DeSeq trend analysis, (CRG, false discovery q ≤ 10%) are shown. (C) Example of cell-specific (iCell hepatocytes) effects  
of petroleum substances. Top 50 genes that were affected (up- or downregulated), ranked by the number of substances that had a 
significant (false discovery q ≤ 0.1) effect in either DEG (left) or CRG (right) analysis. The same data as shown in (C) for each cell type are 
in Figures S1 and S21.
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However, our later conclusions are supported across multiple 
cell types, and we concluded that vehicle controls are appropri-
ate for differential expression analysis. Table S11 shows the av-
erage number of reads per expressed transcript for each cell type 
and treatment, including the three control types. The combina-
tions were roughly comparable in average sequence counts, ex-
cept that iCell neurons had relatively lower average counts (~300 
reads per transcript/probe vs. 500-700 for other cell types).

Differential expression analysis was performed on the 141 
substances for the six cell types. To judge overall cell type-specif-
ic transcriptional responses, we recorded the numbers of DEGs 
for the fold-change analysis (based on fold change and false 
discovery cut-offs). iCell hepatocytes showed the most DEGs 
(~2%-3% in each direction), followed by cardiomyocytes and 
endothelial cells (Fig. 2A). The number of significant Reactome 
pathways (across all substances) followed a similar pattern, with 
~75 significant pathways for hepatocytes. Overall, as expected, 
a somewhat larger number of CRGs were significant (q < 0.1), 
and here endothelial cells showed many more CRGs (Fig. 2B), 
while cardiomyocytes showed more significant Reactome path-

raw sequencing counts that were then subjected to quality control 
as described in Section 2, followed by normalization by DESeq2 
(Love et al., 2014). Differential expression analysis via DESeq2 
was performed using both logarithmic fold-change of maximum 
dose vs. control (“log2 FC”), as a simple robust contrast, and a 
concentration-response trend test using controls and all concen-
trations, which was expected to be more powerful for monotonic 
dose-response relationships (Leuraud and Benichou, 2001). Fi-
nally, data visualization and various summaries and pathway 
analyses were used to interpret the biological context. 

PCAs of thousands of genes provide a rich empirical visual-
ization environment to examine the overall gene expression pat-
tern relationships in vehicle, media, and DMSO controls (Fig. 
1B). In most of the six cell types, the control gene expression pat-
terns are overlapping, suggesting little difference among the con-
trol types. This relatively even mixing occurred even when some 
variational patterns emerged, e.g., for A375s with a small portion 
of outlying controls, and in the elongated pattern emerging from 
endothelial controls. For iCell cardiomyocytes, the media con-
trols appear to be somewhat different from vehicle and DMSO. 

Fig. 3: Class-specific effects of 
petroleum substances on gene 
expression in the multi-cell in 
vitro transcriptomic analysis 
Box and whiskers plots show the 
range in the number of genes 
significantly (false discovery  
q ≤ 0.1, DeSeq2 analysis) affected 
by the substances in each class 
(numbers in each class shown 
as n). (A) Differentially expressed 
genes (DEG) were derived by 
comparing expression between 
the highest concentration of 
each substance (n = 2) with that 
in vehicle-treated cells (n ~45). 
(B) Concentration-response 
genes (CRG) were derived by 
analyzing the slope in gene 
expression trend with increasing 
concentration (n = 2 for each 
concentration and ~45 vehicle-
treated). Shown are effects in all 
cell types (left panels) or in iCell 
hepatocytes (right panels). Data 
for each cell type are shown in 
Figures S3 and S41.
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(increasing with dose in most substances). The effects on these 
genes were highly consistent, appearing as significant in ~50% of 
the substances. The same data shown in Figure 2C are shown for 
all cell types in Figures S1 and S21.

