Comparing Translational Success Rates Across Medical Research Fields – A Combined Analysis of Literature and Clinical Trial Data

Gwen van de Wall¹, Astrid van Hattem¹, Joy Timmermans², Merel Ritskes-Hoitinga³ ⁴, André Bleich⁵ and Cathalijn Leenaars⁵

¹Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; ²PXL University of Applied Sciences and Arts, Hasselt, Belgium; ³Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, The Netherlands; ⁴AUGUST, Department of Clinical Medicine, Aarhus University, Denmark; ⁵Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany

Abstract

Many interventions that show promising results in preclinical development do not pass clinical tests. Part of this may be explained by poor animal-to-human translation. Using animal models with low predictability for humans is neither ethical, nor efficient. If translational success shows variation between medical research fields, analyses of common practices in these fields could identify factors contributing to successful translation. We have thus assessed translational success rates in medical research fields using two approaches: through literature and clinical trial registers.

Literature: We comprehensively searched PubMed for pharmacology, neuroscience, cancer research, animal models, clinical trials, and translation. After screening, 117 review papers were included in this scoping review. Translational success rates were not different within pharmacology (72%), neuroscience (62%) and cancer research (69%).

Clinical trials: The fraction of phase-2 clinical trials with a positive outcome was used as a proxy (i.e., an indirect resemblance measure) for translational success. Trials were retrieved from the WHO trial register and categorized into medical research fields following the international classification of disease (ICD-10). Of the phase-2 trials analyzed, 65.2% were successful. Fields with the highest success rates were disorders of lipoprotein metabolism (86.0%) and epilepsy (85.0%). Fields with the lowest success rates were schizophrenia (45.4%) and pancreatic cancer (46.0%).

Our combined analyses suggest relevant differences in success rates between medical research fields. Based on the clinical trials, comparisons of practice between, e.g., epilepsy and schizophrenia might identify factors that could influence translational success.

1 Introduction

Preclinical research in animals is currently still standard practice for the early phases of medical research, being required by most local authorities before clinical testing. These requirements assume that animal models are able to accurately predict human outcomes. In other words, they assume high animal-to-human translational success rates. However, preceding work (Leenaars et al., 2019) showed high variability in translational success rates in pharmacological research, ranging from 0% to 100%. Several analyzed factors (e.g., animal model species) could individually not predict translational success rates. Because many studies show low animal-to-human translation, not all currently used animal models might be suitable to predict human outcomes.

Return on investment in the pharmaceutical industry is lower than ever¹; over the past decade, the costs of developing new medications have been increasing. At the same time, funders, providers, and patients have been criticizing...
these high medical costs\(^2\). Moreover, the return on investment in the pharmaceutical industry was declining even further, at least up until the SARS-CoV-2 pandemic\(^1\). This decreases the interest of companies to invest in medical research and hinders the development of new treatments. A substantial part of the problem may be explained by poor animal-to-human translation.

If the overall translational success is low, using animal models to predict safety or efficacy in humans is not ethical, nor does it promote responsible research and innovation. In this respect, animal models that do not contribute to clinical developments should be the first to be replaced. Because of this, and because improving translational success rates may prevent uninformative research from being performed, and benefit return on investment, it is important to investigate the translational value of animal models.

An often-suggested factor potentially limiting translational success is poor experimental design\(^1\) (Kola and Landis, 2004; Bolker, 2017). However, as long as experimental design is poorly reported (McNamara et al., 2016; Albersheim et al., 2021), it is difficult to analyze its effects on translational success directly. An indirect approach towards translational success analyses may be to compare common practice between medical research fields. A prerequisite for this is the presence of variation in translational success rates between medical research fields, which offers the opportunity to analyze the differences and possible etiological factors. Therefore, as a first step in this approach, translational success rates between medical research fields have been compared. In this study we thus explored translational success rates in different medical research fields using two complementary approaches.

