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Abstract  
The traditional paradigm for safety assessment of chemicals for their carcinogenic potential to humans relies 
heavily on a battery of well-established genotoxicity tests, usually followed up by long-term, high-dose rodent 
studies. There are a variety of problems with this approach, not least that the rodent may not always be the best 
model to predict toxicity in humans. Consequently, new approach methodologies (NAMs) are being developed to 
replace or enhance predictions coming from the existing assays. However, a combination of the data arising from 
NAMs is likely to be required to improve upon the current paradigm, and consequently a framework is needed to 
combine evidence in a meaningful way. Adverse outcome pathways (AOPs) represent an ideal construct on which 
to organize this evidence. In this work, a data structure outlined previously was used to capture AOPs and evidence 
relating to carcinogenicity. Knowledge held within the predictive system Derek Nexus was extracted, built upon, 
and arranged into a coherent network containing 37 AOPs. 60 assays and 351 in silico alerts were then associated 
with KEs in this network, and it was brought to life by associating data and contextualizing evidence and predictions 
for over 13,400 compounds. Initial investigations into using the network to view knowledge and reason between 
evidence in different ways were made. Organizing knowledge and evidence in this way provides a flexible 
framework on which to carry out more consistent and meaningful carcinogenicity safety assessments in many 
different contexts. 
 
 
 
1 Introduction 

 
The current paradigm of carcinogenicity safety assessment in many industries relies heavily on rodent animal studies, more 

specifically the 2-year rodent bioassay (Wolf et al., 2019). While this model has served human health protection well for many 

years, it has limitations which need to be addressed in a modern safety assessment setting. It is time consuming, expensive, 

requires a large number of animals to be sacrificed and, most importantly, may not be the most predictive of human risk, which 

is the ultimate species of interest in many cases (Cohen, 2004; Boobis et al., 2016; Berry, 2017; Doe et al., 2019). Additionally, 

in some settings, the throughput of chemicals requiring assessment can be large, making the current approach untenable 

(Guyton et al., 2009). 

In response, a number of new approach methodologies (NAMs) have been and are being developed with the aim to 

predict carcinogenic risk in humans more accurately, using fewer animals and at a lower cost, both in terms of time and money 

(Cohen, 2004). Furthermore, in some contexts, it has been proposed that the significant amount of knowledge already generated 

as part of certain risk assessments prior to these long-term animal studies may be used in a weight of evidence (WoE), thus 

negating the value in carrying out further animal studies (ICH S1B(R1), 2021). 

One challenge with these approaches, however, is that, in general, a range of NAMs and existing data are required 

to replace the rodent studies adequately. These disparate pieces of evidence must be combined in a logical way to form an 

integrated approach to testing and assessment (IATA) and reach a conclusion relevant to carcinogenicity safety assessment. 

Therefore, a framework is required to contextualize this information and assess how the results relate to one another. The 

concept of adverse outcome pathways (AOPs) (Ankley et al., 2010) has been suggested as the ideal construct to fulfil this 

function in a more general context (OECD, 2017).  

AOPs represent a method of capturing knowledge of the mechanisms by which an adverse event may occur following 

perturbation of a biological system. This is achieved by creating a knowledge graph associating causally related biological key 

events (KE), starting at the molecular initiating event (MIE), where a stressor (usually a chemical) perturbs a biological 
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component to start a chain of events, and ending in an adverse outcome (AO). The KEs should all be measurable and are linked 

to one another through key event relationships (KERs). The pathways usually represent knowledge through events occurring 

at different levels of biological complexity, starting with events at the molecular level, through the cellular and organ level, to 

the individual or population. The pathways should capture evidence supporting the assertions relating to each of the 

components and the context in which they are relevant, with information supporting the KERs being particularly important. 

AOPs represent an ideal structure for capturing knowledge relating to toxicity as they allow understanding of mechanisms 

leading to toxicity to be captured in a transparent way, the applicability of the pathways within different contexts (e.g., species, 

sex, life stage) to be assessed, as well as provide the potential for data and predictions to be contextualized and related in a 

meaningful way to support better decision making (Ball et al., 2021; OECD, 2017).  

In fact, AOPs have already found some practical application for organizing knowledge and evidence in the 

development of defined approaches for the assessment of skin sensitization (OECD, 2021) and have been suggested as useful 

constructs in the organization of knowledge in many domains, including carcinogenicity (Sasaki et al., 2020; Lynch et al., 

2019; Jacobs et al., 2016; Heusinkveld et al., 2020; Jacobs et al., 2020; Stalford et al., 2021; Arnesdotter et al., 2021; Johansson 

et al., 2020). 