Next, we considered the number of DEGs and CRGs for each 
substance in each pre-defined manufacturing category. These 
values are displayed in Figure 3 after aggregating across all cell 
types (left panels), with a category ordering based on the mean 
DEG/CRG ranking across all cell types and the categories dis-

ways. In aggregate, hepatocytes, cardiomyocytes, and endotheli-
al cells appeared to be the most dose-responsive cell types across 
the substances. Hepatocytes, in particular, demonstrated consis-
tent effects on gene expression, and we use this cell type as an 
exemplar for several of the main figures in this manuscript. Fig-
ure 2C shows individual genes in hepatocytes that had the larg-
est number of instances of differential and concentration-respon-
sive outcomes (q < 0.1) across the 141 substances. The top five 
DEGs were Cyp1A1, UGT1A10, Cyp1B, CDH2, and UGT1AB 

Fig. 4: Class-specific effects of petroleum substances on pathway enrichment (xgr package) in gene expression data from  
iPSC-derived hepatocytes 
A false discovery q threshold of 0.05 was used for the gene set selection. For pathway enrichment, another false discovery q threshold of 
0.05 on the pathway selection was used. Bar plots show enriched pathways (C2Reactome) at FDR ≤ 5% derived using either differentially 
expressed genes (A, DEG) or concentration-response genes (B, CRG) affected by the substances in each class. In both cases, the gene-
level false discovery of q ≤ 0.05 was used. Shown are all substance classes regardless of whether any pathways were enriched. Pathways 
are ranked by the degree of overlap among classes. The same data for other cell types are shown in Figures S5 and S61.
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all-cell types results. The overall results and ordering show that 
transcriptomic responsiveness is similar to prior knowledge of 
manufacturing category, based on analytic properties and previ-
ously measured bioactivity (House et al., 2021).

Pathway analyses for enrichment of DEGs in Reactome 
pathways was performed within each cell type and for each 
manufacturing category. The results for iCell hepatocytes are 
shown in Figure 4A for DEGs, expressed as the enrichment 
fold change by the xgr package. The most commonly per-

playing the most transcriptomic perturbations at the top. Note 
that a few substances did not show DEG/CRGs after correction 
for multiple comparisons. The results for hepatocytes are shown 
in the right panels and are somewhat more variable, both with-
in and across categories, as they are based on a single cell type. 
However, the correspondence with the bioactivity-based order-
ing is still apparent, with some exceptions. For example, bitu-
mens, SRGO, and petrolatum appear to have a relatively greater 
number of DEGs in hepatocytes than might be expected from the 

Fig. 5: Heterogeneity of the effects of petroleum substances in the multi-cell in vitro transcriptomic analysis – cell-specific 
effects
Two-sided bar plots show the percent of genes significantly (false discovery q ≤ 0.1) affected (either up- or downregulated) by the 
substances in each class (numbers in each class shown as n ). Within class, substances are ranked (top to bottom) based on their 
cumulative effect across all 6 cell types. (A) Differentially expressed genes (DEG) were derived by comparing expression between the 
highest concentration of each substance with that in vehicle-treated cells. (B) Concentration-response genes (CRG) were derived by 
analyzing the slope in gene expression trend with increasing concentration.
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nificant CRGs was generally higher than for DEGs, which we 
attribute to the greater power of the trend analyses in which all 
concentrations are used.

Heterogeneity of differential gene expression patterns can 
also be viewed by considering, for each gene, the number of 
substances within the manufacturing category in which the 
gene was significant. Figure 6A shows these results for DEGs  
(q ≤ 0.1) in iCell hepatocytes, with genes ordered according 
to decreasing number of times perturbed across all substanc-
es. The height of each bar represents the proportion of times 
that gene was perturbed for the given category or class. For 
manufacturing categories with large numbers of significant 
genes (such as HFOs), some groups of genes are differential-
ly expressed in most substances within the category. For CRGs 
(Fig. 6B), the patterns are even clearer, with the plots appearing 
“denser” due to the larger number of significant genes. Due to 
the uniform ordering of genes across all test substances, an ap-
proximate concordance can be discerned among the categories 
of high bioactivity (lower on the plots), with the leftmost genes 
showing the greatest evidence of differential expression as a 