Our first approach is a scoping literature review analyzing translational success in several research fields. The methods and criteria used are complementary to previous research (Leenaars et al., 2019). Because a full analysis of all medical research fields using this approach was not viable, we selected 3 fields as “case studies”. The first is neuroscience, a field that has been criticized for its low translational success rates (e.g., O’Collins et al., 2006). However, when we searched the literature, we could not find evidence-based reviews confirming this for the entire field. Thus, this criticism seems to be based on personal experiences (Hyman, 2012) and has only been confirmed by systematic analyses of actual data for acute stroke treatments (O’Collins et al., 2006). Translational success rates in Neuroscience were compared with those in Pharmacology and Cancer Research. Pharmacology provides a broad spectrum of research and was chosen because this is one of the largest fields of research, and the basis for the largest part of the Leenaars 2019 paper. While cancer research is more specialized, cancer has the second highest global disease burden (at 9% of the total global disease burden)\(^3\). This large burden results in many efforts and large budgets to find new therapies for cancer\(^4\).

Our second approach investigates the success of clinical trials by research field. Trial success of Phase-2 clinical trials were chosen as a proxy to analyze translational success; defined as the replication of statistically positive effects from preclinical animal models in clinical trials. We use the term “proxy” to reflect “an entity or variable used to model or generate data assumed to resemble the data associated with another entity or variable that is typically more difficult to research.” Phase-2 clinical trials were selected because they are relatively comparable to (and have the same limitations as) animal experiments; assessing the safety and efficacy of treatments in a small and homogeneous population. For the interpretation of the analyses, we assume that clinical trials are mostly based on successful preclinical research. Thus, the overall percentage of successful trial outcomes is assumed to correlate with translational success. While this assumption will not always hold, we do not expect relevant differences between research fields in, e.g., the amount of trials started without animal research. Thus, this approach allows for an indirect comparison of success between fields. All fields of research were included and categorized according to the 10\(^{th}\) version of the International Classification of Diseases (ICD-10) as described in the methods.

2 Methods

2.1 Scoping literature review

No protocol was posted for this scoping review. An internal short protocol (in Dutch) was shared between 3 of the co-authors before the start of screening.

2.1.1 Search

We searched the PubMed database on January 26\(^{th}\) 2021. The search consisted of 5 elements: Selected fields (Neuroscience, Pharmacology, and Cancer Research), Animal Models, Clinical trials, Translation, and Review. These elements were combined with “AND”: Fields AND Animal Models AND Clinical Trials AND Translation AND Review.

The old animal search filters (updated after our search date (van der Mieren et al., 2022)) from the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) were used (Hooijmans et al., 2010) to search for the Animal models. Furthermore, to search for Clinical Trials and translation, we adjusted previously published search strings (Leenaars et al., 2019). Lastly, for the fields, new search strings were developed. For each field, appropriate MeSH terms were selected, and synonyms were identified through Google searches. The full search string is provided in Appendix A (Chapter 6.1).

\(^6\) https://www.thefreedictionary.com/proxies
All retrieved references were downloaded and stored as an EndNote X9 (Clarivate Analytics, Philadelphia, Pennsylvania, USA) database.

2.1.2 Selection of papers
Retrieved references were screened for suitability in two phases. Phase one consisted of Title Abstract screening. Publications that were reviews, included both in vivo animal data (authors could refer to animal studies, in vivo studies or specific animal species) and clinical data, assessed animal-to-human translation, were written in a language the authors could read (i.e., English, Dutch, French, Italian, Spanish, German, Swedish, or Danish), were published from 2017 through 2019 (to supplement previous research (Leenaars et al., 2019)), and were in the research field of Neuroscience, Pharmacology, or Cancer Research, were selected for further full text screening. As there is overlap between the field of pharmacology with the other two fields, the pharmacology part of our literature study was restricted to "other pharmacology studies", excluding pharmacological Neuroscience or Cancer research, which were assessed separately. Articles that complied to the criteria for title/abstract screening and provided sufficient evidence were included in the final analysis. Sufficient evidence was operationalized as describing the findings from at least 2 in vivo preclinical and 2 clinical references. Screening was performed by two independent researchers. In the title abstract phase, discrepancies were resolved by a third independent researcher. In the full text phase, discrepancies were resolved through discussion between the screeners.

2.1.3 Data extraction
We extracted data on bibliography, study design, animal models, and translational success rates from the included papers as summarized in Table 1.

