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sessment (IATA) or defined approaches (DA). The OECD has pub-
lished a new guideline (TG 497) that describes two simple DA for 
assessing skin sensitization (OECD, 2021a). This strategy of com-
bining NAM data will enhance the vigor of skin sensitization haz-
ard identification calls on chemicals and further address the critical 
need for predicting chemical potency. Potency prediction is need-
ed for the UN Global Harmonized System (GHS) subclassification 
of sensitizers into 1A (strong sensitizers) and 1B (other sensitiz-
ers). For the specific needs of GHS subclassification into subcate-
gory 1A, the kinetic direct peptide reactivity assay (kDPRA) is ac-
cepted as a standalone assay (Natsch et al., 2020; OECD, 2021d). 
However, assessing potency is also required for conducting next 
generation risk assessments (NGRA) on new chemical entities for 
which only non-animal information is available (Api et al., 2020; 
Bernauer et al., 2021; Dent et al., 2018; Gilmour et al., 2020). Po-
tency prediction for risk assessment needs to be more granular 
than the GHS subclassification, and it is expected that this granu-
larity can only be provided by combining multiple methods. Such 

1  Introduction 

The progress achieved in developing new approach methodol-
ogies (NAM) for assessing the skin sensitization potential of 
chemicals over the last two decades has been remarkable. The 
Organisation for Economic Co-operation and Development 
(OECD) led the development of the adverse outcome path-
way for skin sensitization divided into mechanistic key events 
(OECD, 2014). Three OECD guidelines have been published 
that cover these mechanistic events (covalent binding to protein, 
keratinocyte activation and dendritic cell activation). A total of 
eight non-animal test methods are approved in OECD TG 442C, 
442D and 442E (OECD, 2018a,b, 2021d). However, none of the 
eight test methods are considered standalone replacements for 
complete hazard identification or potency determination. 

The current focus is to find ways to combine in vitro, in chemico 
and in silico assessments with read-across predictions from simi-
lar chemicals to generate integrated approaches to testing and as-
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multiple input data, (4) comparison of kDPRA and Cor1-Cor420 
reactivity data, and (5) case studies on chemicals with multiple 
LLNA EC3 values. This work further advances the 3Rs for skin 
sensitization testing as a standardized way to derive a PoD from 
validated methods is still a missing element in the application of 
NAM for sensitization assessment.

2  Materials and methods 

Data sources of existing data
All in vivo and in vitro data are from our previous publication 
(Natsch et al., 2015), from data compilations by Urbisch et al. 
(2015) and Jaworska et al. (2015), and from the database compiled 
by the OECD working group on DA (OECD, 2021c). The database 
(ESM1-11) contains data from the DPRA and kDPRA (OECD TG 
442C), KS assay (TG 442D), h-CLAT (TG 442E), LLNA (GL 429) 
and the Cor1-C420 reactivity assay (Natsch and Gfeller, 2008). All 
individual parameters are described in ESM1-11.

Data transformation and normalization for statistical analysis
All data were log-transformed and normalized as described 
(Natsch et al., 2015). In case multiple LLNA data were available, 
we took the geometric mean of the LLNA EC3 values. Data are 
expressed as pEC3, a logarithmic expression taking molecular 
weight into account since most in vitro data are expressed in mo-
lar concentrations and not on a per weight basis as in the LLNA.

pEC3 = Log( MW )
	             EC3	

For negative LLNA results, the pEC3 was set to zero, which 
is the special case for, e.g., molecules with a molecular weight 
of 100 and an EC3 of 100%. This approach treats all negatives 
equally, as not all negatives were tested up to 100%. Based on 
this normalization, the pEC3 spans a range from 0 for non-sensi-
tizers to 4.86 for the potent sensitizer oxazolone.

In the KS assay, the IC50 value (concentration for 50% reduc-
tion in cellular viability) and the EC1.5 or EC3 values, i.e., con-
centration for 1.5- or 3-fold luciferase induction, are determined. 
Chemicals are tested up to a maximal concentration of 2000 µM. 
For chemicals with no cytotoxicity at this concentration, the nu-
merical IC50 was set to the arbitrary value of 4000 µM. Similar-
ly, if the luciferase gene was not induced above a given thresh-
old, the EC1.5 or EC3 values were set to 4000 µM. In addition, 
in the KS prediction model only gene induction observed at non- 
cytotoxic levels (> 70% viability) is considered relevant. Thus, 
if 1.5-fold gene induction was only observed at cytotoxic levels, 

potency information is critical to ensure any new chemical is safe 
for exposed workers and consumers. 

Multiple studies have addressed the application of quantita-
tive in silico, in chemico and in vitro data from the validated as-
says for potency prediction (Gilmour et al., 2020; Kleinstreuer 
et al., 2018; Natsch et al., 2018; OECD, 2021a). A few NAMs 
have been designed to predict potency, including the SENS-IS® 

(Cottrez et al., 2015, 2016), the genomic allergen rapid detection 
(GARD) (Zeller et al., 2017), and the kDPRA (Wareing et al., 
2017). DA using data from NAMs have been shared for predict-
ing potency, including a Bayesian network approach (Jaworska 
et al., 2015), regression models with KeratinoSens™ (KS) and 
peptide reactivity data (Natsch et al., 2015), artificial neural net-
work model (Hirota et al., 2015, 2018), and integrated use of hu-
man cell line activation test (h-CLAT), DPRA and DEREK data 
(Takenouchi et al., 2015). It will be essential for risk assessors 
and regulators to evaluate these different approaches to identify 
which DA or individual methods provide an accurate point of de-
parture (PoD) value for conducting sound risk assessments. 

One promising approach based on generating linear regres-
sion models has been published using KS and kinetic peptide 
reactivity data to provide a predicted EC3 as a PoD (Natsch et 
al., 2015, 2018). Predicting an EC3 value offers the advantage 
of generating continuous potency values compared to predicting 
a chemical potency class (Cottrez et al., 2015; Jaworska et al., 
2015; Zang et al., 2017; Zeller et al., 2017). It also provides the 
opportunity to manage uncertainty using statistical tools based 
on knowledge of the accuracy of the prediction. Such uncertain-
ty could be factored in to refine the PoD value for conducting a 
skin sensitization risk assessment. The determination of potency 
has been primarily dependent on the use of the LLNA (Loveless 
et al., 2010; OECD, 2010), which has long been considered the 
“gold standard” for potency assessment because it yields quan-
titative data suitable for a dose-response evaluation. An alterna-
tive, non-animal approach is urgently needed.