turbed pathways, across multiple categories, included “un-
folded protein response,” “metabolism of proteins,” “diabetes 
pathways”, and “biological oxidations.” Another set of relat-
ed pathways appeared, involving fatty acid metabolism, cho-
lesterol biosynthesis, and PPARα activation. We note that our 
approach to pathway enrichment requires a contrast between 
significant genes and the remaining background interrogated 
set of genes, so that for example the RAE category shows few 
significant pathways although the number of DEGs is large as 
previously shown. Similar patterns and results occurred for the 
CRGs (Fig. 4B). 

The gene expression effects for individual substances, or-
ganized by category, are shown in Figure 5A (DEGs) and 5B 
(GRGs), displaying the number of significant genes per sub-
stance (q < 0.1). Again, among the cell types, hepatocytes, car-
diomyocytes, and endothelial cells showed the greatest effects 
of UVCBs on gene expression. Direction of expression effects 
(increase/decrease with increasing concentration) were approx-
imately balanced, except for endothelial cells, which displayed 
a preponderance of downregulated genes. The number of sig-

Fig. 6: Heterogeneity of the effects of petroleum substances in the multi-cell in vitro transcriptomic analysis 
In the hepatocyte example, 2388 genes were assessed for DEGs and CRGs (false discovery q < 0.1) after removal of low-count genes. 
Each vertical line represents one of these genes, ordered left to right as genes most perturbed across all 141 evaluated substances. The 
height of each bar represents the proportion of times within the UVCB class (numbers in each class shown as n) the gene was either 
differentially expressed (A) or exhibited a concentration response (B). 
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tigation over other cell types. PAC correlations (Spearman and 
Pearson) and p-values for each cell type and either DRGs or 
CRGs are summarized in Table 2. 

Finally, we investigated the extent to which machine learning 
models can be trained to recognize features that are represen-
tative of a manufacturing category. Although bioactivity as re-
ported in House et al. (2021) is not the primary subject of this re-
port, the ability of these data to support machine learning anal-
yses can be initially motivated by comparison of expression to 
bioactivity. A quantitative summary of the 42 bioactivity predic-
tors (House et al., 2021) was used as a response for a cross-val-
idated regression tree model using gene expression within each 
cell type (see Methods). The resulting correlations for pre-
diction vs. observed bioactivity were: A375 (r = 0.81), iCell  
cardiomyocytes (rc = 0.61), iCell endothelial (r = 0.76), iCell  
hepatocytes (r = 0.84), MCF7 (r = 0.68), and iCell neurons  
(r = 0.35). 

These high correlations in these results support the poten-
tial informativeness of these data for categorization and further 
support iCell hepatocytes as the most informative cell type in-

common feature across multiple categories. For categories of 
lower bioactivity, the genes showing the most evidence of dif-
ferential expression are dispersed more evenly throughout, as 
exemplified by bitumens and the kerosene substances. 

In a manner similar to results presented in House et al. 
(2021), we reasoned that substances with higher content of 3- 
7 ring PAC may elicit more prominent gene expression chang-
es. For each cell type, the number of DEGs and CRGs was com-
pared to the PAC 3-7 content across the 141 UVCBs. Among 
the cell types, iCell hepatocytes showed the highest correlation 
(Spearman ρ = 0.77) with DEGs (Fig. 7A) and CRGs (Fig. 7C). 
Subplots in Figures 7B and 7D show the results within each 
manufacturing category. It is notable that the positive relation-
ship is discernable even within manufacturing category, pro-
vided the category spans a sufficient range of PAC content, as 
can be observed for HFOs and CGOs. The results of this anal-
ysis provide an anchoring to a known aspect of substance haz-
ard for petroleum UVCBs (McKee et al., 2015, 2018). More-
over, the results provide a clear criterion for which cell type, in 
this case iCell hepatocytes, might be selected for future inves-