For the approach to be useful in carcinogenicity safety assessment, existing knowledge of AOPs relating to cancer 

need to be captured and associated with evidence that can be used in IATAs. Methods of using this evidence in the context of 

AOPs to reach meaningful and transparent conclusions can then be developed. Not only are single AOPs required but also an 

understanding of how these individual AOPs interact in a network to lead to a response (Knapen et al., 2018; Ball et al., 2021). 

Therefore, a coherent network of AOPs relating to carcinogenicity is required in order to make good decisions and understand 

any knowledge gaps when making assessments. 

There are already several publications (Helm et al., 2020; Nymark et al., 2021; Hill and Conolly, 2019) and 

repositories capturing AOPs relating to cancer (AOPWiki1), as well as collaborative projects focused on delineating AOPs 

associated with specific aspects of cancer (Sasaki et al., 2020; Lynch et al., 2019; Jacobs et al., 2016; Heusinkveld et al., 2020). 

In addition to these more recent activities, knowledge relating to the different modes of action (MoAs) leading to cancer have 

been documented in the public literature for many years (Cohen et al., 2019), and this knowledge has been captured and 

extended in expert rule-based predictive systems such as Derek Nexus produced by Lhasa Limited for over 30 years (Derek 

Nexus2). The information contained in this predictive system relates structural alerts for specific compound classes with the 

evidence and hypotheses thought to explain their toxicological activity. While the knowledge is not delineated directly in the 

AOP format, it represents a well curated wealth of public and private knowledge of pathways leading to carcinogenicity that 

may be harvested and converted into the AOP format to be added to the public knowledge and leveraged in original ways. 

With this in mind, the knowledge captured in Derek Nexus relating to carcinogenicity was used as a starting point 

to build an integrated network of AOPs for this endpoint. Additional work was then undertaken to refine the AOPs and address 

potential gaps in the network. In addition to the AOPs, relevant evidence sources (assays and (Q)SAR models) were linked to 

these AOPs in the appropriate places in order that they could be used to contextualize information on specific individual 

compounds and bring the AOPs to life for the purposes of carcinogenic safety assessment. A recently developed data structure 

for capturing AOPs and the evidence associated with them within a network was used to store and reason with this knowledge, 

and the prototype software program described in the work was further developed in order to expose and manipulate the data 

(Ball et al., 2021).  

Initial investigations were made into how this approach might be used to profile data sets and group compounds by their 

potential mechanisms leading to carcinogenicity, as well as how reasoning between evidence on this framework may aid in 

making more specific safety assessments for carcinogenicity according to current and future guidance. 

 
 

2 Materials and methods 
 
2.1 Assessing alerts from Derek Nexus 
Alerts associated with endpoints relating to carcinogenicity were selected from the Derek Nexus 2020.1 knowledgebase. These 

included alerts associated with both genotoxic and non-genotoxic mechanisms (as defined in Jacobs et al., 2020) that may lead 

to carcinogenicity and comprised alerts affiliated with the following endpoints: mutagenicity, chromosome damage, non-

specific genotoxicity, estrogen receptor modulation, 5Ŭ reductase inhibition, and carcinogenicity (either directly or through 

Derek Nexus reasoning, and including alerts associated with photo-activated mechanisms).  

The commentary associated with each of the alerts for these endpoints was analyzed, and any information captured in 

these comments pertaining to the MoA leading to the toxicity observed for the chemical class was converted into KEs using a 

consistent approach to name the KEs, assigning each KE appropriate process, object, and action terms, and linking the KE 

concepts to the appropriate ontologies, as described in the work carried out by Ives et al. (2017). This standardization in the 

capturing of the KEs ensured consistency during AOP network development and reduced the likelihood of different KEs being 

captured that describe the same concept. 

 

2.2 Building an AOP network from literature review 
With the information on the KEs associated with chemical mechanisms relating to carcinogenicity having been extracted from 

the Derek Nexus knowledgebase, the KEs identified were compiled into a skeleton network and the initial extrapolation made 

linking them to the adverse outcome of carcinogenicity. 