<table>
<thead>
<tr>
<th>Category of data</th>
<th>Extracted data per included paper:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliographical</td>
<td>First Author, Year of Publication, Journal, Page Numbers</td>
</tr>
<tr>
<td>Trial Design</td>
<td>Number of Pre-clinical References, Number of Clinical References, Field of Research, Model Species</td>
</tr>
<tr>
<td>Outcome</td>
<td>Translational Success Rate</td>
</tr>
</tbody>
</table>

We defined translational success as the replication of positive, negative, or neutral results from animal models in clinical trials. If translational success was available as, or could easily be converted to a percentage, this value was used. Otherwise, translational success was operationalized as 0% for no translation (no concordance between animal models and clinical trials), 50% partial translation (partial concordance) and 100% complete translation (full concordance) of results from animal studies to human studies. This approach allowed us to include both continuous and non-continuous definitions of animal-to-human translation, increasing our overall sample size. Furthermore, it enables the comparison of high and low success rates, while taking partial concordance (50%) into account. Moreover, it prevented loss of information when a paper included multiple treatment strategies for the same condition, or one treatment for multiple conditions. If a paper included multiple animal-human comparisons, each treatment and condition was separately scored. Because we used the paper as our unit of analysis, we averaged these scores per paper. While this practice of transforming a partially ordinal variable (no/ partial/ full translational concordance for narrative reviews) into a seemingly continuous one (percentage correspondence) may decrease relevant variation in translational success rates, it prevents issues with correlated data within papers, and at the same time allows for inclusion of all literature data into a single analysis.

Our references were categorized into 4 categories for size according to the number of references they included. Categories were pragmatically defined based on variation within the sample.

2.1.4 Analysis
Explorative analyses were performed in R7 (V4.1.2 “Bird Hippie”) with the Rstudio interface8. Translational success rates were summarized by research field (Neuroscience, Pharmacology and Cancer Research). Results were visualized with the ggplot2 package9. Colorblind friendly color palettes were used for all figures (Wong, 2011).

2.2 Clinical trials
No protocol was posted for this scoping review. An internal short protocol (in Dutch) with a crude description of the analyses, was shared between 3 of the co-authors before the start of screening.

2.2.1 Retrieval of clinical trials
As explained in the introduction, we restricted our clinical trial analyses to phase-2 clinical trials. We retrieved completed phase-2 clinical trials from the World Health Organization International Clinical Trials Registry Platform10. Only trials with available results were included in our analyses. We restricted the analyses to trials that were completed before 2020, as a large part of the later trials were related to the SARS-CoV-2 pandemic. The pandemic massively accelerated research and this period was not considered comparable to prepandemic research. No further restrictions were applied. Retrieved trials were saved as a Microsoft Access database.

7 https://www.R-project.org/
8 http://www.rstudio.com/
9 https://ggplot2.tidyverse.org
10 https://trialsearch.who.int/
2.2.2 Trial selection
Trials with available results with an indication corresponding to an ICD-10 code were all included. Terminated trials were only included if they were terminated due to meeting the primary endpoint before the planned end date, lack of efficacy, or safety concerns. All other terminated trials (e.g., those that were terminated because of a lack of participants or because of commercial interests) were excluded from the analyses. Trials that were still actively analyzing data or recruiting participants were only included if results from planned interim analyses (i.e., prespecified in the trial protocol) were available.

2.2.3 Data extraction
Data extracted from the clinical trials are shown in table 2.

<table>
<thead>
<tr>
<th>Category of data</th>
<th>Extracted data per included paper:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial Design</td>
<td>Randomization, Blinding, Use of Control</td>
</tr>
<tr>
<td>ICD-10</td>
<td>Researched disease categorized by ICD-10</td>
</tr>
<tr>
<td>Outcome</td>
<td>Trial Success</td>
</tr>
<tr>
<td>Termination</td>
<td>If applicable; Reason for termination</td>
</tr>
</tbody>
</table>

The ICD (International Classification of Disease) is a hierarchical system that has been used as the main basis for health recording and statistics on disease in health care and on death certificates since 1949. At the time of performing this study, the ICD-10 was the most recent version available. This version is a list of codes consisting of one letter and at least two numbers, depending on the level within the hierarchy. Each trial received an ICD-10 code corresponding to the main disease studied. We used the hierarchical structure of the ICD-10 to group trials together into disease groups including at least 50 trials, further described in section 2.2.3 Analysis.