Fig. 7: Correlation 
between the 
number of DRGs 
(A,B) or CRGs 
(C,D) with the 
extractable 
3-7 polycyclic 
aromatic ring 
content (PAH) in 
iCell hepatocytes 
with FDR ≤ 10% 
Spearman’s ρ = 
0.77 (A) and 0.57 
(C).
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can use any quantitative predictors. We used the expression of 
2,388 expressed genes in various combinations with the 8 an-
alytic (i.e., PAC) and 42 bioactivity predictors previously de-
scribed in House et al. (2021) for these 141 substances. The 
results are shown in Figure 8 using hepatocyte expression. In 
cross-validated analyses, “exact” matches of the model predic-
tions to actual manufacturing category were 31% for expres-
sion alone, 35% for bioactivity + expression, 40% for PAC + 
expression, and 40% for PAC + bioactivity + expression. Al-
though these values are lower than 50%, they are highly signif-
icant in comparison to the null 95% permutation threshold of 

vestigated for expression. Such a “supervised” analysis of cate-
gories can potentially provide information about the uniformi-
ty of substances in a manufacturing category, as well as high-
light substances that are difficult to group within the category 
and are therefore a priority for future testing or to serve as pri-
oritized group representatives. Such substances may be diffi-
cult to identify with unsupervised analyses, which use all the 
features available (e.g., thousands of genes) and where unin-
formative feature variation can overwhelm the inference. For 
this analysis, we used a software originally designed for gene 
expression class prediction (Tibshirani et al., 2002), but which 

Fig. 8: Analysis of the relationship between gene expression data (iCell hepatocytes, “E”), analytical data (PAC, “A”), and 
summarized bioactivity data (from House et al., 2021, “B”) 
Top left (E): The results of supervised analysis in which the UVCB category is predicted from the pattern of gene expression data in iCell  
hepatocytes using the PAM classification procedure as described in Section 2. Rows refer to the true category and columns to pre- 
dicted category. Correct classification counts are colored in green as values on the diagonal. Categories are ordered according to  
median bioactivity score, so misclassifications near the diagonal (not colored) are not severe, while misclassifications into categories  
with substantially different hazard profiles are colored in orange. Top right (BE): correct classifications and misclassifications using  
both expression and bioactivity patterns. Bottom left (AE): correct classifications and misclassifications using both expression and analytic 
data. Bottom right (ABE): correct classifications and misclassifications using expression, bioactivity, and analytic data. Numbers in top  
left corner of each matrix are correct classification rate when only exact matches are considered or (in parenthesis) when misclassifications 
fall into a hazard category that is not substantially different (P.LAT to BO, or BIT to RAE).
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to reduce animal testing (Herrmann et al., 2019); therefore,  
in vitro test-based NAMs are under active consideration as the 
future of risk assessment (Kavlock et al., 2018). Indeed, much 
work is being performed to collect and catalogue in vitro test 
data on thousands of chemicals (Williams et al., 2017) as well 
as to demonstrate how they can be used in support of regulato-
ry decision-making (Paul Friedman et al., 2020; Berggren et al., 
2015; Chiu et al., 2018; Escher et al., 2019). Far less NAM data 
is available for complex substances, such as UVCB or environ-
mental mixtures (Drakvik et al., 2020; Bopp et al., 2019).