 
1 https://aopwiki.org/ 
2 https://www.lhasalimited.org/products/derek-nexus.htm/ 

https://aopwiki.org/
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Literature reviews were then undertaken to validate the initial associations and extrapolations that had been made 

and expand on the events in the pathways in order to form full AOPs. Care was again taken at this stage to standardize the 

structure and terminology used in KE names and ensure concepts linking different pathways into a network were captured 

consistently and at an appropriate level to avoid compromising the integrity of the network. The evidence used to identify the 

KEs and KERs was primarily based on biological plausibility of associations (OECD, 2018), although empirical evidence and 

essentiality were invoked where appropriate. This evidence was captured within the relevant objects of the data structure in a 

commentary and included references and links to the primary literature from which the knowledge was taken. In addition, 

knowledge of the context in which a KE, KER or AOP is applicable, including the species, sex or life stage of relevance along 

with the context of the cell or organ in which the events or relationships occur, were captured in a systematic way within the 

data structure for future use. This included evidence both for and against applicability for a given context. 

While the level at which the KEs for the AOPs were captured was generally dictated by the common guiding principles 

of AOP development, recommending the KEs captured represent ócritical steps or check-points along the path to adversity, 

which are both measurable and have potential predictive valueô (OECD, 2018), it was also deemed important to capture some 

of the more detailed knowledge relating to the more specific aspects of the biological pathways being perturbed described in 

the public literature. It was felt that this detail will be useful as NAMs develop, especially those relating to omics, measuring 

gene or protein expression and biomarkers relevant to carcinogenicity pathways. With the knowledge captured in this detail, 

the concept of grouping more specific KEs into more general KE groups (KEGs) of related events was developed as a way of 

capturing this relevant knowledge, while not overwhelming the user when presenting it. This is a concept being put into 

practice after being described and implemented as part of a previous publication (Ball et al., 2021). 

 

2.3 Associating evidence with AOPs 
Once a detailed AOP network relating to carcinogenicity had been developed, subsequent research was undertaken to identify 

existing and emerging assays to be associated with the appropriate places on the AOPs. Derek Nexus was again used as a data 

source for the assays selected in conjunction with the toxicity database Vitic3, developed by Lhasa Limited, and the assays 

relating to carcinogenicity captured in that database. Assays explicitly selected to fulfil regulatory guidance such as ICH S1 

and ICH S2 (ICH S1B, 1997; ICH S2(R1), 2011) were prioritized for inclusion as well as those with associated OECD 

guidance. However, a more general literature survey was also undertaken to identify new and emerging assays that may become 

part of a weight of evidence approach to carcinogenicity assessment in the future (Jacobs et al., 2020; Bryce et al., 2016; 

Hendriks et al., 2012). Particular attention was paid to associating binding assays relating to targets pertinent to carcinogenicity 

assessment (Jacobs et al., 2020). 

The selected assays were then associated with the most relevant KEs within the AOP network through the concept 

of assay measurements, these being different types of observation that can be made for any given assay, and it is possible that 

each observation type may measure a specific KE. 

In addition to the assays and measurements, the concept of assay exceptions, as described by Ball et al., (Ball et al., 

2021), was also associated with the various assays where knowledge was available. This applied predominantly to well-

established assays for which compounds from a particular chemical class, those acting by specific mechanisms or having 

certain structural properties, are thought not to be assessed well by an assay, either through under- or overprediction of their 

toxicity.  

Following association of the relevant assays with the network, data for individual compounds, predominantly 

captured in the toxicity database Vitic3, were connected to the assays where data was available. In the main part, the data for 

each assay represented a categorical call for each compound and measurement combination. The categorical calls were 

generated by combining individual study and protocol results captured in the database using a defined set of rules, where a 

conservative call was made to reach an overall conclusion (the most positive result observed being taken in preference)4. 

Since most of the pathways delineated in the AOP network were derived from knowledge captured in Derek Nexus 

alert comments, it was then relatively straightforward to associate the individual Derek Nexus alerts with the relevant KEs on 

the network. All Derek Nexus alerts in the 2020.1 knowledgebase associated with the endpoints of carcinogenicity (either 

directly or through Derek Nexus reasoning), mutagenicity, chromosome damage, and non-specific genotoxicity (including 

photo-activated) were assessed for their association with the KEs in the network. Where possible, the alerts were associated 

with specific KEs. This allowed for specific knowledge relating to potential MoA to be captured for a prediction along with 

the toxicity which this may lead to. In instances where an alert could not be associated with a particular MoA, and therefore 

KE, due to limited knowledge for this compound class, the alert was solely associated with the AO of relevance to the endpoint 

being predicted, in order that this information was not lost. 