Each trial was scored as successful (results encouraging further clinical studies) or unsuccessful. When the trial results were available, the authors’ conclusion was followed. In case of termination due to lack of efficacy or safety concerns, the trial was deemed unsuccessful. If the trial was terminated due to meeting its primary endpoint, it was scored as a successful trial.

2.2.4 Analysis
We analyzed all extracted data using R (V4.1.2 “Bird Hippie”) with the R studio interface. All scripts used the dplyr package V1.0.711. Full scripts can be found in Appendix B (Section 6.2), as well as on GitHub (v1.0)12. The script consists of three subscripts, separately described below.

The first subscript was written to summarize the full dataset. It counts the overall included number of terminated, blinded (single blinded, double blinded, and triple blinded or more), randomized, controlled, and successful trials. Next, absolute numbers were converted to percentages using a custom function (see Section 6.2.1.).

The second subscript was written to group the trials by ICD-10 codes, according to the hierarchical structure, into groups of at least 50 trials. Grouping started with counting the occurrence of each code. If the count was below 50, the code was checked with the code above itself in an alphabetical list. If these two codes had the same first 3 characters, and both had below 50 counts, they were grouped together. For example, pure Hypercholesterolaemia was coded as E78.0. This disease on its own did not reach the minimum size of 50 trials, and it was grouped together with 5 other codes as code E78, Disorders of lipoprotein metabolism, creating a group of 53 trials. Trials with codes that did not reach a group size of 50 (e.g., Pneumothorax, Gestational Hypertension and Respiratory Distress of Newborn) were grouped together as “Other”.

The third subscript counts the number of terminated, blinded, randomized, controlled, and successful trials for each subgroup, as created with the second subscript. Next, this script calculates the percentages of these trials with certain characteristics for each subgroup, as the first subscript did for the overall set.

Explorative analyses were performed to compare all results between the subgroups. These graphical analyses were performed in R with the ggplot2 package9. Colorblind friendly color palettes were used for all figures (Wong, 2011).

2.3 Evidence integration
For this study we used a segregated concurrent approach, using two complementary methods to assess animal-to-human translational success rates in different fields of medical research. Both parts of this research (literature and clinical trials) were performed simultaneously. For viability of the scoping review, a selection of research fields had to be made to assess translational success rates. For clinical trials, all available trials were included, to assess as many different research fields as possible. This difference results in incomplete overlap. Mainly the field of Pharmacology, as defined for the scoping review, is not comparable to the clinical trials, because pharmacology includes many diseases. The fields Neuroscience and Cancer Research are better defined and can be compared directly between the ICD-10 chapters and the scoping review.

11 https://CRAN.R-project.org/package=dplyr

Tab. 2: Extracted data

<table>
<thead>
<tr>
<th>Category of data</th>
<th>Extracted data per included paper:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial Design</td>
<td>Randomization, Blinding, Use of Control</td>
</tr>
<tr>
<td>ICD-10</td>
<td>Researched disease categorized by ICD-10</td>
</tr>
<tr>
<td>Outcome</td>
<td>Trial Success</td>
</tr>
<tr>
<td>Termination</td>
<td>If applicable; Reason for termination</td>
</tr>
</tbody>
</table>

Publication details:

ALTEX, accepted manuscript
published May 5, 2023
doi:10.14573/altex.2208261
3 Results

3.1 Scoping review

3.1.1 Selection of papers

Our search in PubMed identified 11,032 papers. Out of these, 880 abstracts seemed to fit the scope of this study. Out of these, 763 papers were excluded from the final analysis, after which 117 papers were included in this review. The flow of references is shown in Figure 1.