The previous work on regression models (Natsch et al., 2015) 
used kinetic rate constants generated with the Cor1-C420 assay 
(Natsch and Gfeller, 2008). In this paper, updated linear regres-
sion models based on data from OECD validated methods (kD-
PRA, KS and/or h-CLAT) are described for predicting a PoD val-
ue for risk assessment purposes. A comprehensive database of 
322 chemicals was assembled that contains data from previous 
papers (Natsch et al., 2015, 2020) merged with the database com-
piled within the framework of the OECD project on DA (OECD, 
2021c). The paper addresses (1) contribution of the in vitro pa-
rameters for predicting LLNA potency, (2) comparison of pre-
diction models based on an inclusive dataset versus the high-
ly curated OECD dataset, (3) guidance in model selection with 

1 doi:10.14573/altex.2201141s1
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With these linear transformations, all in vitro parameters are set 
to 0 in case a molecule is non-reactive in kDPRA, non-toxic be-
yond the selected threshold in the cell-based assays, or it does 
not induce the cellular markers (luciferase or CD86/CD54 induc-
tion), while all positive in vitro evidence according to the predic-
tion models of the individual assays has a positive value. These 
linear transformations of logarithmic data do not distort the data 
but make reading the regression equations easier.

Vapor pressure was calculated with TIMES SS software (Labo-
ratory of Mathematical Chemistry). Vapor pressure is considered 
important as chemicals are tested in the LLNA with open appli-
cation, while evaporation is limited in the in vitro assays. The re-
lationship of calculated vapor pressure to evaporation from the  
LLNA vehicle acetone / olive oil 4:1 (AOO) at the typical skin sur-
face temperature of 32°C was tested experimentally for 37 mole-
cules, and a linear relationship between Log(VPcalc) and log half-
life of the chemical in AOO was demonstrated as shown in Fig-
ure S2 in Natsch et al. (2015). Chemicals with a Log(VPcalc) < 10 
Pa were found not to evaporate significantly from AOO within 60 
min. Therefore, vapor pressure data were normalized as follows:

LogVPnorm = Log(VP) – 1 

and values below zero were set to 0. With this approach, chem-
icals predicted to evaporate significantly from mouse ears with-
in 60 min have a positive coefficient, whereas the coefficient for 
chemicals with low volatility (i.e., not significantly evaporating 
within 60 min) is set to 0.

Statistical analysis 
Multiple linear regression against the pEC3 was performed with 
the MiniTab 15 software. The R2-values and F- and p-values of 
the correlations are given throughout the manuscript as measures 
of correlation strengths. The regression equations were then used 

then EC1.5 and EC3 were set to 4000 µM. The three parameters 
were linearized by logarithmic transformation and normalized by 
multiplication by 1 and the addition of the constant Log(4000). 

Thus, as an example, the normalized IC50 is:

LogIC50norm = –1 × Log(IC50KS) + Log(4000)	

These three normalized KS parameters span a linear range from 
0 (no effect at 2000 µM) to 3.61 (effect at lowest tested concen-
tration of 0.98 µM). 

In the h-CLAT, four quantitative parameters are determined: 
The CV75 indicates the concentration for 25% reduction in cel-
lular viability, the EC150 indicates the concentration for 1.5-fold 
induction of CD86 surface expression, and the EC200 indicates 
the concentration for 2-fold induction of CD54 surface expres-
sion. The MIT reports the smaller of the two values EC150 and 
EC200. Most chemicals are tested up to 5000 µg/mL, but in some 
cases only up to 1000 or 2000 µg/mL (Nukada et al., 2012). Da-
ta from h-CLAT are reported in µg/mL, and they were thus trans-
formed to µM. Negative values were set to the arbitrary value of 
25,000 µM (i.e., 5000 µg/mL for a chemical with a default mo-
lecular weight of 200), and normalization was done in the same 
way. As an example, the normalized MIT value is:

LogMITnorm = –1 × Log(MITµM) + Log(25000)	

In the kDPRA, the reaction rates are measured at different time 
points, and the logarithm of the maximal rate in s-1M-1 is report-
ed (Log kmax). The minimal value for chemicals that are negative 
in the assay, i.e., reaching less than 13.86% depletion of the cys-
teine peptide after 24 h is <  3.5. These values were thus normal-
ized according to the following formula:

Log kmaxnorm = Log kmax + 3.5	

2 doi:10.14573/altex.2201141s4

Tab. 1: Subsets of chemicals in the dataset used for the different evaluations on the robustness of predictive models

Data subset	 n	 Data available for all chemicals in a subset	 Used for

Full dataset 	 322	 LLNA, KS, Cor1-C420 assay	 Overall analysis in ESM42

Full dataset with	 203	 LLNA, KS, kDPRA, Cor1-C420 assay 	 Most comprehensive model integrating kDPRA and KS 
kDPRA data	

Full dataset with	 188	 LLNA, KS, kDPRA, Cor1-C420 assay, h-CLAT	 Models using h-CLAT instead of  
kDPRA and 			   (or in combination with) KS 
h-CLAT data

OECD LLNA	 149	 LLNA data from previous database, LLNA data	 Comparison of models derived from OECD dataset 
dataset		  curated by OECD DA group, KS, kDPRA, 	 with models on more comprehensive datasets;  
		  Cor1-C420 assay, h-CLAT	 evaluation of the impact of data curation

Core set 2015	 244	 LLNA, KS, Cor1-C420 assay	 For direct comparison with the 2015 analysis in ESM42

Core set 2015; 	 158	 LLNA, KS, Cor1-C420 assay, kDPRA	 Predictivity with kDPRA on subset of previous 
subset with 			   publication 
kDPRA data

https://doi.org/10.14573/altex.2201141s4
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For comparison, the same regression analysis was performed 
on the subset of data from the core set used in the 2015 study 
with kDPRA data (n = 158; EQ2). Similarly, the same model was 
also calculated on the subset of data with available h-CLAT da-
ta. The latter can then be directly (i.e., based on the same chem-
icals) compared to the models below integrating h-CLAT data  
(n = 188; EQ3). 

EQ2	 pEC3 = 0.34 + 0.38 × Log kmax norm + 0.16 ×  
Log EC1.5norm + 0.42 × Log IC50norm – 0.18 ×  
Log VPnorm 
n = 158; S = 0.72; R2 = 63.0%; R2 (adj) = 61.2%

EQ3	 pEC3 = 0.40 + 0.40 × Log kmax norm + 0.14 ×  
Log EC1.5norm + 0.38 × Log IC50norm –  
0.21 × Log VPnorm
n = 188; S = 0.75; R2 = 58.4%; R2 (adj) = 57.5%

The resulting equations are very similar to EQ1, indicating that 
the chemicals added to the core set used previously have no ma-
jor impact on the overall predictive model and that the model 
is relatively stable when used with different subsets of the in-
put data.

3.3  A quantitative global regression model integrating  
kDPRA data with h-CLAT data
Next, a similar model was calculated using only data from the 
kDPRA and h-CLAT to predict the potency of chemicals with 
these two sources of data available, thus normalized EC1.5 and 
IC50 were replaced with the normalized MIT and the CV75 from 
h-CLAT, both calculated in µM (n = 188; EQ4).