Previously, we examined the utility of NAMs for grouping 
of complex UVCBs (House et al., 2021); 141 petroleum-based 
UVCB substances were grouped based on their biological re-
sponses from cell type-specific assays across 15 human cell 
types. Here, we assessed the informativeness and ability of the 
transcriptomic data across 6 of these human cell lines to add 
further mechanistic information to the grouping of these sub-
stances. Transcriptomics was among the first omics data types 
to be used for classification and prediction of hazards and risks 
of drugs and environmental chemicals (Ganter et al., 2005; Ue-
hara et al., 2010; Waters et al., 2008). While some of the early, 
over-optimistic forecasts about the value of transcriptomic da-
ta for toxicity prediction did not materialize, it has been pro-
posed that these data be routinely collected in toxicology stud-
ies and used in risk-based evaluations (Yauk et al., 2020; Liu et 
al., 2019). Among the most notable developments that support 
transcriptomics data as a “screening” NAM is the opportunity 
to conduct high-throughput experiments that interrogate multi-

16%. Closer examination of the results by manufacturing cate-
gory ordered by bioactivity (Fig. 8) showed much higher clas-
sification accuracy (ranging from 87% to 89%) when grouping 
substances with similar hazard potential. Here, transcriptomic 
data appears to provide relatively modest improvement com-
pared to analytic or bioactivity analyses (House et al., 2021), 
which we attribute to the difficulty in gene expression feature 
selection from among thousands of genes and to the fact that 
saturated hydrocarbon constituents that were enriched in the 
extracts used herein may not elicit substance-specific gene ex-
pression changes. Using only expression for prediction leads to 
more “clumping” of prediction into the large categories such 
as HFOs and BOs, while the combination of predictor types 
spreads these predictions across other categories, a phenome-
non that can be seen when comparing the diagonals of the up-
per left and lower right panels. 

4  Discussion

Assessing the potential human health hazard of UVCB sub-
stances and, more specifically, defining a targeted testing strat-
egy that will assist in refining and reducing animal testing is a 
particularly challenging problem in regulatory decision-mak-
ing. Hazard characterization based on individual components 
of complex substances is largely intractable, and limited ani-
mal testing data are available for risk characterization. Howev-
er, ethical and economic considerations indicate a critical need 

Tab. 2: Cell-specific relationships between gene expression effects (either as differentially expressed genes, DEG;  
or concentration-response genes, CRG) and polycyclic aromatic compound (PAC, 3-7 ring) content of petroleum UVCBs  
tested in this study  
Both Pearson r and Spearman ϸ are shown with corresponding p-values for each correlation. See Figure 7 for cell type-specific  
correlation plots.

Cell type Type r p -value ρ p-value

iCell hepatocytes DEG 0.77 1.8E-26 0.76 5.9E-25

 CRG 0.57 2.6E-12 0.55 1.9E-11

iCell cardiomyocytes DEG 0.57 1.0E-12 0.16 0.071

 CRG 0.21 0.014 0.14 n.s.

iCell neurons DEG 0.39 1.4E-05 0.07 n.s.

 CRG 0.20 0.047 0.15 n.s.

iCell endothelial DEG 0.13 n.s. 0.06 n.s.

 CRG 0.09 n.s. 0.08 n.s.

MCF7 DEG -0.04 n.s. 0.26 0.005

 CRG -0.04 n.s. 0.25 0.006

A375 DEG 0.11 n.s. 0.08 n.s.

 CRG 0.19 0.026 0.32 2.1E-04

All cells combined DEG 0.34 5.9E-21 0.24 5.2E-11

 CRG 0.16 8.9E-06 0.23 1.4E-10
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omatic extracts elicited the strongest response. These results 
were apparent not only across a summary of all 6 cell types 
but were also largely replicated in hepatocytes alone. Thus, 
these data are informative with respect to the second challenge 
and the design of future in vitro experiments for testing petro-
leum UVCBs, because our results suggest that iPSC-derived 
hepatocytes may be an especially useful cell type for profiling 
complex substances that contain PAC 3-7 constituents. This ef-
fect was more apparent for DEGs (Spearman’s ρ = 0.77 for the  
aggregate measure vs. PAH 3-7) than for CRGs (Spearman’s  
ρ = 0.57). The strength of these relationships, using gene ex-
pression and iCell hepatocytes alone, is similar to that observed 
(ρ = 0.81) for a summary of 4 bioactivity assays in iCell he-
patocytes (House et al., 2021). 