3.1.2 Characteristics of included papers

All 117 included papers were written in English. Out of these, 53 papers investigated treatments in the field of Pharmacology, 21 in the field of Cancer Research, and 43 in the field of Neuroscience. In total, 4 papers described Meta-Analyses, 30 described Systematic Reviews, and 83 papers were Narrative Reviews, equally distributed over the fields.

As shown in Figure 2, mouse and rat models were most prevalent. The "Other" category includes model species which were only referenced once: goat, miniature pig, cow, cat, rabbit, pig, chicken, frog and fish. Twenty-four included papers mentioned preclinical in vivo or animal research without the specific animal species. Overall, papers seemed to include more pre-clinical references compared to clinical references (Fig. 3).
3.1.3 Overall results
Across all papers, 100% translation was the most common score ($k=64$, Fig. 4). Overall, the average translational success rate was 68%. However, a substantial number of papers shows translational success of 50% ($k=24$) or zero ($k=25$). For all fields combined, for the 34 systematic reviews and meta-analyses, 17 papers showed high translational success (75%-100%), and 17 papers showed low translational success (0%-50%). For narrative reviews, the percentage of success (100%) seems to be higher (Fig. 4).

Furthermore, it seems that papers which included more references (>100) on average have lower success rates, and papers with only a few references have higher success rates (<25) (Fig. 5).

3.1.4 Comparing translational success rates
Figure 6 shows the literature-based translational success rates across the fields of Pharmacology, Neuroscience, and Cancer Research. These results show that translational success rates in Neuroscience overall are not worse than those in other fields, contrary to what has been previously published (Azkona and Sanchez-Pernaute, 2022; O'Collins et al., 2006; Davies et al., 2020). Overall, no clear difference can be seen between these fields.
3.2 Clinical Trials

3.2.1 Retrieval of clinical trials

Our search of the WHO Clinical Trial Registry retrieved 13,985 phase-2 clinical trials. 3,102 Records were excluded due to termination before conclusive results, and 549 records did not have results publicly available. The flow of records is shown in Figure 7.

3.2.2 Overall results

Overall, 65.2% of the included clinical trials showed positive outcomes, of which 0.1% was terminated because of reaching the primary endpoint earlier than planned. 34.8% of trials showed negative outcomes (not encouraging further clinical studies; Either no efficacy or adverse events), of which 7.6% was terminated earlier than planned due to lack of efficacy, and 3.3% was terminated due to safety concerns.

Regarding trial design, overall, 51.1% of trials was randomized and 40.9% of trials used a control (either active or placebo). In total, 40.2% of trials were Randomized Controlled Trials (RCTs). Lastly, 39.9% of trials used some form of blinding.

3.2.3 Comparing medical research fields

We first analyzed all included clinical trials by overall ICD-10 chapter. These chapters include different diseases. For example, the ICD-10 codes for the diseases gastroenteritis and sexually transmitted disease were grouped together in the ICD-10 chapter “Infectious and Parasitic Diseases” with various other diseases. These ICD-10 chapters show relatively little variation in success rates; they range from 53.5% to 80.0% (Fig. 8).

Next, we created smaller subgroups where possible; 6,778 out of 10,334 clinical trials could be grouped into 51 disease groups of ≥ 50 trials (Fig. 9). Compared to the ICD-10 chapters, in lower-level ICD-10 categories, success rates vary more; between 45.5% and 86%. The highest success rates (top 5) were found in Disorders of Lipoprotein Metabolism (86%),
Epilepsy (85.0%), Influenza (83.9%), Lymphoma (83.8%), and Viral Hepatitis C (83.2%). The lowest success rates (bottom 5) were seen in Schizophrenia (45.4%), Pancreatic Cancer (46.0%), Bladder Cancer (47.3%), and Liver Cancer (49.1%). These results suggest relevant variability in clinical trial success rates across all medical research fields, specifically within Cancer Research.

Within the top 5 research fields, randomization of trials varied between 8.0% and 81.8%, use of controls ranged between 1.9% and 69.9%, and any form of blinding was used in 1.2% to 71.7% of trials. Within the bottom 5 fields, the factors ranged between 17.6% and 85.5% for randomization, 11.8% and 72.5% for use of control, and 7.9% and 74.2% for use of blinding.