EQ4	 pEC3 = 0.18 + 0.36 × Log kmax norm +  
0.21 × Log MITnorm + 0.35 × Log CV75norm –  
0.19 × Log VPnorm

Constant		  T = 1.65, p = 0.102
Log kmax norm 	 T = 7.59, p < 0.0005
Log MITnorm 	 T = 3.06, p = 0.004
Log CV75norm 	 T = 3.69, p < 0.0005
Log VPnorm 	 T = -3.0, p = 0.003
n = 188; S = 0.72; R2 = 61.1%; R2 (adj) = 60.3%

Compared to EQ3, on the same dataset, kmax has a similar weight 
in this equation, and MIT and CV75 can replace the KS data with 
a very similar overall statistical weight. EQ4 is thus added to the 
prediction spreadsheet (ESM23) to be used for those chemicals 
for which only kDPRA and h-CLAT data are available. 

3.4  A quantitative global regression model 
integrating kDPRA data with KS and h-CLAT data
For some chemicals, comprehensive data from all three OECD 
TG will be available. Thus, the most comprehensive model inte-
grates kDPRA, KS and h-CLAT data (n = 188; EQ5). 

to predict the most likely pEC3 and EC3 values of the individual 
chemicals. The ratio between the larger and the smaller values of 
the measured and predicted EC3 was calculated in each case to 
give the fold-misprediction. 

3  Results

3.1  A comprehensive database of in vitro and  
in vivo data
We compiled a comprehensive database on 322 chemicals (Tab. 
ESM1-11) with data from the OECD-validated LLNA, KS, 
h-CLAT, DPRA and kDPRA. This database also contains phys-
icochemical information and reaction rates measured using a 
method similar to the kDPRA but with the more reactive peptide 
Cor1-C420, as reported earlier. This database is a merger of our 
previous database (Natsch et al., 2015) with the database used to 
validate the kDPRA (Natsch et al., 2020) and the database put 
together within the frame of the OECD project on developing a 
DA for skin sensitization in the Series on Testing and Assessment 
No. 336, Annex 2 (OECD, 2021c). It also contains h-CLAT and 
DPRA data from Urbisch et al. (2015) and Jaworska et al. (2015). 
Table 1 indicates the different subsets of this database. 

In the analysis below, we present regression analysis on these 
different datasets, and we provide a prediction spreadsheet 
(ESM23) integrating the key equations, which can be used to esti-
mate a predicted LLNA pEC3 and an EC3 value as a PoD based on 
in vitro input parameters using the different regression equations.

3.2  A quantitative global regression model 
integrating kDPRA data with KS data
The database contains kDPRA and KS data for a set of 203 
chemicals. For this dataset, a regression model based on the nor-
malized EC1.5 and IC50 from KS, Log kmax from the kDPRA 
and normalized vapor pressure was derived, similar to the global 
model in the 2015 study (EQ1), by replacing reaction rates with 
the Cor1-C420 peptide with data from the validated kDPRA.

EQ1	 pEC3 = 0.42 + 0.40 × Log kmax norm + 0.15 ×  
Log EC1.5norm + 0.36 × Log IC50norm – 0.21 ×  
Log VPnorm

Constant	 T = 4.61, p < 0.0005
Log kmax norm 	 T = 9.1, p < 0.0005
Log EC1.5norm 	 T = 2.5, p = 0.013
Log IC50norm 	 T = 4.47, p < 0.0005
Log VPnorm 	 T = -3.44, p = 0.001
N = 203; S = 0.73; R2 = 62.0%; R2 (adj) = 61.3%

In this equation, kmax from kDPRA and IC50 from KS have the 
highest statistical weight. This equation is derived from the most 
comprehensive dataset with available kDPRA data. EQ1 is there-
fore proposed as the key model in the prediction spreadsheet 
(ESM23) for chemicals with available kDPRA and KS data only.

3 doi:10.14573/altex.2201141s2
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result in the kDPRA and the DPRA. For these and complex extracts 
or multi-constituent substances with data gaps in the kDPRA due to 
incompatibility with the assay, a model based on KS and h-CLAT 
data only may be of interest. This model is presented in Equation 6. 

EQ6	 pEC3 = 0.09 + 0.276 × Log MITnorm + 0.22 ×  
Log EC1.5norm + 0.34 × Log CV75norm + 0.06 ×  
Log IC50norm - 0.12 × Log VPnorm

Constant		  T = 0.67, p = 0.50
Log EC1.5norm 	 T = 3.22, p = 0.002
Log IC50norm 	 T = 0.43, p = 0.671
Log MITnorm	 T = 3.75, p < 0.0005
Log CV75norm	 T = 2.29, p = 0.025
Log VPnorm	 T = -1.81, p = 0.072
n = 188; S = 0.81; R2 = 51.8%; R2 (adj) = 50.5%

All the above models (EQ1, 4 and 5) were also calculated with KS 
EC3 derived from KS, i.e., the concentration for threefold stimula-
tion of the luciferase signal in KS, instead of EC 1.5, and models 
with very similar R2 were obtained (data not shown). However, in the 
situation without reactivity data, EQ7 using KS EC3 has improved 
statistical power, with KS EC3 having the highest statistical weight.

EQ7	 pEC3 = 0.202 + 0.222 × Log MITnorm + 0.40 ×  
Log EC3norm + 0.313 × Log CV75norm + 0.023 ×  
Log IC50norm – 0.151 × Log VPnorm

Constant		  T = 1.67, p = 0.098
Log EC3norm	 T = 5.29, p < 0.0005
Log IC50norm 	 T = 0.18, p = 0.855
Log MITnorm	 T = 3.02, p = 0.003
Log CV75norm 	 T = 2.28, p = 0.024
Log VPnorm 	 T = -2.28, p = 0.023
S = 0.77; R2 = 55.9%; R2 (adj) = 54.7%

EQ5	 pEC3 = 0.20 + 0.34 × Log kmax norm + 0.20 ×  
Log MITnorm + 0.09 × Log EC1.5norm +  
0.21 × Log CV75norm + 0.11 × Log IC50norm –  
0.19 × Log VPnorm

Constant 		  T = 1.98, p = 0.080
Log kmax norm 	 T = 6.88, p < 0.0005
Log EC1.5norm 	 T = 1.41, p = 0.159
Log IC50norm 	 T = 0.94, p = 0.347
Log MITnorm	 T = 2.74, p = 0.004
Log CV75norm	 T = 1.63, p = 0.119
Log VPnorm 	 T = -2.84, p = 0.005
n = 188; S = 0.72; R2 = 61.6%; R2 (adj) = 60.6%

The predictive power of EQ5 is only very marginally improved vs 
EQ3 and EQ4, indicating that with both KS and h-CLAT data, the 
overall predictivity improves only slightly as compared to the sit-
uation where only one cellular assay is available. This has already 
been observed in our previous comprehensive analysis (Natsch et 
al., 2020), indicating significant data redundancy between these two 
cell-based assays. This is especially the case for the cytotoxicity 
readout. When both IC50 and CV75 are used in EQ5, they contrib-
ute additively, but the coefficient and statistical parameters indicate 
a weak contribution of each parameter. Alternative models using ei-
ther CV75 or IC50 alone have the same R2 value (61%), but in both 
cases, the contribution of the cytotoxicity parameter has more sta-
tistical weight ( p = 0.014 for IC50 and p = 0.005 for CV75; regres-
sion equations not shown), confirming data redundancy especially 
for the two cytotoxicity indicators, which is not a surprising finding.

