Background information on \textit{in vivo} CLint, Caco-2 Papp, and Fup measurements: page 1-3
OECD harmonised template description of the applied PBK model: page 4-5
RVis sensitivity analysis: page 6-15

\begin{quote}
\textbf{Background information the \textit{in vivo} CLint, Caco-2 Papp, and Fup measurements}
\end{quote}

Different protocols exist to measure \textit{in vivo} kinetic constants for metabolism. Incubations are most frequently performed with primary hepatocytes or sub-cellular liver fractions like microsomes or S9 (in the presence of relevant cofactors) (Gouliarmou \textit{et al.}, 2018; Lipscomb and Poet, 2008; Pelkonen and Turpeinen, 2007). Primary hepatocytes are considered the gold standard for performing \textit{in vivo} metabolism studies. Generally, experiments are performed with cryopreserved primary hepatocytes, as these can be stored for a longer period making them more readily available than freshly prepared hepatocytes. Cryopreserved hepatocytes retain most of the activity of freshly prepared hepatocytes (Lipscomb and Poet, 2008). With a so-called "metabolite formation protocol", \textit{in vivo} incubations are performed at different substrate concentrations at a fixed incubation time and cell concentration (Fig. S1A). The formation of metabolites is then measured in these experiments, which follows the Michaelis-Menten equation (Seibert and Tracy, 2014):

\begin{equation}
\nu = \frac{V_{\text{max}} \cdot [\text{compound}]}{K_m + [\text{compound}]}
\end{equation}

In this equation, the Vmax is the maximum velocity (for example µmol/min/10^6 hepatocytes) and the Km is the Michaelis-Menten constant with unit µM (Peters, 2012). A key advantage of this approach is that the kinetic constants obtained can be used to describe the formation of metabolites, and allows to account for concentration-dependent saturation of the enzymes. A disadvantage of this protocol is that standards of the metabolites are required for quantification. Given that such standards cannot be easily obtained for most compounds, the metabolic conversion of compounds is more frequently measured with a so-called "substrate depletion approach" in which the disappearance of a compound is measured over time to derive CLint, based on the slope of the substrate depletion curve (Jones and Houston, 2004). One of the most critical aspects of substrate depletion experiments is that the substrate concentration should be well below the Km (linear region), as only then the rate, \nu, can be simplified as depicted in Equation 2 (Seibert and Tracy, 2014).

\begin{equation}
\nu = \frac{V_{\text{max}} \cdot [\text{compound}]}{K_m} = CL_{\text{int}} \cdot [\text{compound}]
\end{equation}

The obtained CLint values can therefore only be used in situations where no saturable metabolism is to be expected. This can be explored with \textit{in vivo} range finding experiments at different concentrations to determine at which concentrations saturation of metabolism occurs (Nichols \textit{et al.}, 2018; Sjögren \textit{et al.}, 2012). First estimates of the internal concentrations with a PBK model can be used to determine if these saturable conditions are likely to be reached in the liver. Other aspects that need to be considered when performing \textit{in vivo} metabolic clearance studies are, for example, the protein amount in the incubation mixture, whether or not serum is added to the incubation, number of time points and sampling schedule, the percentage of test item consumption at the end of the incubation, and aspects related to the analytical techniques that are used to analyse the sample (Gouliarmou \textit{et al.}, 2018; Louisse \textit{et al.}, 2020). In addition, it is important to include positive controls (marker substrates for different metabolic enzymes) in the experimental setup to check the proper performance of the test system (Hernandez-Jerez \textit{et al.}, 2021).