3.3 Evidence integration
Comparing both methods (Scoping Literature Review and Clinical Trials) for the research fields of Neuroscience (the ICD-10 chapters Mental and Behavioral Disorders and Nervous System) and Cancer Research (the ICD-10 chapter Cancer) shows similar results. For Neuroscience, the average animal-to-human translational success rate in literature was 62%, and the clinical trial proxy, showed 61% positive outcomes. For Cancer Research, literature showed an average translational success rate of 69%, while the clinical trial proxy showed 62% positive outcomes. While both methods have their limitations, and while we can only compare two fields, this concordance between methods indicates that the results of our study are reliable enough as a basis for further research.
4 Discussion

In this study, we explored differences in translational success rates across medical research fields using two approaches. We defined translational success as the replication of positive, negative, or neutral results from animal studies in clinical trials. Most of the time, negative results in animal studies are not followed by clinical trials. However, we identified a few examples of clinical trials after negative or mixed preclinical results, mainly in literature reviews (e.g., Giles et al., 2017; Sedláková et al., 2017; Micheli et al., 2018). Corresponding translational success rates varied.

Our first approach, a scoping review, showed a minor difference in average translational success rates (Fig. 6); the success rates in the fields of Pharmacology, Neuroscience, and Cancer Research were not clearly different. Interestingly, meta-research following more stringent methods, i.e., systematic reviews and meta-analyses, seemed to show a lower success rate than less formal narrative reviews (Fig. 4). This may be due to the selection and/or publication bias in narrative reviews. Furthermore, larger (>100 references included) studies showed lower success rates compared to smaller studies (<25 references included). Generally, more systematic meta-research includes fewer references (in this study all systematic reviews included <50 references) due to the high workload of this type of research. However, our results suggest bias in the outcomes of the less systematic narrative reviews. This indicates a need for more large systematic reviews and meta-analyses to get a better view of the actual current state of translational success rates. The view described in the current literature may be overly optimistic because most included reviews are narrative, and based on our results these narrative reviews show higher success rates. However, mean calculated percentages from literature hardly deviate from percentages in the clinical trial proxy, discussed below.

Our second approach, using outcomes of Phase-2 Clinical Trials as a proxy, showed larger variations in success rates compared to our literature results, ranging from 45.5% to 86.0%. Broader fields of research had less variation than narrow fields, possibly reflecting large variation of research practice within widely defined research fields. The largest variation in success rates was found within Cancer Research, having both some of the lowest and some of the highest success rates. It is still unclear why Cancer Research shows this high variation, but one possible explanation could be differences in research methodology. Therefore, cancer research could be ideal to further investigate differences between smaller research fields to identify factors contributing to high or low translational success. Overall, our observation of higher variation between smaller fields than between wider fields highlights the need to look at research fields on the smallest scale feasible for studies addressing differences in research practice.

Combined, these results show relevant variability in translational success in medical research. The average success rates identified for neuroscience and cancer research are similar with both methods used, around 65-75%. In contrast to the general opinion expressed by neuroscientists (e.g., O’Collins et al., 2006), as a whole this field does not show lower translation than other fields.

Our methods have several limitations. First, the ordinal categorization of translational outcomes as successful, partially or not successful, is more prone to bias compared to continuous outcomes. Besides, the categorization of outcomes was based on data expressed in the included papers and trial records only, and performed by a single researcher. However, by scoring outcomes orderly, partial correspondence between animal and human outcomes cannot be properly assessed. For the literature sample, the majority of included reviews was narrative, and there was not enough literature quantitatively discussing translational success rates to perform a fully continuous analysis per research field. For the clinical trials, it was not feasible to include pre-clinical animal data, due to the high number of clinical trials assessed in this study. Future studies should investigate the pre-clinical and clinical data in some of the highest scoring and lowest scoring fields in more detail to validate our findings. However, this may be challenging as preclinical data is often not available in the public domain. Therefore, this study should be interpreted as a first exploration of translation success in different research fields within the boundaries of currently available data.