Various aspects of within- and between-category gene ex-
pression changes, as well as variation across cell types, have 
been explored in this study. Many of these differences are ap-
parent in the “experimental expression fingerprints” provided 
in Figure 5. More highly significant changes are evident in the 
concentration response analysis than the differential expres-
sion (max. dose vs. vehicle control) analysis, which we attri-
bute to increased power in the use of all the concentration data. 
The data from iCell hepatocytes exhibited similar proportions 
and distributions of up- and downregulated DEGs/CRGs, in-
creased expression changes in the fuel oil and aromatic extract 
categories, within-category response-heterogeneity, and nearly 
absent gene expression changes within the wax and petrolatum 
categories. The “gene fingerprints” exhibited in iCell hepato-
cytes in Figure 6 indicate that for many categories that elicit an 
overall modest transcriptomic response (e.g., base oils; BO), 
the genes that are differentially expressed across numerous 
within-category substances tend to be the same as those iden-
tified in categories eliciting a stronger response (e.g., HFOs). 
Collectively, for petroleum UVCBs, we argue that our data 
are supportive of hepatocytes as the most suitable cell type for 
screening if a single cell type is used. For other types of com-
plex substances, we recommend that several cell types still be 
examined (Chen et al., 2020, 2021; Hsieh et al., 2021), but our 
general approach may serve as a useful model for such inves-
tigations. 

Our results on supervised grouping of substances into petro-
leum substance-specific categories indicates that expression 
patterns can be used to confirm assignments of individual sub-
stances into categories with an accuracy that is much higher 
than chance (for exact category matches, 38% vs. 16%), but 
that this classification is more effective if performed using a 
combination of expression with other bioactivity/analytic data 
that had been reported previously (House et al., 2021). As not-
ed earlier, one difficulty with expression-based classification is 
posed by the large number of potential classifiers, which can 
produce overfitting and reduce cross-validated accuracy. It is 
also worth noting that existing categorization is based on man-
ufacturing processes that may have an imperfect relationship 
with biological response. For example, while the correlation 
between bioactivity and expression vs. PAH 3-7 content is rel-
atively high (House et al., 2021) (Fig. 7), the within-category 

ple cell-based models and can test for concentration-response 
in gene expression (House et al., 2017; Phillips et al., 2019). 
This approach represents a path forward in decision-making, 
as compared to the traditional use of transcriptomic data to pro-
vide mechanistic evidence (Harrill et al., 2019, 2021). Tran-
scriptomic data are high-dimensional and provide a compre-
hensive set of information on the state of the cells or tissues in 
both health and disease; this information has been exploited to 
not only classify individual chemicals with respect to their po-
tential hazard (Ganter et al., 2005; Uehara et al., 2010), but al-
so to group chemicals based on the similarity in their effects 
(Low et al., 2011; De Abrew et al., 2016, 2019), one of the jus-
tifications for grouping and read-across in the regulatory con-
text (Schultz et al., 2015). Finally, we emphasize that transcrip-
tomics provides biological context due to the very nature of ge-
nomic annotation that other NAMs (e.g., based on bioactivity 
as in House et al., 2021) do not so readily provide, and the high 
adoption rate and standard use of transcriptomics (Yauk et al., 
2020; Liu et al., 2019) make it more attractive than the use of 
NAMs that require highly specialized methods.

In our study, probes from the TempO-seq s1500+ gene set  
(n = 2,982 optimized for human pathway coverage and repre-
sentative of the human transcriptome) were assessed in repli-
cate across a 4-point concentration dose response. We exam-
ined both differential gene expression response at the highest 
treatment dose compared to controls as well as concentration 
response effects across all concentrations. The inclusion of 
gene expression profiling in this study, in addition to the bio-
logical response data from the high content in vitro screening 
generated earlier (House et al., 2021), provide (1) biological 
context to the challenge of grouping of UVCBs with cell-based 
data, and (2) additional clues as to the suitability of various cell 
types for screening and prioritization. 