 

2.4 Capturing knowledge within a common data structure  
The knowledge and associations derived from this work were all captured in the data structure and prototype software described 

by Ball et al. (2021) .The work is currently being transferred into the software, Kaptis, produced by Lhasa Limited (Kaptis5). 

 

2.5 Analyzing knowledge on an AOP framework 
With knowledge relating to carcinogenic potential for many compounds now contextualized on an AOP network, the data 

could be analyzed within this context. Preliminary work to profile data sets according to the likely AOPs they activate was 

undertaken. A general method was developed allowing for knowledge to be selected, an evidence base to use in the assessment 

 
3 https://www.lhasalimited.org/products/vitic.htm/  
4 https://www.lhasalimited.org/publications/summation-of-toxicity-data-in-vitic/3918 
5 https://www.lhasalimited.org/products/kaptis.htm 

https://www.lhasalimited.org/products/vitic.htm/
https://www.lhasalimited.org/publications/summation-of-toxicity-data-in-vitic/3918
https://www.lhasalimited.org/products/kaptis.htm
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chosen, and an overall conclusion drawn. This aimed to highlight the power of capturing and using carcinogenicity knowledge 

in this framework and begin able to investigate how it might be combined in different ways for different use cases to support 

decision-making in chemical safety assessment. 

Two different data sets were used to undertake these investigations and act as test sets. The first data set was built 

based on results from chronic rodent carcinogenicity studies in an attempt to represent the current paradigm and knowledge 

space. The initial data were extracted from the toxicity database Vitic3. An overall carcinogenicity assignment per compound 

was generated based on combining results from individual studies and taking a conservative assessment of the findings such 

that a tumor being found in any one study would lead to an assignment of carcinogenicity for the compound. This resulted in 

a data set of 2420 compounds, with 1211 having a positive call for tumor formation and 1078 being assigned as negative. 131 

compounds where the results were inconclusive or equivocal were removed from the test set, producing a final test set of 2289 

compounds. The second data set was derived from the compounds for which an IARC categorization was available (IARC, 

2019), with an assessment of their carcinogenic potential to human having been made based on the data available. The 

categories defined by IARC in these classifications were used in the analysis. Compounds assigned to IARC categories 1 and 

2a and 2b are thought to be human-relevant carcinogens in some respect, with varying degrees of evidence and confidence 

associated with their assignment. In the first instance, all of these categories were considered a positive call for human relevant 

carcinogenicity. Compounds in IARC category 3 were removed from the analysis since the carcinogenic potential to humans 

of this category is unclear for various reasons. This category includes compounds with positive results in animals with a lack 

of human relevance but also compounds for which the assignment is just due to a limitation in data, and it is difficult to 

differentiate the different reasons for chemicals being placed in this class (IARC, 2019). From the data provided by IARC 

(IARC list of classifications6), 1084 unique agents were identified, and unique resolvable chemical structures could be 

determined for 810 of these after structure standardization. 393 of these had at least one category 1, 2a or 2b classification, 

408 had a category 3 classification, and 9 had no individual classification as they had been assessed as part of a wider chemical 

class. The 393 compounds assigned as category 1, 2a or 2b were taken forward in the analysis. 

 

 

3 Results 
 
3.1 Assessing alerts from Derek Nexus 
Derek Nexus is an expert rule-based system for the prediction of toxicity. The knowledge base underlying the predictions 

provided by the software is composed of structural alerts, example compounds, and reasoning rules linking the alerts and 

examples to toxicity endpoints with specific reasoning levels (Derek Nexus). The structure activity relationships (SARs) 

represented in the structural alerts were developed by experts from a variety of public literature and confidential data. The 

knowledge base is particularly well developed for the toxicity endpoints relating to genotoxicity (mutagenicity, chromosome 

damage), skin sensitization, carcinogenicity, hepatotoxicity, and developmental and reproductive toxicity, although other 

target organ endpoints are also represented within the knowledge base. Derek Nexus largely predicts for toxic hazard, which 

may or may not develop into risk depending on exposure conditions. Several endpoints are developed primarily based on 

defined assay results, so in these cases the predictions are closely related to predictions for these assays. 