3.5  A quantitative global regression  
model integrating KS and h-CLAT data  
in the absence of kDPRA data
Finally, in some cases, chemicals are rated as positive in a DA based 
on a positive result in the cell-based assays only despite a negative 

Tab. 2: Predictivity on the dataset (n = 188) with KS, h-CLAT and kDPRA data

Model	 Input	 Fold-	 Fold-	 Chemicals 	 Chemicals 	 Chemicals 	 Chemicals  
	 parameters	 mispredictiona	 misprediction	 > 5-fold under-	 > 10-fold under-	 > 5-fold over-	 > 10-fold over- 
		  (geomean)	 (median)	 predictedb 	 predicted 	 predictedb 	 predicted  
				    n, (%)	 n, (%)	 n, (%)	 n, (%)	

EQ1	 kDPRA, KS	 3.3	 2.5	 33 (18%)	 20 (11%)	 16 (9%)	 7 (4%)

EQ4	 kDPRA, 	 3.2	 2.4	 30 (16%)	 17 (9%)	 16 (9%)	 7 (4%) 
	 h-CLAT

EQ5	 kDPRA, KS, 	 3.1	 2.3	 35 (19%)	 17 (9%)	 18 (10%)	 6 (3%) 
	 h-CLAT

EQ6	 KS, h-CLAT	 3.5	 2.6	 33 (18%)	 19 (10%)	 19 (11%)	 8 (4%)

EQ7	 KS, h-CLAT	 3.4	 2.7	 31 (16%)	 19 (10%)	 18 (10%)	 6 (3%)

Global	 Cor1-C420	 3.5	 2.7	 39 (21%)	 24 (13%)	 19 (10%)	 4 (2%) 
model 	 assay, KS 
2015

a The ratio between the higher and the lower values of the measured and predicted EC3 value. Predicted EC3 > 100% were set to 100%; b 
Under-predicted chemicals: those for which the measured LLNA EC3 is less than the predicted EC3; over-predicted chemicals: those with 
measured LLNA EC3 greater than the predicted value.
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a)	 Does the smaller data subset collected by the OECD group 
lead to significantly different equations compared to those 
presented above on a more comprehensive set?

b)	 Do the LLNA EC3 values after the data curation lead to sig-
nificantly different predictive equations compared to the  
LLNA data in the previously published databases?

Table 3 provides comparisons of the model parameters as cal-
culated for the chemicals in the OECD database only (n = 149) 
 vs (i) published LLNA data and (ii) curated LLNA data,  
and these models are compared to the models established  
on the more comprehensive sets of chemicals (EQ1, EQ4 
 and EQ5).

Overall, the additional models (EQ8-EQ13) derived from the 
subset in the OECD database are similar to EQ1, EQ4 and EQ5, 
integrating the larger datasets of all available data for a given da-
ta combination. Especially, only minor differences are observed 
between the models on the historical and the curated LLNA data 
(EQ8 vs 9 / EQ10 vs 11 / EQ12 vs 13).   

3.8  Practical application: An open spreadsheet 
for calculating a PoD and case studies
To further facilitate application, here we provide a prediction 
spreadsheet as ESM23. Users can simply enter the experimen-
tal data from the different in vitro assays along with the mo-
lecular weight and a calculated vapor pressure to calculate a 
predicted EC3, which can be used as a PoD and, if applying 
adequate safety factors and taking into account all available in-
formation and applicability domain limitations, for a quantita-
tive risk assessment. To illustrate its use, the prediction spread-
sheet also contains the input data for two examples, DNCB and 
cinnamic aldehyde.

These models without kDPRA data have less statistical power, 
but they would primarily be used either in the case of data gaps 
for the kDPRA, for chemicals that are negative in the kDPRA, 
or for chemicals outside of the applicability domain of the  
kDPRA (see ESM34). These latter chemicals, in most cases, are 
weak or moderate sensitizers, as the majority of strong sensi-
tizers have a direct peptide reactivity in the kDPRA and DPRA 
(Natsch et al., 2020). 

3.6  Overall predictive capacity of the different models
Equations 1, 4, 5 and 6 (with 7 as an alternative) are imple-
mented in the prediction spreadsheet (ESM23) to predict the 
potency of new chemicals depending on the set of available 
in vitro data. The overall predictive capacity of these mod-
els is summarized in Table 2. For all models, the median of 
the fold-misprediction is around 2.5-fold, while the geometric 
mean is around 3.3-fold.

3.7  Models trained on the subset of data in  
the OECD database
Very recently, the data curated by the OECD expert group on 
DA was made publicly available (OECD, 2021c), and this da-
tabase will probably be used as a gold standard in the future. It 
contains data on a total of 196 chemicals, but a discrete LLNA  
EC3 value or an unambiguous rating as non-sensitizer by the 
LLNA is available only for 154 chemicals, as for some chemi-
cals no LLNA data are included or the LLNA data were not con-
sidered sufficient to conclude on an EC3 value by the data cura-
tion team. For 149 of these 154 chemicals, data are available in 
our database on kDPRA, KS and h-CLAT. This dataset is useful 
to investigate two questions: 

4 doi:10.14573/altex.2201141s3

Tab. 3: Regression coefficients and statistics for predictive models implemented in the Prediction Spreadsheet compared to 
models derived from the OECD dataset only

Model 	 Constant	 kmax	 EC1.5	 IC50	 MIT	 CV75	 VPnorm	 R2	 N

EQ1 (KS+kDPRA)	 0.42	 0.40	 0.15	 0.36			   -0.21	 62%	 203

KS+kDPRA, OECD set, 	 0.45	 0.32	 0.26	 0.25			   -0.20	 55%	 149 
published LLNA values (EQ 8)	

KS+kDPRA, OECD set, 	 0.50	 0.33	 0.21	 0.29			   -0.25	 54%	 149 
curated LLNA value (EQ 9)

EQ4 (h-CLAT+kDPRA)	 0.18	 0.36			   0.21	 0.35	 -0.19	 61%	 188

h-CLAT+kDPRA, OECD set,	 0.24	 0.31			   0.22	 0.34	 -0.16	 57%	 149 
published LLNA values (EQ10)

h-CLAT+kDPRA, OECD set, 	 0.28	 0.30			   0.19	 0.37	 -0.22	 57%	 149 
curated LLNA values (EQ11)

EQ5 (KS+h-CLAT+kDPRA)	 0.20	 0.34	 0.09	 0.11	 0.20	 0.21	 -0.19	 62%	 188

KS+h-CLAT+kDPRA, OECD set, 	 0.23	 0.26	 0.21	 –0.03	 0.22	 0.19	 -0.17	 59%	 149 
published LLNA values (EQ12)

KS+h-CLAT+kDPRA, OECD set, 	 0.27	 0.26	 0.15	 0.00	 0.19	 0.25	 -0.22	 58%	 149 
curated LLNA values (EQ13)

https://doi.org/10.14573/altex.2201141s3
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3.9  Model selection with multiple input data
Here we show how different combinations of source data from 
OECD TG 442C, 442D and 442E can be used in different regres-
sion equations. Depending on the available data, a user is faced 
with two critical questions:
a)	 Once data from two positive tests are available, is it worth 

collecting data from the third test for a more accurate potency 
assessment?

b) 	If the available data allows calculating a predicted PoD with 
different equations, which result should be taken forward? 