doi:10.14573/altex.2202131s2
Background information on Caco-2 Papp measurements
The Caco-2 cellular model of intestinal absorption is one of the most frequently used in vivo cell models to study the rate of transport of compounds across the intestinal cell layer. Although Caco-2 cells are derived from a human colon carcinoma, the cells mimic the epithelial barrier of the small intestine when cultured in a monolayer (Hubatsch et al., 2007). For in vivo Papp measurements, the cells are grown in a so-called Transwell system, in which the cells are seeded on a permeable filter insert and are cultured for about 21 days to form a layer of differentiated cells. To measure the cellular transport of a compound, the cell culture medium at the apical compartment of the Transwell is replaced by a transport buffer in which the compound is dissolved and the cell culture medium at the basolateral compartment is replaced by the transport buffer, often containing bovine serum albumin to mimic the protein content of the blood compartment (Hubatsch et al., 2007). A critical aspect of Papp measurements is that the experiments are performed under a concentration gradient, otherwise diffusion cannot take place. This means that the time-range in which the absorption studies are performed need to be optimized to make sure that less than 10% of the compound is diffused to the basolateral compartment (also called sink conditions) (Usansky and Sinko, 2005). Such sink conditions provide the best representation of the physiological conditions, as a concentration gradient between the gut lumen and the plasma will exist in vivo due to distribution of the chemical in the body after absorption. In addition, it should be noted that Caco-2 experimental results often vary between labs and with batches of cells. Therefore, a range of reference substrates should be included in the experimental setup to normalize the results. A final important experimental aspect that can affect the Papp measurement is the pH gradient that is applied between the apical and basolateral compartment. A pH gradient of 6.5-7.4 provides the best representation of the physiological conditions between the intestinal lumen and blood (Neuhoff et al., 2003).

Background information on Fup measurements
Various methods have been developed to measure Fup, of which the equilibrium dialysis test system being most commonly applied. For these experiments, so-called equilibrium dialysis devices are used, which consists of a base plate and different dialysis inserts. Each of the dialysis inserts consists of two chambers separated by a dialysis membrane. The human plasma, generally containing 2 to 5 µM of the substrate, is added to one chamber and phosphate-buffered saline (PBS) to the other (Ryu et al., 2021). The concentrations in the two chambers is monitored until an equilibrium is reached. The equilibrium dialysis techniques particularly poses challenges with measuring the fraction unbound for highly protein-bound compounds. For these compounds the levels in the receiving PBS chamber may be close to the limit of detection, hampering derivation of Fup values. In addition, there is a higher chance for non-specific binding for these compounds. For highly bound compounds, modified equilibrium dialysis have therefore been proposed, including bidirectional equilibrium dialysis, dilution methods and pre-saturation methods (Ferguson et al., 2019; Wambaugh et al., 2019).

References

Fig. S1: Examples of A) Michaelis–Menten kinetics with a Km of 25 µM and a Vmax of 100 nmol/min/10^6 hepatocytes, and B) a metabolic clearance study with a t1/2 of 30 min and a CLint of ln(2)/30 = 0.02 ml/min/10^6 hepatocytes when performed in an incubation that contains 10^6 hepatocytes per ml.

OECD harmonized template description of the PBK model

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope and purpose of the model</td>
<td>Model purpose: generic model code to simulate plasma and tissue concentrations of chemicals (parent chemicals, not metabolites) based on a minimal set of (in vivo and/or in silico derived) chemical-specific input parameters (metabolic clearance, blood:plasma partition coefficients, fraction unbound plasma and blood:plasma ratio)</td>
</tr>
<tr>
<td></td>
<td>Species: human.</td>
</tr>
<tr>
<td></td>
<td>Age, life stage(s), sex, exposure window(s): adult 70 kg (human), not gender specific.</td>
</tr>
<tr>
<td></td>
<td>Exposure route(s) and dose metric(s): IV and oral (mg/kg bw)</td>
</tr>
<tr>
<td></td>
<td>Target organs and tissues: Lung, Adipose, Bone, Brain, Heart, Muscle, Skin, Liver, Kidney, Gut, Spleen, Venous and Arterial blood.</td>
</tr>
</tbody>
</table>

Model structure and mathematical description	13 perfusion-limited compartments
	Differential equations
	Perfusion-limited
Mass balance equations given	
	![Diagram](image.png)
Absorption: first order rate constant (Jones and Rowland-Yeo (2013)).	**Distribution**: Homogenous and blood-flow limited distribution was assumed in each compartment.
Metabolism: linear with dose (no saturation included).	**Excretion**: Urinary excretion is included in the kidney compartment as glomerular filtration rate times the free venous plasma concentration.