When an alert is activated, the user is presented with the toxicological endpoint with which the alert is associated 

and the level of belief (reasoning level) with which toxicity is thought to be observed in different species, along with a written 

rationale outlining the association between the compound class and the endpoint, the evidence on which it is based, and any 

assumptions that have been made (Fig. 1A). Often this commentary will contain information and references relating to the 

proposed mode of action (MoA) thought to lead to the toxicity observed for the compound class. This knowledge is what made 

the Derek Nexus alerts such a good starting point for AOP development as it was possible to convert the knowledge captured 

in this commentary first into KEs and then AOPs for each alert (Fig. 1B), which could then be standardized and, following 

literature review, developed into a network. 

In the example shown in Figure 1, the compound haloperidol activates an alert associating the butyrophenone 

chemical class with the toxicity endpoint of carcinogenicity in Derek Nexus. It should be noted that this compound is associated 

with the endpoint with different levels of confidence (reasoning levels) for different species. There is a strong association in 

the mouse, while for other rodents and humans the association is weaker. The reasoning behind these differences is reflected 

in the comments associated with the alert. These comments discuss different results obtained in multiple species as well as 

describing the MoA by which the compound class may cause carcinogenic activity. In this case, the ability of the compounds 

to act as agonists of the dopamine type 2 receptor, leading to increases in the levels of prolactin, has been linked to the formation 

of mammary tumors in mice. Evidence relating to the species extrapolation associated with this MoA as well as the results 

obtained in other species results in the reasoning levels predicted, and information relating to this is supplied in the alert 

comments. The relationship between dopamine receptor agonism and the generation of malignant neoplasms has not been 

observed in the same way in humans (Lichtermann et al., 2001; Wang et al., 2002). It is also easy to see how these pieces of 

information can be taken from the comments and transcribed directly into KEs in a rudimentary AOP, where deactivation of 

the dopamine type 2 receptor leads to a prolactin increase which in turn leads to cancer. The pathway can also be supported 

by the references used to make the assertions and the species relevance also captured and referenced within the AOP data 

structure (Ball et al., 2021). 

 
6 IARC, List of Classifications: Agents classified by the IARC Monographs, Volumes 1-129. Last updated: 2021-07-22 02.00pm 
(CEST). https://monographs.iarc.who.int/list-of-classifications 
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Fig. 1: Converting knowledge captured in the alert comments of a Derek Nexus carcinogenicity alert into KEs for use in 
AOP network development 
 
Tab. 1: Endpoints and number of alerts associated with carcinogenicity in the Derek Nexus 2020.1 knowledgebase 
Number of alerts where a more specific MIE/KE can be associated with the alert. a) including alerts associated with 
carcinogenicity through reasoning b) including alerts requiring photo activation c) a single alert may be counted multiple times for 
different endpoints with which it is associated d) Including alerts built using data from assays where results indicate genotoxicity 
but cannot be easily assigned as leading to a mutagenic or chromosome damaging outcome (e.g. unscheduled DNA synthesis 
(UDS) assay) 

 

The knowledge base is particularly well developed for endpoints associated with carcinogenicity, and the alerts 

relating to the endpoints of mutagenicity, chromosome damage, and non-specific genotoxicity, as well as carcinogenicity were 

all assessed to help build the network. This led to 351 alerts in total being considered when looking for KEs and pathways 

associated with carcinogenicity, with the large majority of these alerts being related to the endpoints of mutagenicity, 

chromosome damage, and carcinogenicity (Tab. 1). While there was a small minority (5.4% overall) of alerts for which no 

information on the MoA was known, and so a KE could not be assigned, some level of mechanism had been proposed and 

captured for most of the alerts, and for many, more than 1 KE could be associated with the same alert (average of 1.3 KEs per 

alert). These represented cases where toxicity may have been caused by multiple MIEs for a given chemical class and those 

where more detailed information on KEs in a single pathway were delineated and could be captured. The number of unique 

KEs identified was much lower than the number of alerts investigated due to the fact that many alerts in Derek Nexus may 

cause toxicity via the same MoA, and therefore will translate into the same KEs. While there is more diversity in MoAs (and 

therefore KEs) leading to carcinogenicity, there are only relatively few mechanisms which will lead to mutagenicity, involving 

direct damage to DNA (Tab. 1). There are more MoAs leading to chromosome damage, of which mechanisms leading to 

mutagenicity are a subset, hence the relative increase in KEs identified for this endpoint (Tab. 1). In the case of the alerts where 

a MoA could not be assigned, the alerts were linked directly with KEs relating to the toxicity endpoint for which they were 

predicting (e.g., inherited DNA mutation, chromosome damage), so the knowledge captured by these alerts was not lost. 