For the first challenge, we note that the imaging-based phe-
notypes on these UVCBs (House et al., 2021) were consid-
ered by regulators as insufficient for the purpose of support-
ing the similarity argument in product registration (ECHA, 
2020). It was noted that the relationships between in vitro re-
sults and in vivo effects of these substances needed to be clari-
fied, especially if the registration argues that PAH constituents 
present the most bioactive, or worst case, fraction of the test 
substance. Indeed, assessment of DEGs and CRGs across the 
cell-line/UVCB treatment space revealed additional mechanis-
tic information. For example, in agreement with the hypothe-
sis that PAH are eliciting the majority of transcriptional chang-
es, iPSC-derived hepatocytes were among the most responsive 
to UVCB-elicited transcriptomic alterations for both DEGs 
and CRGs across these 141 petroleum substances, with tran-
scriptomic changes observed in active xenobiotic metaboliz-
ing genes. Genes most often up-regulated in response to petro-
leum UVCBs were downstream of nuclear receptor-activated 
transcription of xenobiotic metabolism genes (e.g., cytochrome 
P450s and UDP-glucuronosyltransferases) in response to hy-
drocarbons (Goedtke et al., 2020). Consistent with previously 
published results (Grimm et al., 2016), the wax and petrolatum 
categories elicited the fewest transcriptomic changes, while ar-
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295-332-8 “extracts (petroleum), deasphalted vacuum resi-
due solvent”. https://echa.europa.eu/documents/10162/6cda 
0e05-11af-541b-6dfa-b2101db95a5a (accessed 02.09.2020).

Escher, S. E., Kamp, H., Bennekou, S. H. et al. (2019). To-
wards grouping concepts based on new approach methodolo-
gies in chemical hazard assessment: The read-across approach 
of the EU-ToxRisk project. Arch Toxicol 93, 3643-3667. 
doi:10.1007/s00204-019-02591-7

Fang, H., Knezevic, B., Burnham, K. L. et al. (2016). XGR soft-
ware for enhanced interpretation of genomic summary data, il-
lustrated by application to immunological traits. Genome Med 
8, 129. doi:10.1186/s13073-016-0384-y

Ganter, B., Tugendreich, S., Pearson, C. I. et al. (2005). De-
velopment of a large-scale chemogenomics database to im-
prove drug candidate selection and to understand mechanisms 
of chemical toxicity and action. J Biotechnol. 119, 219-244. 
doi:10.1016/j.jbiotec.2005.03.022

Goedtke, L., Sprenger, H., Hofmann, U. et al. (2020). Polycyclic 

range for PAC values is large, and categories are not monolith-
ic. Thus, the accuracy of the transcriptomic and in vitro assays 
in general for supervised classification may have upper bounds 
that do not reflect on the assays themselves. 

One additional consideration with respect to the study design 
and the potential use of these data in support of testing propos-
als and read-across hypothesis concerns the choice of the DM-
SO extraction (ASTM International, 2014) to enable in vitro 
testing of petroleum UVCBs. This method preferentially ex-
tracts 3-7 ring PAC, but the regulators have noted that “test-
ing DMSO extracts does not provide a basis for reliably pre-
dicting the properties of the [whole] substance” (ECHA, 2020). 
Unfortunately, testing the material which is left after DM-
SO extraction presents numerous challenges because the sol-
vents that would need to be used are incompatible with in vi-
tro testing. Alternative delivery of the “whole substance” can 
be achieved through passive dosing (Hammershoj et al., 2020; 
Trac et al., 2021); however, the methods to deliver complex 
UVCBs in small volume in vitro testing conditions have not 
been established yet. Thus, additional work is needed to im-
prove the relevance of in vitro test methods for use in regulato-
ry decisions on UVCBs.
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