Computer implementation	Model implemented in R
	Model codes and syntax available
Parameter estimation and analysis	Anatomical and physiological parameter values as reported by Jones and Rowland-Yeo (2013).
	Intrinsic hepatic clearance *(in vivo intrinsic hepatic clearance data are scaled to the in vivo situation).* Fup from *in vivo* experiments.
Evaluation of the PBPK model according to WHO criteria

The goal of the model of Jones and Rowland-Yeo (2013) is to make first tier estimates of expected plasma and/or tissue concentrations making use of a minimal set of chemical-specific input data, being intrinsic hepatic clearance, partitioning into tissues, the fraction unbound in plasma and the blood:plasma ratio. The model structure contains the major body compartments (Lung, Adipose, Bone, Brain, Heart, Muscle, Skin, Liver, Kidney, Gut, Spleen, Venous and Arterial blood). The original model of Jones and Rowland-Yeo (2013) has been adopted by Punt et al. (2021) for use in an online platform (www.qivivetools.wur.nl) and has been modified with respect to the following points:

- Conversion of the model code from Berkeley Madonna to R, solving the differential equations with the R deSolve package.
- Cliverfree defined as Cliver/Kpli*fup instead of Cliver*fup.
- Fraction absorbed (F) accounted for in the initial setting of the dose rather than the differential equation for oral absorption (the latter would the rate of absorption and not the fraction that is absorbed).
- Renal clearance (urinary excretion) simulated as GFR times the free plasma concentration (within the model of Jones and Rowland-Yeo 2013, renal clearance is described as CLrenal*Ckidneyfree and it is not specified whether this renal clearance corresponds to urinary excretion or metabolic clearance).
- Conversion of plasma concentration to nM as output of the model.
- Kpre (tissue:partition coefficient rest body) set equal to the muscle partition coefficient.
- Mass balance equations added.

Model calibration and validation

Calibration: In vivo and in silico input data are used for the parameterization to make an estimation of the in vivo toxicokinetics. No calibration step is therefore needed. Validation: Generally, adequate estimations of in vivo kinetic parameters (particularly Cmax) can be made with the model for chemicals that are rapidly absorbed and when liver metabolism is the main clearance route. However, this is not the case for chemicals that will largely depend on, for example, extrahepatic metabolism and/or active-transporter-mediated kinetics. Without data to evaluate model performance, one should therefore be cautious when applying the model for different chemicals. Predictions need to be evaluated on a case-by-case basis.

Model documentation

Peer reviewed model
Publicly available model

Evaluation of the PBPK model according to WHO criteria

Intestinal uptake scaled from in vivo Caco-2 apparent permeability data as describy by Pun et al., 2021.
Global sensitivity analysis with Rvis
(https://github.com/GMPtk/RVis/releases, v0.15, using R 4.1.1)

References

To import the PBK model, follow steps 1 to 13. These steps are only required ones.

1. Open Rvis and click on import R
2. Select the model code with Browse
3. Select the model code
4. Click inspect
5. Click Select

6. Select "run_model" here

7. Select "parameters" here

8. Click "OK"
9. click “Import”

10. click “Use All” to select all parameters

11. go to the “OUTPUT” tab
12. Click on USE? in front of Cplasmavenous.AVE and AUC. These output parameters will be plotted.

13. Click on “Import”
To run the model follow steps 14 to 16 to run the model.

14. Select one of the imported models.

15. Click “Run”
16. Click “Plotter” to select the output Cplasmavenous.AVE (i.e. simulated plasma concentration in time) or AUC (simulated area under the plasma concentration-time curve).
Follow steps 17 to 27 to perform the sensitivity analysis

17. Select the “Sensitivity” tab

18. Select “CLint”, “fup” and “PappAB” as parameters for the sensitivity analysis
19. Click to define the distributions (see `Rvis_input_variation.csv` file on https://github.com/wfsrqivive/PBPK_exp_variation.git) for the average and variance in these parameters based on the observed experimental variation for each compound.
20. Click on the “Design” tab

21. Select “e-FAST” and 100 samples

22. Click “Create Design”

23. Click “Start”
24. Go to the “EFFECTS” tab to see the results of the sensitivity analyses

25. As output the AUC or Cplasmavenous.AVE can be selected

26. To determine the contribution of the three varied parameters on the Cmax, set the slider to the time-point of the Cmax. (in case of the AUC, the slider needs to be set at 24h)

27. Export the data as Microsoft Excel file