Second, to ensure a decent sample size, the inclusion and exclusion criteria for our screening phase were broad. This increased the number of discrepancies in the full-text screening phase, as the criteria were open to interpretation. While the discrepancies were all eventually resolved by discussion between the screeners, this may limit the replicability of our screening. For future reviews, this might be prevented by using stricter inclusion and exclusion criteria. To maintain a decent sample size, some criteria should then be altered. For example, a larger range of publication dates can be included.

Third, another limitation of including narrative reviews is that these papers do not describe their methods and, therefore, their external validity cannot be properly evaluated. However, as there is still a lack of proper systematic reviews, narrative reviews had to be included to reach an appropriate sample size.

Fourth, for our analysis of the clinical trials we used trial success as a proxy for translational success. We selected phase 2 trials because these trials investigate efficacy and safety of treatments in small groups of patients and are therefore more comparable to pre-clinical trials than clinical trials in other phases. To use clinical trial success as a proxy for successful translation, we assumed that each clinical trial was based on successful preclinical research. Interpretation of our clinical trial findings should take into account that this assumption is not always valid. Clinical trials may also be started without preceding animal research (e.g., for new indications for compounds already on the market). Besides, the outcome of a clinical trial not only depends on safety and efficacy of the tested intervention, but also on factors such as appropriate trial design and participant treatment adherence. While we could not think of reasons to assume differences in these factors between fields, the results must be interpreted cautiously.

Last, for our analysis of the clinical trials, fields were categorized by ICD-10 code with a limit of at least 50 trials per group. Consequently, some fields of research that are quite different were grouped together. For example, gastroenteritis and sexually transmitted disease were grouped together under “Infectious and Parasitic Diseases”, and inguinal hernia and peritonitis under “Diseases of the Digestive System”. Most of the groups comprising quite different diseases had average trial success rates around 60-70%, which is similar to the overall average success rate of 65%. This indicates the importance of investigating research fields separately, focusing on fields where sufficient data are available.
Because of these limitations, future studies should investigate the pre-clinical and clinical data in some of the highest scoring and lowest scoring fields in more detail to validate our findings. However, this may be challenging as preclinical data is often not available in the public domain. Therefore, this study should be interpreted as a first exploration of translation success in different research fields within the boundaries of currently available data.

Despite these limitations we believe this study carries value. To our knowledge, it is the first study formally comparing translational success rates between medical research fields. Fields were compared using two quantitative approaches, with concordant results. The resulting data allows us to make recommendations for future meta-research, described below. Besides, it shows which fields of medical research are most in need of improving translational success; Schizophrenia, Pancreatic Cancer, Bladder Cancer, Colon Cancer, and Liver Cancer. Efforts to improve animal models, or to replace them by more informative alternative approaches, should focus on these fields of research first, to improve translational value and reduce unnecessary clinical and preclinical research.

We performed these studies because of our interest in improving animal to human translation. Investigating common practices in fields with high and low translational success rates might identify, e.g., experimental designs which can lead to either translational success or failure. Due to insufficient reporting of study design, it is still not feasible to assess the relationship between design and translational success rates from literature directly. Therefore, we propose this indirect approach. In this work, we identified several research fields with relatively low and high success rates. The fields of Schizophrenia, Bladder Cancer, and Colon Cancer could serve as case studies for fields with translational failure as these are decently large research fields (>75 clinical trials included in this research) with relatively low success rates. For translational success, we would suggest analysing Sleep Disorders, Chronic Lymphocytic B-Cell Leukaemia, and Diabetes Mellitus type 2, which are of decent size (>75 clinical trials included in this research) and have high success rates. While this study only analysed a few experimental design parameters in human studies, the results indicate sufficient variation in practice between fields to make the indirect approach viable.

To conclude, this study provides useful insight into the translational success rates across medical research fields. It may serve as a basis for future research into factors which may influence translational success rates and can serve as a basis to prioritize efforts in replacing and reducing animal research.

References

Conflict of interest
The authors of this paper have no conflict of interest to declare.
Acknowledgements
This work was funded by the Federal State of Lower Saxony (R2N) and the Radboud University Medical Center.

Data availability statement
All presented data is available through OSF (doi:10.17605/OSF.IO/EZAN6) as well as GitHub[12].