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elling, target identification/validation, pharmacology, biomark-
er identification, and personalized medicine. Finally, MPS may 
improve testing of efficacy and safety risks for which in vivo 
models do not currently exist or are unfeasible, such as cell and 
gene therapies, viral vectors, or modalities that only function in 
human cells/models.

Compound attrition rates remain high for drug companies. Well 
over 1 billion U.S. dollars are invested to produce a single mar-
keted drug, with only ~10% of Phase 1 candidates reaching  
final approval by the U.S. Food and Drug Administration 
(FDA) (Blomme et al., 2016; Hay et al., 2014; Munos, 2009). 
Lack of adequate efficacy is the greatest reason for drug attri-
tion (~57%) (Hwang et al., 2016). However, safety is also a ma-
jor reason for drug failures, reportedly contributing to 35% and 
28% of drug failures from Phase 1 and from Phase 2 to submis-
sion, respectively (Arrowsmith and Miller, 2013). The value 
and limitations of predicting human toxicity based on animal 
tests are controversially discussed. While the absence of toxic-
ity in animal species was found to strongly predict similar out-
comes in clinical trials (Monticello et al., 2017), it was found 
that rodents and non-rodents predicted only ~43% and ~63% 
of human toxicities, respectively, based on data from 150 drug 
candidates (Olson et al., 2000). While human cell-based MPS 
models may help to better predict human toxicities, their com-
bined use with animal cell-based MPS models may help to de-
risk drug candidates when toxicities are observed in preclinical 
species (Van Vleet et al., 2019).

The manuscripts in this Special Issue1 attempt to frame the ar-
eas in which emerging or future MPS can most impact the use 
of preclinical animal models with positive influence on the 3Rs 
(reduce, refine, and replace). It is clear that MPS will need to 
provide additional value to standard non-clinical practices for 
them to be applied in drug discovery and development. This 
body of work is intended to influence the MPS field and ed-
ucate innovators on pharmaceutical standards or established 
processes. No regulations currently exist for the use of MPS 
in drug testing; however, regulatory guidance documents may 
be needed if MPS enter the mainstream of drug development 
programs. 
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The International Consortium for Innovation and Quality in 
Pharmaceutical Development (IQ) Microphysiological Sys-
tems (MPS) Affiliate was formed in June of 2018. The IQ 
MPS Affiliate has previously prepared a Themed Collection 
of organ- and application-specific manuscripts that highlight 
challenges and gaps for use of MPS models, considerations 
for characterization, and initial contexts of use in the phar-
maceutical industry (Ainslie et al., 2019; Baudy et al., 2020; 
Fabre et al., 2020; Fowler et al., 2020; Hardwick et al., 2020; 
Peters et al., 2020; Peterson et al., 2020; Phillips et al., 2020; 
Pointon et al., 2021). 

The current body of work is a second collection of manuscripts 
in a Special Issue1 of ALTEX for the purpose of outlining in-
dustry perspectives for developing and characterizing MPS 
models for drug discovery, safety, and disposition applications 
for additional organ systems, new applications, or specific drug 
platforms. The manuscripts in this Special Issue1 also create 
guides for tissue-chip developers and pharmaceutical indus-
try scientists generally focused on drug safety and disposition 
applications, which are the primary areas of exploration with 
these tools. It is intended that this body of work will help to 
expedite the uptake of MPS platforms into the drug discovery 
and development process and hopefully provide improved drug 
safety and disposition assessments. Furthermore, these manu-
scripts highlight some of the gaps in the field of MPS for the 
pharmaceutical industry, for which we hope vendors, academi-
cians, and others can find solutions and advance the field.

We define MPS as going beyond traditional 2D culture by in-
cluding several of the following design aspects: a multi-cel-
lular environment within a biopolymer or tissue-derived ma-
trix; a 3D structure; the inclusion of mechanical cues such as 
stretch or perfusion for breathing, gut peristalsis, flow; incor-
porating primary or stem cell-derived cells; and/or inclusion 
of immune system components. MPS platforms may be uti-
lized as isolated single fluidic systems or connected through 
fluidic circuits to model the function of interconnecting tissues  
(Ewart et al., 2017). Initial MPS applications are likely to be 
within the lead and candidate optimization stages, including 
predicting human pharmacokinetics and pharmacodynam-
ics (PKPD), predicting translation of preclinical findings, and 
identifying mechanisms of toxicity (Ewart et al., 2017). Oth-
er areas in which MPS may add value include disease mod-
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