 

3.2 Building an AOP network through literature review 
After associating the knowledge captured in the Derek Nexus alerts with KEs and linking this to the endpoint of 

carcinogenicity, a more thorough review of the literature was undertaken in order to test and support these associations as well 

as expanding upon the pathways where appropriate and making sure the knowledge was integrated into a coherent network. 

This work resulted in 38 MIEs being identified associated with 37 different AOPs. As might be expected, for many AOPs 

there were multiple routes by which a MIE might lead to the AO of malignant neoplasm or a potentially related adverse event,  

Derek Nexus Endpoint Number of 
alerts 
assessedc 

Number of alerts for which at 
least one KE could be 
assigned 

Number of unique KEs 
identified 

Carcinogenicitya, b 108 101 34 

Mutagenicityb 151 143 12 

Chromosome damageb 96 90 15 

Non-specific genotoxicityd 5 5 2 
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Fig. 2: Numbers of different AOP components and evidence held within the carcinogenicity AOP network developed 

 

and so 375 pathways were delineated in the network described by the interaction of 142 KEs (10.1 pathways and 16.1 KEs on 

average for each AOP, supporting the assertion that user-defined AOPs are rarely purely linear entities or linear AOPs (LAOPs) 

(Pollesch et al., 2019)). This large discrepancy between the number of pathways delineated in the AOP network and the number 

of individual AOPs also highlights why viewing this knowledge as an interconnected network has great benefits, both because 

the definition of a single AOP is a rather artificial boundary given the multiple pathways which usually define a single AOP 

and the fact that pathways between different AOPs will often be interconnected (Fig. 2A). 

It should also be noted that these numbers represent the pathways captured at their highest level, where knowledge 

relating to more specific events associated with biological pathways had been grouped into KEs more relevant to events usually 

measured at the level of the AOP. Without grouping, 325 events had been identified and the number of MIEs increased to 47. 

One example where grouping was employed is shown in Figure 3. Events in the AOPs relating to certain KEs leading to cancer 

endpoints have been investigated in some detail in the literature. For example, the activation of these receptors has been shown 

to affect multiple cell signaling pathways following heterodimerization, leading to up- or downregulation of specific messenger 

proteins and pathways (Bayly et al., 1994; Huang et al., 2005; Lien et al., 2013; Tian et al., 2011; Columbano et al., 2005; 

Kodama et al., 2011; Robbins et al., 2016). While perturbation of the cell signaling pathways associated in Figure 3 may not 

solely be caused by interaction with these specific MIEs, capturing knowledge of very specific event associations, such as 

Gadd45beta increase (Kodama et al., 2011), as potential biomarkers may be useful when relating the pathways to NAMs. 

Indeed, it is likely that a combination of different biomarkers will be required to implicate a liability for cancer occurring via 

a specific MoA, and these may include markers from the cell signaling pathways as well as those both up- and downstream 

from these events, with temporal relationships also perhaps being important when associating data from NAMs with the 

pathways. When visualizing an AOP or network of AOPs and making decisions, it may, however, be more desirable to see 

and digest the information at a higher level and interrogate in more depth as required. Therefore, under the proposed KEGs 

concept the user would be able to navigate through these different views and the evidence would be associated appropriately 

within the group (Fig. 3). The human relevance of the various pathways may also be taken into consideration when grouping 

and displaying the AOPs. The pathways represented in Figure 3, for instance, may have different amounts of evidence 

associating them with different species (including human), and the user may wish to group further or filter based on this species 

relevance. 

There were 48 KEGs defined in the carcinogenicity network and these contained 147 different KEs. This approach 

to knowledge grouping may be particularly useful when evidence relating to more general concepts associated with cancer, 

such as the key characteristics (KC) of cancer, needs to be captured and reasoned with. It means that data or predictions related 

to KCs can be associated with the relevant group in the network and the interplay between the different KCs captured and 

reasoned between, in addition to the more specific knowledge (Smith et al., 2016). 