The detailed data analysis to answer these questions is presented 
in ESM34, and a summary is given here. If two positive results are 
available, including kDPRA data, studying the third key event, in 
general, is not needed because (i) if the third outcome were neg-
ative, the output of the two positive tests could be used direct-
ly with the corresponding equation EQ1 or EQ4, and if (ii) the 

For all chemicals, additional spreadsheets in ESM1 (Tab. 
ESM1-21 – ESM2-43) give the individual predictions by the dif-
ferent equations on the different data subsets shown in Table 1. 
Here we show individual data on key case studies (Tab. 4). We 
selected all chemicals for which the OECD LLNA database pro-
vides n ≥ 5 individual EC3 values. Selecting these chemicals as 
case studies has two advantages: (i) The overall weight of ev-
idence for the LLNA EC3 is strong as it comes from multiple 
independent tests and (ii) for these chemicals, we have a good 
understanding of the variability of the target, i.e., the range of 
LLNA EC3 measured, and thus the predictions can also be com-
pared to this intrinsic variability of the prediction target.

For most of the 16 case studies, the predicted EC3 values fall 
within the experimental variability of the LLNA or are close to 
this range. In general, the predictions based on kDPRA and either 
cell-based assay are quite close for these chemicals. 

Tab. 4: Case studies: Predictions by the different models for chemicals with multiple LLNA EC3 (n ≥ 5) values  
in the OECD curated database

	 OECD	 LLNA	 LLNA EC3	 LLNA EC3	 Pred. 	 Pred. 	 Pred. 	 Pred. 	 Pred. global 
	 MLLP 	 studies	 measured	 statistical	 EC3	 EC3	 EC3	 EC3	 model 2015i 
	 LLNA	 (n)	 rangeb	 rangec	 EQ1d	 EQ4e	 EQ5f	 EQ13g	  
	 EC3a			 

Aniline	 NC	 14	 13.25 - (> 100)	 NC	 60	 52	 57	 52	 > 100

Penicillin G	 31.3	 8	 11.2 - 46.5	 15.2 - 47.2	 > 100	 > 100	 > 100	 > 100	 > 100

Hydroxycitronellal	 21.1	 8	 18.8 - 33	 18.5 - 27.2	 18.7	 11.3	 10.9	 8.0	 3.5

Geraniol	 16.1	 6	 5.6 - 57	 7.6 - 37.5	 18.3	 14.3	 14.2	 10.3	 5.1

Eugenol	 11.6	 16	 3.8 - 16.6	 5.8 - 15.4	 19.9	 6.8	 10.4	 10.2	 14.1

Alpha-hexyl cinnamic aldehyde	 10.8	 29	 1.2 - 33.8	 4.9 - 17.4	 5.9	 (25 )h	 17.4	 15.0	 1.8

Lilial	 8.6	 5	 3 - 18.6	 3.6 - 16.8	 20.5	 9.3	 12.5	 13.9	 6.2

Citral	 5.8	 16	 1.5 - 26.8	 3 - 12.7	 9.4	 5.0	 4.8	 3.5	 12.6

Formaldehyde	 3.8	 15	 0.35 - 14.5	 0.6 - 9.6	 1.5	 0.8	 1.0	 2.0	 4

3-dimethylaminopropylamine	 3.5	 7	 1.8 - (> 10)	 1.9 - 5.7	 40	 37	 32	 27	 53

Isoeugenol	 1.3	 31	 0.5 - 6.4	 0.8 - 3	 1.8	 (4.6)h	 4.2	 4.1	 1.6

Cinnamic aldehyde	 1	 12	 0.5 - 3.1	 0.7 - 1.8	 1.0	 0.8	 0.8	 0.9	 1.1

Hydroquinone	 0.19	 20	 0.07 - 1.67	 0.1 - 0.5	 0.9	 0.4	 0.4	 0.4	 0.8

PPD	 0.11	 10	 0.06 - 0.2	 0.07 - 0.17	 3.5	 1.9	 1.7	 1.2	 0.72

DNCB	 0.054	 20	 0.012 - 0.096	 0.02 - 0.08	 0.18	 0.19	 0.17	 0.24	 0.21

Kathon CG	 0.008	 10	 0.0049 - 0.063	 0.004 - 0.035	 0.05	 0.05	 0.05	 0.08	 n.d.

Oxazolone	 0.002	 7	 0.0011 - 0.0026	 0.001 - 0.003	 1.5	 0.5	 0.7	 0.9	 0.9

a LLNA EC3, median-like location parameter derived by OECD group from multiple EC3 values; b range between minimal and maximal 
measured LLNA EC3 in OECD DB; c geometric mean and geometric standard deviation were calculated, range around the geometric mean 
defined by the geometric standard deviation is given; d based on KS and kDPRA; e based on h-CLAT and kDPRA; f based on KS, h-CLAT 
and kDPRA; trained on comprehensive database (n = 188) and historical LLNA database; g based on KS, h-CLAT and kDPRA; trained on 
curated OECD LLNA data only (n = 149); EQ13: pEC3 = 0.26 + 0.25 × Log kmax norm + 0.19 × Log MITnorm + 0.17 × EC1.5norm + 0.27 ×  
Log CV75norm ̵ 0.02 × Log IC50norm ̵ 0.19 × Log VPnorm; h values in brackets: chemicals negative in h-CLAT, EQ4 is not recommended for 
chemicals negative in h-CLAT; i predictive model using the Cor1-C420 assay published previously
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Thus, based on the measured Cor1-C420 data, we calculated 
predicted kDPRA values based on EQ14 and used these data to 
train the same regression model on the same chemicals as in EQ1 
(EQ15).

EQ15	 pEC3 = 0.40 + 0.49 × Log kmax norm (calculated from  
Cor1-420 result) + 0.12 × Log EC1.5norm + 0.28 ×  
Log IC50norm – 0.22 × Log VPnorm
S = 0.73; R2 = 61.5%; R2 (adj) = 60.7%

This equation has a similar predictive capacity as EQ1 (calcu-
lated on the same dataset) and overall a similar contribution of 
the individual parameters, although contribution of the reactivi-
ty parameter is slightly higher and the contribution of KS slightly 
weaker in EQ15 vs EQ1. The reactivity rates for the Cor1-C420 
assay presented in the full database are all presented as measured 
values and also transformed to predicted kDPRA kmax values  
according to EQ14. In another data column, data for measured 
kDPRA kmax are shown and data gaps were filled with the pre-
dicted kDPRA kmax values according to EQ14. Due to data re-
dundancy between the two tests, these data can be used in the 
absence of a true kDPRA experimental value for any further 
modeling on the larger database, e.g., to perform domain-based 
assessments or quantitative read-across assessment based on data 
from the target and the read-across substance using all the chem-
icals in the full database (For details see ESM42).

4  Discussion 

This paper presents global regression models generated from dif-
ferent NAM datasets for producing a PoD value for risk assess-
ment purposes. The models are based on the use of OECD-vali-
dated NAMs that include the recently accepted kDPRA (OECD, 
2021d) as well as the KS and h-CLAT (OECD, 2018a,b). A com-
prehensive database of 322 chemicals was assembled for this 
analysis (Natsch et al., 2015, 2020; OECD, 2021c) that may also 
be useful for further refinements or the development of alterna-
tive models. 

4.1  Robustness of the models when compared  
to previous models
Previous work describing the development of regression mod-
els using NAM data used a more reactive peptide Cor1-C420 
(Natsch and Gfeller, 2008) for assessing reactivity (Natsch et 
al., 2015, 2018). With the update of OECD TG 442C (OECD, 
2021d) that now includes the kDPRA, it made sense to evaluate 
its use for input into these regression models. A linear correla-
tion is observed when comparing reaction constants from the kD-
PRA and Cor1-C420 assays (see ESM42). Thus, the two reactiv-
ity assays can be used interchangeably. To illustrate this, using 
EQ14, measured Cor1-C420 rate constants were used to calcu-
late predicted kDPRA values for use in generating the same re-
gression model as in EQ1. Not surprisingly, the equation gener-
ated (EQ15) has the same predictive capacity as EQ1 and, over-
all, a similar contribution of the individual parameters, indicating 

third outcome were positive, either equation EQ1, EQ4 or EQ5 
could then be used, but these would lead to very similar predic-
tions. Thus, for the 73 chemicals with three positive tests, the cor-
relation between the predicted pEC3 from EQ1 (KS + kDPRA) 
and EQ5 (KS, h-CLAT and kDPRA) has an R2 value of 0.95 with 
a slope close to 1 and y-intercept close to zero. Similarly, the cor-
relation between EQ4 (h-CLAT and kDPRA) and EQ5 has an R2 
value of 0.99. Thus, adding the third test and moving from EQ1 or 
EQ4 to EQ5 has little effect on the final prediction. There would 
also not be a significant difference, whether the testing started 
with either 442D or 442E, as there is also a high correlation (R2 
value of 0.91 with a slope close to 1 and y-intercept close to ze-
ro) between the predicted pEC3 from EQ1 (KS and kDPRA) and 
EQ4 (h-CLAT and kDPRA) for chemicals positive in all assays. 
This relatively close alignment of EQ1, EQ4 and EQ5 for chem-
icals positive in all three tests is also illustrated by the case stud-
ies in Table 4. If all three tests are positive and data available, then 
using EQ5 appears most appropriate. A conservative alternative 
would be using the lowest EC3 value from EQ1, EQ4 and EQ5 to 
perform a more stringent risk assessment (see ESM34). 

A different question is what to do when all three tests are avail-
able and one of them is negative. Then the choice is to (i) use the 
model with the data from the two positive tests only or (ii) use 
EQ5 (KS, h-CLAT and kDPRA). Theoretically, the former choice 
is the more conservative one, as negative evidence is not factored 
in, while the latter uses all available data. Interestingly, there is al-
so a high correlation between the predicted pEC3 for both choices 
(R2 value of 0.92 with a slope close to 1) (n = 43 chemicals with 
2 positive tests) and the correlation with the in vivo data is better 
for the latter option (see ESM34). Thus, based on this analysis, it 
appears that using EQ5 is optimal in all cases when all data are 
available (2 or 3 positive tests). However, further expert-guided 
analysis can lead to different choices in selected cases, e.g., in 
cases of putative pro- or pre-haptens, which may be better pre-
dicted by the cellular assays and best predicted by EQ6. 

3.10  Comparison of the reaction rate measured with 
the kDPRA and the Cor1-C420 assay used previously
Our previous study (Natsch et al., 2015) was entirely based on 
Cor1-C420 peptide reactivity data. In a final analysis, we com-
pared data from the two peptide reactivity assays and regression 
models developed with the two reactivity assays. This helps to 
understand assay redundancy and similarity between the reactiv-
ity assays and between the current and the previous model, which 
provides information on the robustness of the approach proposed 
here and an indication of how the two peptide assays can be used 
interchangeably. This analysis is detailed in ESM42, and here we 
give a brief summary of the results. 

A linear correlation is observed when comparing the reaction 
constants from kDPRA and the Cor1-C420 assay. Due to the 
higher reactivity of the Cor1-C420 peptide as compared to the 
Cys-peptide (Natsch et al., 2007), the correlation has a negative 
y-intercept:

EQ14	 Log kmax (kDPRA) = 0.9 × Log kmax 
(Cor1-C420 assay) – 0.59
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4.3  Assessment of using the comprehensive 
database vs the curated OECD DA database 
Very similar models to EQ1 were obtained using the core set of 
data from Natsch et al. (2015) for which kDPRA data are avail-
able (n = 158; EQ2) and the set of chemicals with available 
h-CLAT data (n = 188; EQ3), indicating the model is robust and 
not highly dependent on the training set used. A curated data-
base developed by an OECD expert group has been made pub-
licly available (OECD, 2021c), which contains 196 chemicals, 
of which 154 have LLNA data and 149 are available with NAM 
data in our database. The regression coefficients for the models 
described (EQ1, EQ4, EQ5) are very similar to equivalent mod-
els derived from the OECD curated subset (Tab. 3). However, 
the contribution of reactivity from kDPRA tends to be lower. 
This may be attributed to the fact that the OECD group had strin-
gent criteria to allow for extrapolation of LLNA results (OECD, 
2021b). This led to the exclusion of LLNA data for several strong 
and extreme sensitizers, which are highly reactive chemicals and 
for which the reaction rate has a high weight in the assessment. 
On the other hand, the KS EC1.5 has a higher weight on this se-
lected subset. When, for the same chemical set, the LLNA EC3 
from previously published databases is used as the target as com-
pared to the curated EC3 values (e.g., EQ8 vs EQ9), there is only 
a very small difference in the resulting regression equation, in-
dicating that the data curation had no major impact on the over-
all picture. In addition, models established on a large number of 
chemicals are not inferior to the models built upon the OECD cu-
rated data (see results for EQ13 and EQ5 in Tab. 4), although the 
data curation certainly makes a significant difference for some 
individual chemicals. Going forward, it therefore appears appro-
priate to use models incorporating the maximal weight of evi-
dence from the largest databases publicly available rather than to 
base models only on the curated OECD data.