Furthermore, by annotating the individual KEs with appropriate terms relating to the biological concepts they 

represent within the construct of the process, object, action and context (POAC) outlined by Ives et al. (2017) and linking these 

terms to appropriate ontologies, it is possible to view different parts of the carcinogenicity AOP network in different levels of 

detail according to the preference of the use case in question. For example, in Figure 3, the general AOP starting with nuclear 

receptor binding, heterodimerization and activation in the liver is delineated. This representation, in fact, summarizes multiple 

individual AOPs which relate to interaction with individual nuclear receptors. The processes and objects linked to the  
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Fig. 3: Key event groups (KEGs), an example of how knowledge could be represented and visualised at different levels 
of detail within pathways 

 

 

individual KEs and their association in the ontologies linked to these individual KEs might be used to view these individual 

AOPs at a higher level where all AOPs relating to activation of individual nuclear receptors in the liver (CAR, RAR, RXR, 

PPAR) can be viewed as a single pathway where the more general relating term of nuclear receptor activation in the liver can 

be used as a grouped concept. An example of how the separate AOPs may be grouped in this way within the entire network is 

illustrated in Figure 3. This shows how the network may be viewed and interacted with at multiple levels by using ontology 

labels and KEGs to condense part of the network. The type of visualization shown may fit very well with the level of AOP 

outlined in the IATA described by Jacobs et al. (2020) for non-genotoxic carcinogenicity assessment and to allow for different 

views of this knowledge. Work is still required on how to establish useful levels of the ontologies at which to represent groups 

of AOPs.  
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As well as the KEs and KERs documented within the literature for a given pathway, the species relevance for which 

the associations were applicable were also captured from the knowledge available. Both evidence for and against the 

applicability of different KERs and entire AOPs in different species was stored within the data model in a weight of evidence. 

This led to the majority of the AOPs being initially assigned as being applicable to mammals in general (mostly based on 

rodent data but with reason to believe they are more widely applicable). Currently, 3 (1.78%) KERs and 4 (9.8%) AOPs had 

evidence indicating that they were not applicable to humans and were assigned against in this species with moderate strength. 

The knowledge used to reach these conclusions was referenced and stored within the data model. 

 

3.3 Associating evidence with AOPs 
With a network of AOPs having been developed, effort was then put into associating relevant evidence sources to the 

appropriate places on the pathway using the data model described previously (Ball et al., 2021) (Fig. 2B). 60 assays were 

associated with 52 different KEs using the concept of assay measures in order to take into account the fact that an assay may 

measure multiple different things and that each measure may be associated with a different KE. While well-established assays 

were captured and those with OECD guidelines prioritized, newer emerging in vitro assays, particularly those relating to 

binding or biomarker measures, were also captured (Bryce et al., 2016; Dix et al., 2007; Hendriks et al., 2012), which resulted 

in more in vitro assays (48) being associated with the network than in vivo assays (12). At the same time as capturing knowledge 

on assays, information about the limitations of these assays was also captured. This was described in terms of assay exceptions 

(Ball et al., 2021). For each assay there may be an applicability domain, and often the limitations of a given assay for a certain 

area of chemical space or mechanism are well known (Jacobs et al., 2020). For example, chemicals from the acid halide class 

are known to give unreliable results in the Ames test as a result of their direct reactivity with some of the solvents used in the 

test, either activating or deactivating them (Amberg et al., 2015). As a consequence, results from this assay for this compound 

class should be treated with a degree of caution, and such information was captured in the assay exception table. These types 

of assay limitations have also been described by Jacobs et al. (2020) in the consideration of assay performance considerations 

(category 2) during their assessment of assays relating to non-genotoxic carcinogenicity for use in an IATA. To date, 13 assay 

exceptions have been captured for the assays relating to carcinogenicity assessment, with the majority being linked to 

compound class and the limitations of particular assays run under specific protocols to predict these compound classes. In 

addition to the predictivity of a given assay and measurement for a particular compound class, it is also important to take into 

consideration the more general predictivity of the measure (and hence KE) to the AO of interest in order to combine and weight 

the evidence accordingly (Jacobs et al., 2020). For example, hypertrophy is a histopathological finding from repeat-dose 

studies, which, according to the proximity of the association on the AOP, would be closely associated with cancer. However, 

this biomarker has been found to have a relatively weak association with the AO and therefore should be weighted and 

combined with other evidence to reach a conclusion (Sistare et al., 2011). Therefore, capturing the sensitivity and specificity 

of the measure for the AO of interest is important information that can be used in a number of roles and is an area of current 

research within our network. 

As well as assay findings, evidence relating a compound to a KE may also come from in silico predictions. As 

described previously, Derek Nexus alerts were used as a starting point to build the network, and so these were the first 

predictive models to be associated with the network. It was possible to associate 351 alerts with 48 different KEs in the 

network. Since all alerts in Derek Nexus have an associated toxicity endpoint in the software, the alerts could be associated 

with KEs on the pathways even if a clear MoA had not been established for that class and, as a result, the KE relating to the 

toxicity endpoint was used in these instances. Where a MoA had been established (and used to develop the AOP network), the 

alert could be associated not only with the toxicity endpoint but also with KEs relating to the MoA suggested, thus giving more 

context to the predictions being made. Using this method meant that nearly all the alerts investigated could be associated with 

the network in some form or another. 

With knowledge captured in this way, we were then able to bring the network to life using experimental data along 

with the predictions to help associate chemical structures with the assays and KEs within our network. To this end, we 

employed the toxicity database Vitic3 to associate assay study data with the appropriate assays on our AOP network. This 

required selecting data from Vitic and then generating an overall call per compound for each individual assay measure. The 

method used to generate this overall call was generally a conservative approach, in most cases taking a positive result or 

finding from any individual study as an overall positive result while also taking some consideration of the protocol employed4. 

The Vitic Lhasa Summary call table was used to access the data at this level for the assays available (Ames mutagenicity, in 

vitro chromosome aberration test, in vitro micronucleus test), and for the remainder calls were generated by synthesizing the 

individual study data outside of Vitic. Most of the data collected to this point provides a categorical call of activity for a given 

measurement, although associating more continuous data may be investigated further in the future. This work resulted in 19400 

studies being associated with our network, covering approximately 13400 chemicals. 24 measurements from different assays 

have been associated with data. While the majority of the data is associated with in vitro assays, it was generally the new and 

emerging assay types for which data was lacking, and these will be populated in the future as evidence and evidence sources 

become available. 

This knowledge was all captured within a database structure visualized in the prototype software described in our previous 

publication (Ball et al., 2021). The data and functionality is currently being transferred into a full program, Kaptis, where it 

can be visualized, interrogated, and manipulated according to the users preference. The knowledge can be viewed in a single 

AOP view or as a network of KEs, and the evidence associated with the pathways can be seen alongside it. 

 
3.4 Analyzing knowledge on an AOP framework 
While structuring knowledge of carcinogenicity around the framework of an AOP network is academically appealing, it is also 

important that knowledge structured in this way can be accessed and capitalized on in order to make better decisions in 

carcinogenic safety assessment. Digitalizing this information, making the associations explicit within a database, and  
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Fig. 4: Graph profiling distribution of rodent carcinogens according to the KEs with which they have been associated, 
based on the Derek Nexus alerts activated  
KEs which have been activated by >20 compounds are displayed on the graph. 

 

embedding this in a software tool goes some way to making the knowledge framework accessible and useful. Therefore, initial 

investigations were undertaken on how to leverage knowledge of carcinogenicity captured in this way. One key benefit of 

having knowledge associated with a given chemical structured in terms of the AOPs is that profiling data sets in this way will 

give context and inform not only on how closely these pathways associate with the adverse outcome of carcinogenicity, but 

also allow for a more meaningful grouping of compounds, and extrapolation of activity between compounds in specific AOP 

profile groups. In addition, the framework allows for a more meaningful and consistent method of combining data so that 

reliable and transparent decisions can be made using the evidence available, and any new evidence types can be incorporated 

into the framework, as long as it is clear where on the AOPs it should be associated. This allows carcinogenicity assessment 

to be moved towards a more integrated approach, as proposed by IATAs, which can incorporate all relevant knowledge and 

can develop and evolve as the technology does, avoiding the limited flexibility, applicability, and responsiveness of some 

traditional testing strategies. Examples of using the knowledge captured in both these ways are discussed below. 

 

3.4.1 Profiling a compound/data set using AOPs 
Knowledge of the MoA by which a compound may cause carcinogenicity can have a profound effect on decisions made 

relating to its carcinogenic potency, human risk, and subsequent actions to be taken when carrying out a safety assessment. 

With this in mind, an initial experiment with our network was undertaken to profile both a data set describing rodent 

carcinogenic potential of a chemical set, derived from the toxicity database Vitic3, as well as a dataset describing the 

carcinogenic potential and human relevance of chemicals as assessed by IARC (IARC, 2019), described in the methods section. 