4.4  Transparency of the regression models
As compared to complex tools like neural networks or Bayesian 
nets, linear regression models may appear to be relatively sim-
ple statistical tools. However, they have the advantage of high 
transparency. The prediction spreadsheet (ESM23) is designed to 
allow one to enter experimental data from the different NAMs 
along with molecular weight and a calculated vapor pressure to 
calculate a PoD value. This should facilitate practical applica-
tion. 

4.5  Key misprediction
For most of the 16 case studies, it is evident that the PoD values, 
based on using kDPRA and one or both cellular assays, are quite 
similar to the LLNA values based on ≥ 5 individual EC3 values. 
Clear outliers under-predicted by the models are 3-dimethylami-
nopropylamine and p-phenylendiamine (see discussion on appli-
cability domain in ESM34). The extreme sensitizer oxazolone is 
predicted as a strong sensitizer by the models, but the predicted 
PoD value is clearly underestimated. The unique reactivity of ox-
azolone with lysine residues, explaining its unsurpassed sensiti-
zation potential, has been investigated before and is not captured 
by the kDPRA (Natsch et al., 2010). A more detailed discussion 

similar information content of the two reactivity assays and a ro-
bustness of the overall approach. 

The regression model using a comprehensive dataset with avail-
able kDPRA and KS data (n = 203) was based on the normalized 
EC1.5 and IC50 from KS, Log kmax from the kDPRA, and nor-
malized vapor pressure. This model (EQ1) is based on the highest 
number of chemicals compared to other models and is very similar 
to the global model published previously (Natsch et al., 2015), but 
replaces Cor1-C420 reactivity data with kDPRA data. 

4.2  Complementary and redundancy of  
the cell-based assays
A vital feature described in the paper is the flexibility in which 
input NAM data is used to make a PoD prediction. A model inte-
grating kDPRA data with h-CLAT instead of KS showed a sim-
ilar statistical weight using normalized MIT and CV75 data (n 
= 188; EQ4). This shows that either KS or h-CLAT data can be 
used to obtain comparable predictions. It is well known that hav-
ing data from all three assays is not always possible due to as-
say compatibility factors (Kolle et al., 2019). However, in cases 
where data from all three OECD TG data is available, a compre-
hensive model can be obtained that integrates kDPRA, KS and 
h-CLAT data (n = 188; EQ5). 

Interestingly, having data from both KS and h-CLAT along 
with kDPRA data only slightly improves the predictive power 
compared to one cellular assay. This redundancy has been ob-
served previously (Natsch et al., 2020) and indicates that there 
is significant redundancy between the two cell-based assays. For 
situations where kDPRA data is absent, possibly due to an in-
compatibility issue using complex mixtures or technical issues 
(e.g., thiols), a regression model integrating KS and h-CLAT da-
ta is available (n = 188; EQ6), too. In the absence of reactivi-
ty data, the parameters for luciferase induction in KS or surface 
marker induction in h-CLAT receive more statistical weight. The 
best statistical power is obtained using KS EC3 instead of EC1.5, 
suggesting that this parameter for strong Nrf2-dependent lucifer-
ase induction can partially compensate for the lack of reactivity 
data (EQ7).

For each model based on a dataset of 188 chemicals with data 
from KS, h-CLAT or kDPRA, their predictive capacity is similar. 
For all models, the median of the fold-misprediction is around 
2.5-fold, while the geometric mean is around 3.3-fold (Tab. 2). 
This finding demonstrates the flexibility in the utility of using 
these models based on what test data is available. A description 
of how to select an appropriate model is provided in ESM32, and 
a parallel paper describes how the models can be combined with 
the “2 out of 3” DA (Natsch and Gerberick, 2022). The analy-
sis shows that for chemicals with three positive tests, adding the 
third test has little effect on the final prediction. Thus, a third key 
event study is not needed if two positive tests, including kDPRA 
data, are available. There is also no significant difference wheth-
er one starts with the kDPRA or either of the two cell-based as-
says. When multiple PoD values are available, the most predic-
tive choice would be to use EQ5, integrating all three assays, al-
though a different choice might be made when the chemical is a 
putative pro- or pre-hapten, in which case EQ6 might be optimal. 
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on mispredicted chemicals is provided in a parallel paper (Natsch 
and Gerberick, 2022).

4.6  Outlook
For risk assessors responsible for assessing the skin sensitization 
risk of new chemical entities or chemicals lacking sufficient data, 
it is critical to have tools available that are predominantly depen-
dent on using NAM data. The PoD value obtained from these re-
gression models can thus be used to assist in the conduct of skin 
sensitization risk assessments. The predictive regression models 
(EQ1, 4, 5, 6 and 7 as an alternate) have been built from a com-
prehensive database of 188-203 chemicals along with a compar-
ative analysis using the curated OECD database (OECD, 2021c). 
They show similar statistical strength and prediction accuracy. 
Performance is similar when using different data input param-
eters or when comparing models generated from different data-
sets. The PoD derived from these models may, using appropriate 
assessment factors to account for uncertainty and taking all infor-
mation into account, be used as a starting point to determine safe 
use levels in products. The application and guidance on how to 
use these regression models when using the “2 out 3” DA is cov-
ered in a separate paper (Natsch and Gerberick, 2022). 

Electronic supplementary material
ESM11 	 contains the full database in Sheet 1 and the predictions 

by the different models for the individual chemicals for 
different data subsets and vs different LLNA datasets in 
Sheets 2-4.

ESM23 	 is the prediction spreadsheet to calculate the PoD from 
in vitro data.

ESM34 	 discusses choice of the different regression models 
based on test availability.

ESM42 	 compares predictivity of the different reactivity assays. 

References
Api, A. M., Basketter, D., Bridges, J. et al. (2020). Updating ex-

posure assessment for skin sensitization quantitative risk as-
sessment for fragrance materials. Regul Toxicol Pharmacol 
118, 104805. doi:10.1016/j.yrtph.2020.104805 

Bernauer, U., Bodin, L., Chaudhry, Q. et al. (2021). The SCCS 
notes of guidance for the testing of cosmetic ingredients and 
their safety evaluation, 11th revision, 30-31 March 2021, 
SCCS/1628/21. Regul Toxicol Pharmacol 127, 105052. doi: 
10.1016/j.yrtph.2021.105052

Cottrez, F., Boitel, E., Auriault, C. et al. (2015). Genes specifical-
ly modulated in sensitized skins allow the detection of sensitiz-
ers in a reconstructed human skin model. Development of the 
SENS-IS assay. Toxicol In Vitro 29, 787-802. doi:10.1016/j.
tiv.2015.02.012 

Cottrez, F., Boitel, E., Ourlin, J. C. et al. (2016). SENS-IS, a 3D 
reconstituted epidermis based model for quantifying chemical 
sensitization potency: Reproducibility and predictivity results 
from an inter-laboratory study. Toxicol In Vitro 32, 248-260. 
doi:10.1016/j.tiv.2016.01.007 

https://doi.org/10.1016/j.comtox.2018.06.001
https://doi.org/10.1016/j.yrtph.2020.104721
https://doi.org/10.1002/jat.3105
https://doi.org/10.1002/jat.3105
https://doi.org/10.1002/jat.3558
https://doi.org/10.1002/jat.3558
https://doi.org/10.1007/s00204-015-1634-2
https://doi.org/10.1080/10408444.2018.1429386
https://doi.org/10.1016/j.yrtph.2019.05.016
https://doi.org/10.1016/j.yrtph.2009.08.016
https://doi.org/10.1016/j.tiv.2007.03.016
https://doi.org/10.1016/j.tiv.2007.03.016
https://doi.org/10.1093/toxsci/kfn194
https://pubs.acs.org/doi/10.1021/tx1002707
https://doi.org/10.1093/toxsci/kfu229
https://doi.org/10.1093/toxsci/kfy135
https://doi.org/10.1016/j.yrtph.2020.104805
https://doi.org/10.1016/j.yrtph.2021.105052
https://doi.org/10.1016/j.yrtph.2021.105052
https://doi.org/10.1016/j.tiv.2015.02.012
https://doi.org/10.1016/j.tiv.2015.02.012
https://doi.org/10.1016/j.tiv.2016.01.007


Natsch and Gerberick

ALTEX 39(4), 2022       646

testing/series-testing-assessment-publications-number.htm 
OECD (2021c). Series on Testing and Assessment No. 336: Sup-

porting document to the Guideline (GL) on Defined Approach-
es (DAs) for Skin Sensitisation – Annex 2. OECD Publish- 
ing, Paris. https://www.oecd.org/chemicalsafety/testing/series- 
testing-assessment-publications-number.htm 

OECD (2021d). Test No. 442C: In Chemico Skin Sensitisa-
tion: Assays addressing the Adverse Outcome Pathway key 
event on covalent binding to proteins. OECD Guidelines for 
the Testing of Chemicals, Section 4. OECD Publishing, Paris. 
doi:10.1787/9789264229709-en 

Takenouchi, O., Fukui, S., Okamoto, K. et al. (2015). Test 
battery with the human cell line activation test, direct peptide 
reactivity assay and DEREK based on a 139 chemical data set 
for predicting skin sensitizing potential and potency of chemi-
cals. J Appl Toxicol 35, 1318-1332. doi:10.1002/jat.3127 

Urbisch, D., Mehling, A., Guth, K. et al. (2015). Assessing skin 
sensitization hazard in mice and men using non-animal test 
methods. Regul Toxicol Pharmacol 71, 337-351. doi:10.1016/j.
yrtph.2014.12.008 

Wareing, B., Urbisch, D., Kolle, S. N. et al. (2017). Prediction 
of skin sensitization potency sub-categories using peptide re-
activity data. Toxicol In Vitro 45, 134-145. doi:10.1016/j.tiv. 
2017.08.015 

Zang, Q., Paris, M., Lehmann, D. M. et al. (2017). Prediction of 
skin sensitization potency using machine learning approaches. 
J Appl Toxicol 37, 792-805. doi:10.1002/jat.3424 

Zeller, K. S., Forreryd, A., Lindberg, T. et al. (2017). The GARD 
platform for potency assessment of skin sensitizing chemicals. 
ALTEX 34, 539-559. doi:10.14573/altex.1701101 

Conflict of interest
The authors declare no competing interests. 

Data availability
All data of this publication are made publicly available and all 
models and tests used are freely available.

Natsch, A., Haupt, T., Wareing, B. et al. (2020). Predictivity of 
the kinetic direct peptide reactivity assay (kDPRA) for sensi-
tizer potency assessment and GHS subclassification. ALTEX 
37, 652-664. doi:10.14573/altex.2004292 

Natsch, A. and Gerberick, G. F. (2022). Integrated skin sensiti-
zation assessment based on OECD methods (II): Hazard and 
potency by combining kinetic peptide reactivity and the “2 out 
of 3” defined approach. ALTEX 39, 647-655. doi:10.14573/ 
altex.2201142

Nukada, Y., Ashikaga, T., Miyazawa, M. et al. (2012). Predi-
ction of skin sensitization potency of chemicals by human 
cell line activation test (h-CLAT) and an attempt at classify-
ing skin sensitization potency. Toxicol In Vitro 26, 1150-1160. 
doi:10.1016/j.tiv.2012.07.001 

OECD (2010). Test No. 429: Skin Sensitisation: Local 
Lymph Node Assay. OECD Guidelines for the Testing of 
Chemicals, Section 4. OECD Publishing, Paris. doi:10. 
1787/9789264071100-en 

OECD (2014). The Adverse Outcome Pathway for Skin Sensiti-
sation Initiated by Covalent Binding to Proteins. OECD Series 
on Testing and Assessment, No. 168. OECD Publishing, Paris. 
doi:10.1787/9789264221444-en 

OECD (2018a). Test No. 442D: In Vitro Skin Sensitisation: 
ARE-Nrf2 Luciferase Test Method. OECD Guidelines for 
the Testing of Chemicals, Section 4. OECD Publishing, Paris. 
doi:10.1787/9789264229822-en 

OECD (2018b). Test No. 442E: In Vitro Skin Sensitisation: In 
Vitro Skin Sensitisation assays addressing the Key Event on 
activation of dendritic cells on the Adverse Outcome Path-
way for Skin Sensitisation. OECD Guidelines for the Test-
ing of Chemicals, Section 4. OECD Publishing, Paris. doi:10. 
1787/9789264264359-en 

OECD (2021a). Guideline No. 497: Defined Approaches on Skin 
Sensitisation. OECD Guidelines for the Testing of Chemicals, 
Section 4. OECD Publishing, Paris. doi:10.1787/b92879a4-en 

OECD (2021b). Series on Testing and Assessment No. 336:  
Supporting document to the Guideline (GL) on Defined  
Approaches (DAs) for Skin Sensitisation – Annex 3. OECD 
Publishing, Paris. https://www.oecd.org/chemicalsafety/ 

https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
https://doi.org/10.1787/9789264229709-en
https://doi.org/10.1002/jat.3127
https://doi.org/10.1016/j.yrtph.2014.12.008
https://doi.org/10.1016/j.yrtph.2014.12.008
https://doi.org/10.1016/j.tiv.2017.08.015
https://doi.org/10.1016/j.tiv.2017.08.015
https://doi.org/10.1002/jat.3424
https://doi.org/10.14573/altex.1701101
https://doi.org/10.14573/altex.2004292
https://doi.org/10.14573/altex.2201142
https://doi.org/10.14573/altex.2201142
https://doi.org/10.1016/j.tiv.2012.07.001
https://doi.org/10.1787/9789264071100-en
https://doi.org/10.1787/9789264071100-en
https://doi.org/10.1787/9789264221444-en
https://doi.org/10.1787/9789264229822-en
https://doi.org/10.1787/9789264264359-en
https://doi.org/10.1787/9789264264359-en
https://doi.org/10.1787/b92879a4-en
https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm

