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Abstract
The validation of new approach methods (NAMs) in toxicology faces significant challenges, 
including the integration of diverse data, selection of appropriate reference chemicals, and lengthy, 
resource-intensive consensus processes. This article proposes an artificial intelligence (AI)-based 
approach, termed e-validation, to optimize and accelerate the NAM validation process. E-vali-
dation employs advanced machine learning and simulation techniques to systematically design 
validation studies, select informative reference chemicals, integrate existing data, and provide 
tailored training. The approach aims to shorten current decade-long validation timelines, using 
fewer resources while enhancing rigor. Key components include the smart selection of reference 
chemicals using clustering algorithms, simulation of validation studies, mechanistic validation 
powered by AI, and AI-enhanced training for NAM education and implementation. A centralized 
dashboard interface could integrate these components, streamlining workflows and providing 
real-time decision support. The potential impacts of e-validation are extensive, promising to accel-
erate biomedical research, enhance chemical safety assessment, reduce animal testing, and drive 
regulatory and commercial innovation. While the integration of AI and machine learning offers sig-
nificant advantages, challenges related to data quality, complexity of implementation, scalability, 
and ethical considerations must be addressed. Real-world validation and pilot studies are crucial to 
demonstrate the practical benefits and feasibility of e-validation. This transformative approach has 
the potential to revolutionize toxicological science and regulatory practices, ushering in a new era 
of predictive, personalized, and preventive health sciences.

Plain language summary
Validating new methods to replace traditional animal testing for chemicals can be slow and costly, 
often taking up to ten years. This article introduces e-validation, an artificial intelligence (AI)-
powered approach designed to speed up and improve this process. By using advanced computer 
techniques, e-validation selects the best chemicals for testing, designs efficient studies, and inte-
grates existing data. This approach would cut validation time and use fewer resources. E-validation 
includes a smart system for choosing test chemicals, virtual simulations to predict study outcomes, 
and AI tools to understand the biological effects of chemicals. It also provides training in these new 
methods. E-validation could accelerate medical research, improve chemical safety, reduce the need 
for animal testing, and help create safer products faster. While promising, this new approach will 
need real-world testing to prove its benefits and address potential challenges.
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“You can never cross the ocean until you have 
the courage to lose sight of the shore.”

Christopher Columbus (1451-1506)

“Progress is made by lazy men looking  
for easier ways to do things.”

Robert A. Heinlein, American science fiction author (1907-1988)
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1  Introduction

Validation of new approach methods (NAMs) to replace animal 
testing faces numerous challenges that hinder their adoption and 
use in regulatory contexts. These include difficulty finding rel-
evant reference data, lack of appropriate reference chemicals, 
complex integration of existing validation data, insufficient or 
inappropriate chemical testing in studies, and resource-intensive, 
lengthy validation processes. These obstacles create a “valley of 
death” between NAM development and regulatory acceptance, 
stifling innovation in human-relevant approaches.

To address these challenges, we propose an artificial intelli-
gence (AI)-based approach called “e-validation” to optimize and 
accelerate NAM validation. This transformative improvement in 
speed, cost, and rigor could finally unlock the long-dormant po-
tential of human-relevant NAMs and integrated testing strategies.

2  Key components of e-validation

E-validation integrates five main AI/ML components to facilitate 
validation (Fig. 1):
I.	 Smart selection of reference chemicals
II.	 Simulation of validation studies
III.	Mechanistic validation: AI-powered assessment of biological 

relevance
IV.	AI-enhanced training: Revolutionizing NAM education and 

implementation
V.	 A centralized dashboard interface guides toxicologists 

through streamlined workflows to coordinate validation stud-
ies by integrating these components

2.1  Smart selection of reference chemicals
Stephen Hawking famously stated, “The greatest enemy of 
knowledge is not ignorance, it is the illusion of knowledge.” Too 
often, we base validation studies on what we believe to know, 
e.g., which substances are the true positives or negatives for a 
given hazard. A critical challenge in validating NAMs is the 
selection of such reference chemicals (Hoffmann et al., 2008; 
Petersen et al., 2021), the benchmarks against which the perfor-

Glossary of terms and abbreviations

3Rs (replacement, reduction, refinement): Ethical princi-
ples aimed at minimizing the use of animals in research.

AI (artificial intelligence): The simulation of human intel-
ligence processes by machines, especially computer systems.

BERT (Bidirectional Encoder Representations from 
Transformers): A powerful NLP model developed by Google 
that uses transformers to achieve high performance on a vari-
ety of language tasks.

Clustering algorithms: Machine learning techniques used to 
group similar data points into clusters for analysis.

Density-based spatial clustering of applications with noise 
(DBSCAN): An unsupervised machine learning algorithm used 
to identify clusters of varying shapes and densities in a dataset.

E-validation: An AI-based approach designed to optimize and 
accelerate the validation of new approach methods (NAMs) in 
toxicology, newly introduced in this article.

Extrapolation: The process of estimating unknown values by 
extending or projecting from known data.

Green toxicology: An approach that integrates principles of 
green chemistry and toxicology to design safer chemicals and 
processes that reduce environmental impact.

K-means clustering: A popular partitioning method used in 
machine learning to divide a dataset into k distinct, non-over-
lapping subsets (clusters).

LLM (large language models): Advanced AI models trained 
on vast amounts of text data, capable of understanding and 
generating human-like language.

ML (machine learning): A type of AI that allows software 
applications to become more accurate at predicting outcomes 
without being explicitly programmed to do so.

Mechanistic validation: An approach to validation that fo-
cuses on understanding the biological pathways and molecular 
events that lead to toxic effects (introduced in Hartung et al., 
2013b).

NAMs (new approach methods): Innovative methods for 
testing chemical safety that aim to replace or reduce animal 
testing.

NLP (natural language processing): A branch of AI that 
helps computers understand, interpret, and respond to human 
language.

PBPK (physiologically based pharmacokinetic) models: 
Computational models that simulate the absorption, distribu-
tion, metabolism, and excretion of chemicals in the body.

qAOP (quantitative adverse outcome pathway): A frame-
work that quantitatively links molecular-level events to ad-
verse health outcomes, aiding in risk assessment and regula-
tory decision-making.

QSAR (quantitative structure-activity relationship): Com-
putational models that predict the effects of chemical structure 
on biological activity.

Simulation studies: Virtual experiments using computational 
models to predict the outcomes of real-world studies.

t-SNE (t-distributed stochastic neighbor embedding): A 
machine learning algorithm for dimensionality reduction, of-
ten used for visualizing high-dimensional data.

UMAP (uniform manifold approximation and projection): 
A dimensionality reduction technique for visualizing complex 
data sets.
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lead to bias in model development. E-validation can address this 
challenge through the implementation of advanced clustering 
algorithms and machine learning (ML) techniques to suggest 
representative reference substances that provide comprehensive 
coverage of diverse toxicological mechanisms. AI is uniquely 
suited to retrieve information on these various properties and op-
timize selection.

mance of a NAM is evaluated. They should fulfill several crite-
ria, which depend on where in the validation process the refer-
ence substance is being used (Tab. 1). 

Traditional approaches to selecting reference chemicals of-
ten rely on convenience in sampling or expert opinion, which 
can lead to biased or incomplete evaluations. Especially when 
the same reference compounds are used over and over, they can 

Fig. 1: The components of 
e-validation

Tab. 1: Advisable properties of the chemicals/substances used in the different validation modules 
Modified from Hoffmann et al. (2008), with permission.

Validation module 
 

1)  Test definition 
 

2)  Within-laboratory 
     reproducibility 

3)  Transferability

 
 
4)  Between-laboratory  
     reproducibility

 
5)  Relevance

 
 
 
7)  Performance  
     standards

Chemical/substance type 
(used in the respective 
module)

Controls 
 

Test chemicals/substances  
with existing reference results 

Test chemicals/substances  
with existing reference results

 
Test chemicals/substances  
with existing reference results

 
Test chemicals/substances  
with existing reference results

 
 
Reference chemicals/
substances

Advisable properties of the chemicals/substances used  
in the respective modulea  

Stability; continuous availability; selective toxicity; safe and practical 
handling; homogeneity; purity; adequate potency within response range  
of test; cost; scientific soundness of choice

Stability; availability; homogeneity; characterization (identity(/(im)purity/
physico-chemical properties/use categories); adequate potency within re-
sponse range of test; cost; scientific soundness of choice; safety information

Stability; availability; homogeneity; characterization (identity/(im)purity/
physico-chemical properties/use categories); adequate potency within re-
sponse range of test; cost; scientific soundness of choice; safety information

Stability; availability; homogeneity; characterization (identity/(im)purity/
physico-chemical properties/use categories); adequate potency within re-
sponse range of test; cost; scientific soundness of choice; safety information

Stability; availability; homogeneity; characterization (identity/(im)purity/
physico-chemical properties/use categories); adequate potency within 
response range of test; cost; scientific soundness of choice; traceability; 
safety information; availability of (high-)quality reference results

Certification, historical result range

a Highest priority properties for a given module are shown in bold. Module 6, the applicability domain, is not included as usually no dedicated 
testing is performed for this module.
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b)	 Physicochemical properties (e.g., logP, solubility, pKa)
c)	 Biological activity profiles (e.g., in vitro assay results, known 

mechanisms of action)
By considering this multidimensional space, the clustering algo-
rithms can identify chemicals that are truly representative of the 
diverse landscape of toxicological mechanisms.

2.1.3  Integration with public databases
The smart selection process in e-validation goes beyond mere 
clustering by integrating with public databases to enhance the 
quality and utility of the selected reference chemicals. This inte-
gration involves:
a)	 Data availability checks: The system queries public databases 

to ensure that sufficient toxicological and chemical property 
data are available for each potential reference chemical.

b)	 Quality assessment: Data quality metrics are applied to prior-
itize chemicals with robust, high-quality data.

c)	 Mechanistic information: Where available, known mecha-
nisms of action are incorporated to ensure coverage of diverse 
toxicological pathways.

d)	 Regulatory relevance: Information on regulatory classifica-
tions and decisions is considered to align the reference set with 
regulatory needs.

This integration allows for the selection of chemicals that are not 
only structurally and mechanistically diverse but also well-char-
acterized and relevant to regulatory contexts.

2.1.4  Balancing diversity and feasibility
While maximizing diversity is crucial, e-validation will have to 
also consider practical constraints in the selection process:
a)	 Availability: The system prioritizes chemicals that are commer-

cially available in sufficient quantities for testing.
b)	 Cost: Extremely expensive chemicals may be deprioritized if 

suitable alternatives exist.
c)	 Handling requirements: Chemicals with extreme storage or 

handling requirements are considered carefully.
d)	 Ethical considerations: For in vivo validation components, 

e.g., refinement methods, chemicals with existing animal data 
are prioritized to minimize new animal testing.

2.1.5  Iterative refinement
The smart selection process is not a one-time event but an iterative 
procedure that can be refined as new data become available:
a)	 Feedback loop: As validation studies progress, performance 

data can be fed back into the selection algorithm to identify ar-
eas where additional reference chemicals may be needed.

b)	 Gap analysis: The system continuously assesses the coverage 
of the chemical space and can suggest additional chemicals to 
fill identified gaps.

c)	 Incorporation of new data: As new chemicals are characterized 
or new public data become available, the reference set can be 
updated to maintain its relevance and comprehensiveness. This 
is particularly relevant for retrospective validations (Hartung et 
al., 2004; Corvi et al., 2008) and hybrids of retro- and prospec-
tive studies.

2.1.1  The importance of diverse reference chemicals
The selection of reference chemicals must ensure testing across 
the NAM’s full applicability domain. This is essential for several 
reasons:
a)	 Comprehensive evaluation: A diverse set of chemicals allows 

for the assessment of the NAM’s performance across a wide 
range of toxicological mechanisms and chemical properties. 
Retrieving a larger pool of possible candidate substances from 
the scientific literature or databases with large language models 
(LLM) broadens choices for the test set.

b)	 Avoiding bias: Overrepresentation of certain chemical classes 
or mechanisms can lead to skewed validation results that do not 
reflect the NAM’s true performance.

c)	 Defining the applicability domain: By testing a diverse set of 
chemicals, the boundaries of the NAM’s applicability can be 
more accurately defined.

d)	 Regulatory acceptance: Demonstrating the NAM’s perfor-
mance across a broad chemical space increases confidence in 
its reliability and relevance for regulatory purposes.

We have demonstrated how AI can facilitate this process based on 
the example of identifying demyelinating reference compounds 
through an extensive systematic literature review (Chesnut et 
al., 2021). This review involved retrieving 5,223 articles from 
PubMed and using the SWIFT-Review (Sciome Workbench for 
Interactive computer-Facilitated Text-mining) to prioritize and 
categorize these articles based on predefined search filters. The 
AI-driven prioritization algorithm sorted the studies, allowing us 
to identify and review 143 relevant studies in detail. This process 
helped in the selection of nine potential test chemicals, of which 
four were chosen for further study in a brain organoid model to 
assess their impact on myelination.

2.1.2  Clustering algorithms for chemical selection
E-validation employs advanced unsupervised learning approach-
es, particularly clustering algorithms, to intelligently select refer-
ence chemicals. These methods include:
a)	 Dimensionality reduction techniques: Methods such as prin-

cipal component analysis (PCA) or t-distributed stochastic 
neighbor embedding (t-SNE) are used to reduce the high-di-
mensional chemical descriptor space to a manageable number 
of dimensions while preserving important variability.

b)	 Density-based spatial clustering: Algorithms like DBSCAN 
(density-based spatial clustering of applications with noise) are 
applied to identify clusters of chemicals with similar properties 
in the reduced dimensional space.

c)	 K-means clustering: This method partitions the chemical space 
into k clusters, where k is chosen to balance between diversity 
and manageability of the reference set.

d)	 Hierarchical clustering: This approach creates a tree-like 
structure of chemical clusters, allowing for flexibility in select-
ing chemicals at different levels of similarity.

These clustering methods consider multiple descriptors simultane-
ously, including:
a)	 Structural features (e.g., molecular weight, number of rings, 

functional groups)
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c)	 Exploring a wider parameter space: Simulations allow for test-
ing of scenarios that might be impractical or impossible in real-
world settings.

d)	 Optimizing study design: Iterative simulations can identify the 
most informative experimental conditions before any actual 
testing begins.

2.2.2  Core components of the simulation 
The simulation approach for validation studies will have to inte-
grate several sophisticated modeling approaches:
a)	 Physiologically based pharmacokinetic (PBPK) models and in 

vitro biokinetics 
	 PBPK models simulate the absorption, distribution, metabo-

lism, and excretion (ADME) of chemicals in the body. Origi-
nally designed to predict actual organ concentrations of drugs 
given to a patient, they have since been adapted to toxicants 
and their environmental exposures, and in reverse for in- 
vitro-to-in-vivo extrapolation (IVIVE) (Bouvier d’Yvoire et  
al., 2007; Tsaioun et al., 2016; Hartung, 2017). Furthermore, 
the concept of PBPK has been applied to the fate of a chemical 
in an in vitro setting as in vitro biokinetics (Blaauboer, 2010; 
Hamon et al., 2015; Proença et al., 2019). These models:
–	 Predict tissue or in vitro concentrations over time
–	 Account for species differences in metabolism and physiol-

ogy
–	 Help translate in vitro concentrations to in vivo doses

b)	 Quantitative structure-activity relationship (QSAR) models
	 QSAR models relate chemical structure to biological activity. 

In the simulation they:
–	 Predict potential toxicity endpoints based on chemical 

structure
–	 Estimate physicochemical properties relevant to toxicity
–	 Help fill data gaps for chemicals with limited experimental 

data
c)	 Systems biology models
	 These models simulate complex biological networks and path-

ways. They are used to:
–	 Predict perturbations in biological systems caused by chem-

ical exposure
–	 Model dose-response relationships at the molecular and cel-

lular levels
–	 Integrate data from multiple biological scales (molecular, 

cellular, tissue, organ)
d)	 Statistical and ML models
	 Advanced statistical and ML techniques are employed to:

–	 Predict variability in responses across different experimen-
tal conditions

–	 Identify potential confounding factors in study designs
–	 Estimate the predictive performance of NAMs under vari-

ous scenarios

2.2.3  Creating virtual validation studies
The simulation should use these components to create compre-
hensive virtual validation studies:
a)	 Exploration of the chemical space 

2.1.6  Transparency and reproducibility
To ensure transparency and reproducibility, e-validation should 
provide detailed documentation of the selection process:
a)	 Selection criteria: All parameters and thresholds used in the 

clustering and selection processes are clearly documented.
b)	 Data sources: The specific databases and versions used are re-

corded.
c)	 Algorithmic details: The exact algorithms and their implemen-

tations are specified.
d)	 Rationale for inclusion: For each selected reference chemical, 

a clear rationale for its inclusion is provided.
This documentation not only supports regulatory acceptance but 
also allows for critical evaluation and improvement of the selec-
tion process over time.

2.1.7  Conclusion
The smart selection of reference chemicals is a cornerstone of the 
e-validation approach to accelerating and improving NAM vali-
dation. By leveraging advanced clustering algorithms, integrat-
ing diverse data sources, and balancing theoretical diversity with 
practical constraints, this component ensures that NAMs are eval-
uated against a truly representative set of chemicals. This compre-
hensive and unbiased evaluation is crucial for building confidence 
in NAMs and ultimately facilitating their adoption in regulatory 
and research contexts. As the field of computational toxicology 
continues to advance, this smart selection process will evolve, in-
corporating new data types and algorithmic approaches to further 
refine the identification of optimal reference chemical sets.

2.2  Simulation of validation studies
Simulation is designed to create virtual validation studies by mod-
eling expected outcomes across a range of variables including 
chemicals, doses, timepoints, and other experimental parameters. 
The idea is to model different study designs similarly to the mod-
eling of clinical trials. This powerful tool allows for rapid iteration 
of proposed study designs, enabling researchers to identify opti-
mal combinations that balance ethical considerations (Hartung, 
2024b), practical constraints, scientific rigor, and probability of 
success, e.g., statistical power.

This will require retrieval and data integration for a given NAM 
from literature and databases to reduce duplication of efforts. AI 
lends itself to such retrieval of publicly available information. 
Natural language processing (NLP) mines textual data to extract 
details on past uses of the NAM.

2.2.1  The need for simulation in validation
Traditional validation studies are often resource-intensive, time-
consuming, and ethically challenging, particularly when animal 
testing is involved. The simulation approach addresses these is-
sues by:
a)	 Reducing animal use: By simulating outcomes, fewer animals 

are needed for actual experiments in case of refinement alterna-
tives.

b)	 Saving time and resources: Virtual studies can be conducted 
much faster and at a fraction of the cost of wet-lab experiments.
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This iterative process allows for rapid exploration of many pos-
sible designs, leading to optimized protocols before any wet-lab 
work begins.

2.2.6  Integration with other e-validation approaches
The simulation is tightly integrated with other e-validation com-
ponents. It incorporates reference chemicals identified by the 
smart selection of reference chemicals and feeds optimized de-
signs into the training for protocol development. Additionally, the 
simulation provides simulated data to the data integration system 
for comparison with real-world results and informs the mecha-
nistic validation process by simulating pathway-level effects. 
Predictive toxicology tools, especially based on AI, can predict 
the outcome especially of in vitro tests because of their simpler 
make-up and often larger homogenous test sets, for example from 
robotized testing. While these in silico tools are not yet accepted 
to substitute for the in vitro test, they can already be used to model 
the likely outcome in a validation study.

2.2.7  Output and interpretation
The simulation promises rich, interpretable outputs. These include 
visualizations of predicted outcomes across various conditions, 
sensitivity analyses showing which parameters most strongly in-
fluence results, and power calculations for different study designs. 
The simulation also provides recommendations for optimal ex-
perimental protocols and estimates of resource requirements for 
different design options.

2.2.8  Limitations and future directions
While powerful, the simulation approach has limitations that are 
important to acknowledge. These include dependence on the qual-
ity of underlying models and data, inability to capture all possible 
biological complexities, and potential for overlooking unexpected 
effects or interactions.

Future developments will have to address these limitations 
through continuous update and refinement of underlying mod-
els, integration of new data types (e.g., multi-omics data) as they 
become available, and development of more sophisticated AI ap-
proaches to capture complex biological interactions.

2.2.9  Conclusion
Simulation represents a paradigm shift in validation study design. 
By creating virtual validation studies, it allows for the exploration 
of a vast experimental space, optimization of study parameters, 
and balancing of ethical, practical, and scientific constraints. This 
not only accelerates the validation process but also enhances its 
rigor and relevance. As computational models continue to im-
prove and integrate more diverse data types, simulation will be-
come an increasingly powerful tool in the validation of NAMs, ul-
timately contributing to more efficient, ethical, and scientifically 
robust toxicological assessments.

2.3  Mechanistic validation: AI-powered 
assessment of biological relevance
Mechanistic validation represents a paradigm shift in the evalu-
ation of NAMs (Hartung et al., 2013b), moving beyond simple 

–	 Simulates outcomes for a wide range of chemicals, in-
cluding those selected by the smart selection of reference 
chemicals

–	 Explores how chemical diversity affects NAM performance
b)	 Dose-response modeling

–	 Models responses across a range of doses, from very low to 
very high

–	 Identifies optimal dose ranges for detecting effects
–	 Predicts potential non-monotonic responses

c)	 Temporal dynamics
–	 Simulates outcomes at multiple timepoints
–	 Helps determine optimal sampling times for detecting ef-

fects
–	 Models potential delayed or long-term effects

d)	 Experimental design optimization
–	 Varies parameters such as sample size, number of replicates, 

and experimental conditions
–	 Identifies designs that maximize statistical power while 

minimizing resource use
e)	 Variability and uncertainty analysis

–	 Incorporates Monte Carlo simulations to account for bio-
logical variability and measurement uncertainty

–	 Helps determine robust sample sizes and replication needs

2.2.4  Balancing constraints
A key promise of validation simulation is its ability to balance 
various constraints:
a)	 Ethical considerations

–	 Minimizes the resources needed by identifying the most in-
formative experiments, with the lowest number of laborato-
ries, test substances and replicates

–	 Prioritizes designs that use the fewest animals or least se-
vere procedures when in vivo studies are necessary for re-
finement alternatives

b)	 Practical constraints
–	 Considers resource limitations (e.g., budget, time, available 

equipment)
–	 Accounts for feasibility of proposed experimental designs 

in real-world laboratory settings
c)	 Scientific rigor

–	 Ensures sufficient statistical power to detect meaningful ef-
fects

–	 Maintains broad applicability domain and chemical diversity
–	 Addresses potential confounding factors and sources of bias

2.2.5  Iterative refinement process
The simulation module enables an iterative approach to study de-
sign:
I.	 Initial design: Based on input parameters and constraints
II.	 Simulation: Run virtual studies using the initial design
III.	 Analysis: Evaluate simulated outcomes against validation 

goals
IV.	 Refinement: Adjust design parameters based on analysis
V.	 Re-simulation: Run updated virtual studies
VI.	 Optimization: Repeat steps III-V until an optimal design is 

achieved
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–	 Plausibility: LLMs can assess the biological plausibility of 
proposed mechanisms based on current scientific under-
standing.

–	 Coherence: AI systems integrate data from multiple sources 
to evaluate the coherence of mechanistic explanations with 
broader biological knowledge.

–	 Experiment: AI can design and simulate experiments to test 
mechanistic hypotheses, prioritizing the most informative 
real-world studies.

–	 Analogy: ML algorithms can identify analogous mechanisms 
across different chemicals or biological systems, enhancing 
our understanding of shared toxicological pathways.

c)	 Knowledge synthesis
	 The application of LLMs to mechanistic validation represents 

a possible quantum leap in our ability to synthesize and inter-
pret toxicological knowledge (Tetko et al., 2022; Lin and Chou, 
2022; Rodríguez-Belenguer et al., 2023; Hartung, 2023a,b; 
Kleinstreuer and Hartung, 2024). LLMs, trained on vast scien-
tific corpora, can:
–	 Summarize the current state of knowledge on specific toxi-

cological mechanisms
–	 Identify gaps in mechanistic understanding
–	 Generate hypotheses about potential mechanisms based on 

available data
d)	 Cross-domain integration
	 LLMs excel at making connections across diverse scientific 

domains. In the context of mechanistic validation, they can:
–	 Link molecular biology insights with toxicological out-

comes
–	 Integrate knowledge from pharmacology, biochemistry, and 

systems biology to inform toxicological mechanisms
–	 Identify potential off-target effects or unexpected pathway 

interactions
e)	 Temporal analysis of scientific progress
	 By analyzing the progression of scientific understanding over 

time, LLMs can:
–	 Trace the evolution of mechanistic concepts in toxicology
–	 Identify emerging trends and shifting paradigms in mecha-

nistic understanding
–	 Predict future directions in mechanistic toxicology research

f)	 Natural language querying of complex datasets
	 LLMs enable researchers to interact with complex toxicologi-

cal datasets using natural language queries. This democratizes 
access to mechanistic insights, allowing even non-specialists to 
explore toxicological mechanisms in depth.

2.3.3  ML for pathway mapping and prediction
Advanced ML techniques contribute to mechanistic validation in 
several ways:
a)	 Pathway reconstruction

–	 Graph neural networks map complex interaction networks 
between genes, proteins, and metabolites involved in toxico-
logical responses (Shah et al., 2021; Baranwal et al., 2020).

–	 Unsupervised learning algorithms identify novel patterns 
and clusters in high-dimensional omics data, potentially re-
vealing new mechanistic insights.

correlation to establish a deeper understanding of biological rel-
evance. The integration of AI, particularly LLMs and ML tech-
niques, into this process marks a revolutionary advance in our 
ability to assess and establish the mechanistic basis of toxicologi-
cal effects.

2.3.1  The imperative for mechanistic understanding
Traditional validation approaches often rely heavily on correla-
tive evidence, comparing NAM results to those from conventional 
animal studies or human data. While useful, this approach has 
limitations:
–	 It may perpetuate biases and errors inherent in traditional meth-

ods.
–	 It provides little insight into the biological mechanisms under-

lying toxicity.
–	 It struggles to account for species differences in toxicological 

responses.
Mechanistic validation addresses these issues by focusing on the 
biological pathways and molecular events that lead to adverse 
outcomes (Leist et al., 2017). This approach aligns with the ad-
verse outcome pathway (AOP) framework and supports the devel-
opment of human-relevant toxicology.

2.3.2  AI-enhanced evidence-based approaches
E-validation leverages AI to supercharge evidence-based ap-
proaches to mechanistic validation. This involves:
a)	 Systematic review automation
	 AI-powered tools can rapidly scan vast amounts of scientific 

literature, extracting relevant information on mechanisms of 
toxicity. This process, which might take human researchers 
months or years, can be accomplished in days or even hours.
–	 NLP algorithms identify and extract key information from 

papers, including experimental methods, results, and con-
clusions.

–	 ML classifiers categorize studies based on quality and rel-
evance.

–	 Network analysis tools map relationships between different 
mechanistic components.

b)	 Bradford-Hill criteria assessment
	 The Bradford-Hill criteria provide a framework for assessing 

causal relationships in biological systems. AI enhances the ap-
plication of these criteria:
–	 Strength of association: ML algorithms quantify the 

strength of associations between molecular events and ad-
verse outcomes across multiple studies.

–	 Consistency: AI tools identify patterns of consistency (or in-
consistency) across diverse data sets and experimental con-
ditions.

–	 Specificity: NLP and ML techniques help determine the 
specificity of molecular interactions and their outcomes.

–	 Temporality: AI-powered time series analysis establishes 
the temporal relationships between events in toxicological 
pathways.

–	 Biological gradient: ML models can detect and characterize 
complex dose-response relationships, including non-mono-
tonic responses.
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Future developments need to address these challenges through:
–	 Development of explainable AI techniques tailored to toxico-

logical mechanisms
–	 Creation of curated, high-quality datasets specifically for train-

ing mechanistic models
–	 Integration of expert knowledge with AI systems through ad-

vanced human-AI collaboration interfaces
–	 Standardization of AI-powered mechanistic validation proto-

cols to enhance reproducibility and regulatory acceptance

2.3.6  Conclusion
The integration of AI, particularly LLM and advanced ML tech-
niques, into mechanistic validation represents a transformative 
advance in toxicology. By rapidly synthesizing vast amounts of 
scientific knowledge, uncovering hidden patterns in complex data-
sets, and generating novel mechanistic hypotheses, AI empowers 
researchers to develop deeper, more nuanced understandings of 
toxicological mechanisms. This AI-enhanced approach to mecha-
nistic validation not only accelerates the development and accept-
ance of NAMs but also paves the way for a more predictive, hu-
man-relevant toxicology. As these technologies continue to evolve, 
they promise to revolutionize our ability to assess chemical safety, 
ultimately leading to more effective protection of human health 
and the environment.

2.4  AI-enhanced training: Revolutionizing 
NAM education and implementation
AI can strongly impact education (Box 1), both the training of par-
ticipating laboratories and their staff in validation studies and the 
dissemination of NAMs after successful validation. This dual im-
pact on laboratory training and method dissemination is a critical 
aspect of the validation process for NAMs. During validation stud-
ies, participating laboratories and their staff undergo intensive train-
ing to ensure consistent and accurate implementation of the new 
methods in ring trials. This process not only enhances the reliability 
of the validation results but also creates a cadre of skilled profes-
sionals who become proficient in these innovative techniques. Con-
sequently, these trained individuals serve as valuable resources for 
the broader scientific community, facilitating the transfer of knowl-
edge and expertise. Following successful validation, the dissemina-
tion of NAMs benefits significantly from this network of trained 
professionals. They act as ambassadors for the new methods, pro-
viding practical insights and troubleshooting advice to other labora-
tories adopting these techniques. This hands-on experience proves 
invaluable in overcoming initial implementation challenges and 
accelerating the widespread adoption of NAMs across different re-
search and regulatory settings. Thus, the validation process serves 
not only to verify the scientific validity of new methods but also as a 
crucial mechanism for building capacity and fostering the diffusion 
of innovative approaches in toxicology and safety assessment.

Box 1: AI’s contributions to education
1.	 Personalized learning: AI enables adaptive learning sys-

tems that can tailor content and pacing to individual stu-
dent needs.

b)	 Predictive modeling of pathway perturbations (Costello and 
Martin, 2018)
–	 Deep learning models trained on large toxicogenomic data-

sets can predict pathway-level effects of new chemicals 
(Tonoyan and Siraki, 2024). 

–	 Ensemble methods combine predictions from multiple 
models to improve robustness and account for uncertainty 
in mechanistic predictions.

c)	 Transfer learning for mechanism generalization
–	 Transfer learning techniques allow models trained on data-

rich toxicological domains to be applied to less-studied ar-
eas, accelerating mechanistic understanding across diverse 
chemical spaces (Luechtefeld and Hartung, 2017).

2.3.4  AI-driven integration of in silico, in vitro, and  
in vivo data to quantitative AOPs (qAOPs)
E-validation’s mechanistic validation uses AI to seamlessly inte-
grate data from diverse sources:
–	 In silico predictions of molecular interactions and pathway ac-

tivations
–	 In vitro high-throughput screening data on molecular and cel-

lular responses
–	 In vivo toxicological outcomes from animal studies and hu-

man data
AI algorithms weigh and synthesize these multi-scale data to 
build comprehensive mechanistic models that span from molecu-
lar events to organism-level outcomes. AI significantly enhances 
the development of qAOPs as pursued in the ongoing ONTOX 
project (Vinken et al., 2021; Corradi et al., 2022; van Ertfelde et 
al., 2023):
–	 ML models quantify relationships between key events in 

AOPs.
–	 Bayesian networks capture uncertainty and variability in AOP 

components.
–	 Reinforcement learning algorithms optimize the structure of 

AOPs based on available data.

2.3.5  Challenges and future directions
While AI brings unprecedented capabilities to mechanistic valida-
tion, challenges remain:
a)	 Interpretability: Ensuring that AI-derived mechanistic insights 

are interpretable and scientifically meaningful.
b)	 Bias mitigation: Addressing potential biases in training data or 

algorithm design that could skew mechanistic understanding. 
In particular, literature extracted information is prone to publi-
cation biases and the prejudice of existing knowledge.

c)	 Uncertainty quantification: Developing robust methods to 
quantify uncertainty in AI-derived mechanistic predictions. 
This calls for probabilistic risk assessment as discussed earlier 
(Maertens et al., 2022, 2024a).

d)	 Regulatory acceptance: Building confidence in AI-powered 
mechanistic validation among regulatory bodies and the broad-
er scientific community. This is being addressed in the Imple-
mentation Moonshot Project for Alternative Chemical Testing 
(IMPACT) (Sillé et al., 2024) and requires multi-stakeholder 
communication (von Aulock et al., 2022). 
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d)	 Regulatory considerations: Training must address the nuanced 
regulatory landscape surrounding NAM adoption.

2.4.2  AI-powered personalized learning paths
E-validation training should employ advanced AI algorithms to 
create personalized learning experiences. Adaptive learning al-
gorithms use ML models to analyze learner performance and be-
havior, dynamically adjusting content difficulty and pacing. Rein-
forcement learning algorithms optimize the sequence of training 
modules for each individual, maximizing knowledge retention 
and skill development. NLP for content customization can ana-
lyze learner queries and responses to tailor explanations and ex-
amples to individual comprehension levels. Sentiment analysis of 
learner feedback continuously refines and improves course con-
tent. AI-driven skill gap analysis uses predictive models to assess 
learner profiles against required competencies for specific NAMs, 
identifying personalized skill gaps. Automated recommendation 
systems suggest targeted learning resources to address individual 
knowledge deficits.

2.4.3  Immersive and interactive learning environments
AI technologies enable the creation of highly engaging and effec-
tive learning environments. Virtual and augmented reality (VR/
AR) simulations can use AI-powered VR environments to simu-
late complex laboratory procedures, allowing risk-free practice 
of NAM techniques. AR overlays provide real-time guidance 
and information during hands-on training sessions. AI-enhanced 
interactive case studies can use generative AI to create diverse, 
realistic case studies that adapt based on learner decisions. ML 
algorithms can analyze learner approaches to problem-solving, 
providing personalized feedback and suggestions. Intelligent tu-
toring systems can provide 24/7 support, answering questions and 
guiding learners through complex concepts. Natural language un-
derstanding allows these systems to engage in nuanced, context-
aware dialogues with learners. While this is still visionary at this 
point, AI-facilitated learning is rapidly progressing, and this over-
all progress can be leveraged for this specific purpose by using the 
increasingly available foundational models and platforms.

2.4.4  Continuous learning and performance support
The training opportunities extend beyond initial education to 
provide ongoing support. AI-powered knowledge reposito-
ries can use NLP-driven search engines to allow researchers to 
quickly find relevant information from vast databases of NAM 
literature and protocols. ML algorithms continuously update 
these repositories with the latest research findings and best prac-
tices. Predictive maintenance of skills uses AI models to track 
individual skill decay over time, proactively recommending 
refresher training. Personalized microlearning modules deliver 
targeted skill reinforcement based on predicted knowledge gaps. 

2.	 Intelligent tutoring: AI-powered tutoring systems like 
Khanmigo1 can provide personalized, interactive learn-
ing experiences using inquiry-based approaches.

3.	 Writing assistance: AI tools can serve as writing assis-
tants, editors, and thought partners to enhance students’ 
writing processes.

4.	 Accessibility: AI has potential to assist students with disa-
bilities, support universal design principles, and enhance 
curriculum accessibility.

5.	 Assessment: AI can facilitate new forms of assessment, 
enabling more continuous evaluation of student learning.

6.	 Administrative support: AI can help automate adminis-
trative tasks, freeing up teacher time for instruction.

7.	 Data-driven insights: AI analytics can provide educators 
with deeper insights into student performance and learn-
ing patterns.

8.	 Preparation for future: Exposure to AI tools prepares stu-
dents for a workforce increasingly shaped by these tech-
nologies.

9.	 Expanded educational resources: AI enables creation of 
new learning materials and experiences, like interactive 
simulations.

The training approach of e-validation represents a paradigm shift 
in how researchers and regulators are educated about NAMs and 
prepared to generate high-quality validation data. By leveraging 
cutting-edge AI technologies, this transcends traditional training 
approaches and can offer personalized, adaptive, and immersive 
learning experiences that are crucial for the successful implemen-
tation of NAMs in toxicology and safety assessment.

2.4.1  The imperative for advanced NAM training
As toxicology transitions from traditional animal-based methods 
to innovative NAMs, there is an urgent need for comprehensive 
and effective training. This can be evidenced by the enormous up-
take of our COURSERA classes on Toxicology for the 21st Cen-
tury2 and Evidence-based Toxicology3 (von Aulock et al., 2022), 
for which more than 20,000 active learners have enrolled over the 
last six years. The complexity and diversity of NAMs, coupled 
with the rapid pace of technological advancement, create unique 
educational challenges:
a)	 Diverse learner backgrounds: Trainees come from varied 

scientific disciplines, each requiring tailored educational ap-
proaches.

b)	 Rapidly evolving methodologies: NAMs are continually re-
fined and updated, necessitating agile training solutions.

c)	 Complex data interpretation: Many NAMs generate high-di-
mensional data that require sophisticated analytical skills.

1 https://kodexolabs.com/ai-in-education/ 
2 https://www.coursera.org/learn/toxicology-21 
3 https://www.coursera.org/learn/evidence-based-toxicology 

https://kodexolabs.com/ai-in-education/
https://www.coursera.org/learn/toxicology-21
https://www.coursera.org/learn/evidence-based-toxicology
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vanced AI-human hybrid teaching systems that seamlessly blend 
AI capabilities with human expertise.

2.4.8  Conclusion
AI-enhanced training for e-validation represents a quantum leap 
in preparing researchers and regulators for the era of NAMs 
in toxicology. By harnessing the power of AI, this can deliver 
personalized, immersive, and continuously adaptive learning 
experiences that are essential for mastering the complexities of 
NAMs at scale. Benjamin Franklin put it nicely: “Tell me and I 
forget. Teach me and I remember. Involve me and I learn.” The 
integration of AI will not only accelerate the learning process 
but also ensure that training remains current with the rapidly 
evolving field of NAMs. As these technologies continue to ad-
vance, the training will play a pivotal role in building a skilled 
workforce capable of fully leveraging NAMs to revolutionize 
toxicology and safety assessment. This AI-driven educational 
paradigm is not just about transferring knowledge but about cul-
tivating a new generation of innovative, adaptable, and critically 
thinking scientists who will drive the future of human-relevant 
toxicology.

2.5  A centralized dashboard interface guides  
toxicologists through streamlined  
workflows to coordinate validation studies by  
integrating the components
The e-validation approach should be anchored by a centralized 
dashboard interface that serves as the command center for co-
ordinating and executing validation studies. This intuitive, AI-
powered interface can seamlessly integrate all the contributions 
of e-validation, providing toxicologists with a streamlined, end-
to-end workflow management system. Ideally, this is combined 
with centralized institutions for the strategic development of 
safety sciences (Busquet and Hartung, 2017) or platforms like 
the Integrated Chemical Environment (ICE)4 (Bell et al., 2017, 
2020). The dashboard offers real-time visualization of study 
progress, automated data quality checks, and intelligent deci-
sion support based on ML analysis of ongoing results. It allows 
researchers to effortlessly navigate between different aspects of 
the validation process, from selecting reference chemicals and 
designing experiments to analyzing data and generating reports. 
The interface adapts to user roles and preferences, presenting the 
most relevant information and tools for each stage of the valida-
tion process. Advanced analytics and predictive modeling capa-
bilities are embedded within the dashboard, enabling researchers 
to forecast study outcomes, identify potential bottlenecks, and 
make data-driven decisions to optimize the validation process. 
Furthermore, the dashboard facilitates collaboration by provid-
ing shared workspaces, version control for protocols and data, 
and integrated communication tools. Security features ensure 
data integrity and compliance with regulatory requirements. By 
centralizing control and providing a holistic view of the entire 
validation process, this intelligent dashboard significantly re-

Real-time performance support utilizes AR systems to provide 
in situ guidance during actual NAM implementation, reducing 
errors and enhancing data quality. AI-powered chatbots offer im-
mediate troubleshooting support for common issues encountered 
during NAM execution.

2.4.5  Collaborative learning and community building
AI facilitates and enhances collaboration among NAM practi-
tioners. For example, intelligent discussion forums can employ 
NLP algorithms to moderate and categorize forum discussions, 
ensuring relevant information is easily accessible. Recommen-
dation systems connect learners with similar interests or com-
plementary expertise. AI-facilitated virtual workshops can use 
ML algorithms to optimize participant groupings for virtual 
breakout sessions. Real-time speech analysis provides facilita-
tors with insights into participant engagement and understand-
ing. Crowd-sourced knowledge validation involves AI systems 
aggregating and analyzing community-contributed content, 
validating its accuracy and relevance. Blockchain technol-
ogy can ensure the integrity and traceability of crowd-sourced 
NAM knowledge.

2.4.6  Assessment and certification
The training can employ AI to ensure rigorous and fair assess-
ment of NAM competencies. Adaptive testing uses AI-powered 
tests that adjust question difficulty based on learner responses, 
providing more accurate assessments of competency. ML mod-
els analyze response patterns to detect potential misconceptions 
or knowledge gaps. Performance-based assessment utilizes com-
puter vision and ML to evaluate learner performance in virtual 
lab simulations, assessing practical skills alongside theoretical 
knowledge. NLP analyzes written reports and oral presentations 
for comprehensive evaluation of communication skills crucial 
for NAM implementation. Continuous competency monitoring 
involves AI models tracking on-the-job performance metrics, pro-
viding ongoing assessment of NAM proficiency. Predictive ana-
lytics flag potential skill degradation, triggering targeted interven-
tions to maintain competency.

2.4.7  Future directions
There might be at some point ethical considerations and chal-
lenges, which include ensuring data privacy while leveraging 
learner data for personalized training, mitigating potential algo-
rithmic biases that could disadvantage certain groups of learners, 
maintaining transparency about how AI is used in training and 
assessment, and balancing AI-driven automation with human ex-
pertise in training delivery and evaluation.

As AI technologies continue to evolve, the training aspects will 
expand its capabilities. This includes incorporating “emotion AI” 
to create more empathetic and responsive learning experiences, 
leveraging “quantum ML” to handle increasingly complex NAM 
datasets and simulations, exploring brain-computer interfaces 
for enhanced learning and skill acquisition, and developing ad-

4 https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ice/ice 
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sional chemical spaces. This allows for more intuitive and effec-
tive selection of reference chemicals that span the relevant chemi-
cal and biological diversity needed for comprehensive validation 
of NAMs.

3.3  Natural language processing and knowledge  
extraction
NLP techniques7 have emerged as powerful tools for unlocking 
valuable information from the vast scientific literature and un-
structured data sources. NLP is enabling computers to understand 
and manipulate human language, allowing understanding docu-
ment contents, extracting information, categorizing and organ-
izing documents. They are rule-based, probabilistic (including 
statistical and neural network-based) ML methods. Advanced 
NLP models, such as BERT (bidirectional encoder representa-
tions from transformers)8 and its derivatives, have demonstrated 
remarkable capabilities in understanding context and extracting 
relevant information from complex scientific texts (Kang et al., 
2022). BERT is a language model leveraging transformer archi-
tecture for superior performance in language understanding intro-
duced in 2018 by Google, which sparked the rise of LLMs. These 
models can be fine-tuned for specific toxicological domains, ena-
bling the automated extraction of experimental protocols, results, 
and mechanistic insights from published studies.

The ability of NLP to parse and synthesize information from 
diverse sources addresses a critical challenge in toxicology: the 
integration of fragmented knowledge across multiple studies and 
data types. By automating the process of literature review and data 
extraction (Tonoyan and Siraki, 2024), NLP promise to signifi-
cantly accelerate the compilation of existing evidence relevant to 
NAM validation, reducing the risk of overlooking crucial infor-
mation and enabling more comprehensive assessments of NAM 
performance.

3.4  Iterative modeling and optimization
The application of iterative modeling techniques to optimize re-
source allocation in validation studies represents a significant 
advancement over traditional approaches. Techniques such as 
Bayesian optimization, reinforcement learning, and evolutionary 
algorithms enable the efficient exploration of vast experimental 
design spaces to identify optimal configurations that balance sci-
entific rigor with practical constraints.

These methods can dynamically adjust experimental parameters 
based on accumulated data, allowing for adaptive study designs 
that maximize information gain while minimizing resource ex-
penditure. For example, active learning algorithms can intelligent-
ly select the most informative experiments to perform next, based 
on the current state of knowledge and uncertainty. This approach 
is particularly valuable in the context of NAM validation, where 
the space of possible experiments is often too large to explore ex-
haustively.

duces the cognitive load on researchers, minimizes errors, and 
accelerates the overall timeline of validation studies, ultimately 
fast-tracking the adoption of NAMs in toxicology.

3  Scientific rationale

The scientific foundation for e-validation is built upon a robust 
body of evidence demonstrating the power of AI and advanced 
modeling approaches to revolutionize scientific work5,6, which is 
applied here to the validation process for NAMs in toxicology. 
This rationale is supported by several key pillars of modern com-
putational science and data analytics.

3.1  Predictive simulations and complex systems  
modeling
Predictive simulations of the complex dynamics between chemi-
cal exposures, biological mechanisms, and toxicological out-
comes represent powerful tools for understanding whether NAMs 
correctly predict human toxicity. These simulations leverage ad-
vanced computational techniques such as physiologically based 
PBPK modeling, systems biology approaches, and ML algorithms 
to capture the intricacies of biological responses to chemical per-
turbations. By integrating diverse data types – from molecular 
interactions to organ-level effects – these models can provide a 
holistic view of toxicological processes that is difficult to achieve 
with traditional experimental methods alone.

Recent advancements in deep learning and artificial neural net-
works have significantly enhanced our ability to model complex 
biological systems. For instance, graph neural networks have 
shown remarkable success in predicting protein-protein interac-
tions and drug-target binding, which are crucial for understanding 
toxicological mechanisms. Moreover, the integration of multi-om-
ics data into these models allows for a more comprehensive rep-
resentation of the biological state, enabling more accurate predic-
tions of toxicity across diverse chemical spaces.

3.2  Advanced clustering and chemical space exploration
The application of advanced clustering algorithms to the challenge 
of selecting representative chemical subsets has demonstrated sig-
nificant potential in enhancing the efficiency and effectiveness of 
validation studies. Techniques such as k-means clustering, hierar-
chical clustering, and DBSCAN have been successfully applied to 
large chemical databases to identify diverse yet representative sets 
of compounds. These methods consider multiple dimensions of 
chemical properties simultaneously, including structural features, 
physicochemical attributes, and known biological activities.

Recent innovations in dimensionality reduction techniques, 
such as t-distributed stochastic neighbor embedding (t-SNE) and 
uniform manifold approximation and projection (UMAP), have 
further enhanced our ability to visualize and analyze high-dimen-

5 Fink, F., Hartung, T., Lee, S. Y. et al. (2024). AI for scientific discovery pioneering new frontiers in knowledge. In World Economic Forum, Top 10 Emerging Technologies 
of 2024, Flagship Report. https://www.weforum.org/publications/top-10-emerging-technologies-2024/in-full/1-ai-for-scientific-discovery/
6 http://wef.ch/aiforscience 
7 https://www.ibm.com/topics/natural-language-processing 
8 https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270 

https://www.weforum.org/publications/top-10-emerging-technologies-2024/in-full/1-ai-for-scientific-discovery/ 
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3.5.7  Conclusion
In conclusion, the scientific rationale underlying e-validation is 
grounded on the proven capabilities of AI and advanced modeling 
techniques to address the complex scientific challenges translat-
able to NAM validation. By integrating these powerful computa-
tional approaches, e-validation promises a transformative solution 
to accelerate the development, validation, and adoption of inno-
vative, human-relevant methods in toxicology. Such a platform 
could not only enhance the efficiency and rigor of the validation 
process but also paves the way for a more predictive and mecha-
nistically informed approach to chemical safety assessment.

4  Novelty

The suggested e-validation approach represents a paradigm shift 
in the approach to validating NAMs in toxicology, marking a sig-
nificant departure from traditional practices. While AI and ML 
techniques have been increasingly incorporated into the devel-
opment of NAMs themselves, the application of these advanced 
computational approaches to strategize and optimize the valida-
tion process is a novel concept. This innovation addresses a criti-
cal gap in the current toxicological landscape, where the valida-
tion of new methods often remains a bottleneck in their adoption 
and regulatory acceptance.

4.1  Current paradigm and its limitations
The existing paradigm for designing and executing validation 
studies largely relies on trial-and-error approaches, expert opin-
ion, and historical precedent (Hartung and Leist, 2008; Leist et 
al., 2008). This traditional methodology suffers from several key 
limitations:
a)	 Inefficiency: The trial-and-error approach often leads to sub-

optimal use of resources, with multiple iterations required to 
refine study designs.

b)	 Limited scope: Human experts, while knowledgeable, are con-
strained in their ability to consider vast amounts of data and 
complex interrelationships simultaneously.

c)	 Bias: Historical precedents may perpetuate biases and outdated 
practices, potentially limiting innovation in study design. Espe-
cially the bias toward animal data as point of reference repre-
sents a major limitation.

d)	 Lack of adaptability: Traditional approaches struggle to keep 
pace with the rapid evolution of NAMs and the increasing 
complexity of toxicological data.

4.1.1  E-validation’s novel approach
In contrast, e-validation suggests a comprehensive approach that 
harnesses the power of simulation, optimization, and ML to chart 
efficient validation trajectories. This approach is complemented 
by integrated data retrieval and customized learning modules, cre-
ating a comprehensive ecosystem for NAM validation. The novel-
ty of e-validation lies not just in its use of advanced technologies, 
but in its holistic, data-driven approach to reimagining the entire 
validation process. Specifically novel aspects include:

3.5  E-validation’s integration of AI pillars
A seamless integration of the AI pillars within e-validation would 
create a synergistic approach that is uniquely positioned to trans-
form the validation process for NAMs. The combination of these 
technologies addresses multiple challenges simultaneously:

3.5.1  Comprehensive chemical space coverage
By leveraging advanced clustering algorithms for smart chemi-
cal selection, e-validation ensures that validation studies cover a 
meaningful diversity of chemical structures and properties. This 
approach not only enhances the robustness of validation out-
comes but also helps define the applicability domain of NAMs 
more precisely. The pruning of redundant chemicals through in-
telligent selection algorithms optimizes resource utilization with-
out compromising the breadth of validation.

3.5.2  Balancing rigor and feasibility
The virtual simulation capabilities of e-validation allow for the 
rapid exploration of numerous experimental scenarios, identify-
ing those that strike an optimal balance between scientific rigor 
and practical feasibility. This approach enables researchers to an-
ticipate potential challenges, optimize study designs, and make 
informed decisions about resource allocation before initiating 
costly and time-consuming wet-lab experiments.

3.5.3   Knowledge integration
The text mining and NLP components of e-validation mitigate 
duplicate efforts by efficiently extracting and synthesizing rel-
evant information from existing literature and databases. This 
not only saves time and resources but also ensures that validation 
studies extend the current state of knowledge rather than inad-
vertently repeating work that has already been done.

3.5.4  Quality assurance in data generation
The training modules and guided workflows provided by e-valida-
tion establish an optimal infrastructure for generating high-quality 
validation data. By standardizing protocols, providing interactive 
training, and offering real-time guidance, these components help 
ensure consistency and reliability in data generation across differ-
ent laboratories and studies.

3.5.5  Advanced data interpretation
E-validation’s AI-powered analytics tools facilitate sophisticated 
interpretation of complex validation data. ML algorithms can 
identify subtle patterns and relationships that might be missed by 
traditional statistical approaches, leading to more nuanced and 
comprehensive assessments of NAM performance.

3.5.6  Adaptive and iterative validation strategies
The platform’s ability to continuously learn and adapt based on 
incoming data enables the implementation of iterative validation 
strategies. This dynamic approach allows for real-time optimiza-
tion of study designs and resource allocation, maximizing the ef-
ficiency and effectiveness of the validation process.
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7.	 Bayesian methods
–	 Increasingly used in clinical trials to incorporate prior 

information.
–	 Could be valuable for NAM validation to leverage 

existing knowledge about similar assays or chemical 
classes.

8.	 Biomarker validation
–	 Clinical biomarker validation has established frame-

works that could inform NAM validation approaches 
(Hartung et al., 2024).

9.	 Benefit-risk assessment
–	 Balancing efficacy and safety is key in clinical trials.
–	 For NAMs, balancing sensitivity, specificity, and other 

performance metrics may be analogous.

This aspect of e-validation allows researchers to explore a vast 
space of possible study designs and outcomes before commit-
ting resources to actual experiments. The novelty lies in the in-
tegration of multi-scale models, where e-validation combines 
PBPK models, systems biology networks, and ML predictors 
to create comprehensive simulations of toxicological processes. 
Unlike static simulation approaches, e-validation would employ 
reinforcement learning algorithms for dynamic optimization, 
continuously refining the validation strategy by adjusting exper-
imental parameters based on simulated outcomes. Additionally, 
advanced Bayesian methods are used for uncertainty quantifica-
tion, providing a more nuanced understanding of potential risks 
and benefits associated with different validation approaches.

b) AI-driven chemical selection
The selection of representative chemicals using clustering algo-
rithms that balance diversity and feasibility is a novel applica-
tion of AI in validation planning. This approach goes beyond 
simple structural or property-based clustering by employing 
multi-objective optimization. E-validation could use evolution-
ary algorithms to simultaneously optimize for chemical diver-
sity, data availability, cost, and experimental feasibility. The 
platform could incorporate adaptive sampling, using active 
learning techniques to iteratively refine the selection of chemi-
cals based on accumulated data and model performance, ensur-
ing optimal coverage of the chemical space relevant to the NAM 
being validated. Unlike traditional approaches that focus solely 
on chemical properties, e-validation incorporates toxicological 
mode of action information into the clustering process, ensuring 
that selected chemicals are mechanistically relevant to the NAM 
under evaluation. This is similar to the information economics 
we discussed earlier in this series (Maertens et al., 2022), which 
means that AI can suggest what to test and what not based on 
the informative value and whether this really affects the overall 
assessment.

a) Prospective simulation of validation outcomes
The use of design of experiments (DoE) and systems modeling to 
prospectively simulate validation outcomes represents a ground-
breaking approach in toxicology, similar to the modeling of clini-
cal studies (Abbas et al., 2006; Malikova, 2016; Sverdlov et al., 
2019)9. There are some interesting parallels between modeling 
clinical trials and modeling validation studies for NAMs (Box 
2). The key differences are that NAM validation typically does 
not involve human subjects and aims to predict animal or human 
toxicology results rather than clinical outcomes. However, many 
of the statistical and modeling approaches could be adapted from 
the clinical trial domain to enhance NAM validation studies.

Box 2: Opportunities to translate clinical trial 
optimization to the optimization of NAM validation 
1.	 Study design optimization

–	 For clinical trials, optimal designs aim to maximize sta-
tistical power and efficiency while minimizing sample 
size and costs.

–	 For NAM validation, optimal designs could similarly 
aim to maximize the information gained about a meth-
od’s performance while minimizing resources required.

2.	 Adaptive designs
–	 Adaptive clinical trial designs allow modifications 

based on interim data.
–	 NAM validation could potentially use adaptive ap-

proaches to refine protocols or add/remove test com-
pounds as data is collected.

3.	 Simulation studies
–	 Clinical trial simulations are used to evaluate different 

design options and statistical analysis plans.
–	 Simulations could be valuable for NAM validation to 

explore different validation strategies and predict out-
comes.

4.	 Dose-response modeling
–	 Modeling dose-response relationships is crucial in 

many clinical trials.
–	 For NAMs, modeling concentration-response relation-

ships is often important and could leverage similar sta-
tistical approaches.

5.	 Population PK/PD modeling
–	 Population approaches model variability between sub-

jects in clinical trials.
–	 For NAMs, modeling variability between experimental 

runs or laboratories could be analogous.
6.	 Multi-arm multi-stage designs

–	 Allow efficient comparison of multiple treatments in 
clinical trials.

–	 Could be adapted to compare multiple NAM variants 
or evaluate NAMs across multiple endpoints.

9 https://trialkey.ai/blog/optimizing-clinical-trial-design-with-ai/ 
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sents a novel approach to addressing skill deficiencies in the toxi-
cology community. The vision is that AI creates adaptive learning 
paths, personalizing learning trajectories for each user by dynami-
cally adjusting content difficulty and focus based on individual 
performance and learning styles. For this purpose, e-validation 
would need to incorporate cutting-edge virtual reality (VR) tech-
nology to provide immersive, hands-on training experiences for 
complex NAM protocols, a first in toxicology education. Unlike 
traditional training approaches, e-validation could employ contin-
uous competency assessment through ongoing, AI-driven evalu-
ations to ensure sustained competency in NAM implementation 
and data interpretation.

4.1.2  Paradigm shift in validation
E-validation heralds a new era where validation transitions from 
being a reluctantly tolerated Achilles heel to a strategically em-
braced core competency. This shift is characterized by:
a)	 Proactive design: Moving from reactive troubleshooting to 

proactive, data-driven study design.
b)	 Continuous optimization: Replacing fixed protocols with dy-

namically optimized validation strategies.
c)	 Integrated knowledge management: Shifting from siloed data 

to a holistic, interconnected knowledge ecosystem.
d)	 Predictive power: Transitioning from descriptive to predictive 

approaches in assessing NAM performance.
In conclusion, e-validation represents a revolutionary approach 
to NAM validation, introducing novel technologies and meth-
odologies that promise to transform the field of toxicology. By 
reimagining validation as a data-driven, AI-powered process, e-
validation has the potential to accelerate the adoption of innova-

c) Transparent data integration
E-validation’s approach to referencing extensively documented 
public data resources for transparency is novel in its scale and 
implementation. The platform should employ advanced NLP 
techniques for automated data curation, automatically extracting, 
validating, and integrating data from diverse public sources to en-
sure up-to-date and comprehensive coverage. E-validation might 
implement a novel blockchain-based system for data provenance, 
tracking the origin and transformations of all data used in valida-
tion studies, ensuring unprecedented levels of transparency and 
reproducibility. To address data privacy concerns, e-validation 
pioneers the use of federated learning techniques in toxicology, 
allowing models to be trained on distributed datasets without cen-
tralizing sensitive data.

d) Intelligent literature mining
The platform’s approach to datamining published literature goes 
beyond simple keyword searches or citation analysis. E-validation 
needs to employ advanced NLP models capable of semantic un-
derstanding, extracting relevant information even when it is not 
explicitly stated by understanding context and nuance in scientific 
texts. By analyzing patterns across large corpora of toxicological 
literature, e-validation can generate novel hypotheses about po-
tential validation strategies or unexplored mechanisms of toxicity. 
The platform could also automatically identify and codify experi-
mental designs from published studies, building a knowledge base 
of validation strategies that can inform future studies.

e) Personalized e-learning solutions
E-validation’s provision of bespoke e-learning solutions repre-

Fig. 2: The potential impact of e-validation
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of thousands of chemicals currently in use but lacking compre-
hensive safety data. Validated NAMs could also provide new tools 
for assessing the combined effects of chemical mixtures, address-
ing a major gap in current risk assessment practices. 

b)  Emerging contaminants
Fast-tracked validation of NAMs could enable quicker assessment 
of emerging environmental contaminants, such as micro- and na-
noplastics (Maertens and Hartung, 2019), allowing for timelier 
regulatory and remediation responses. Additionally, validated in 
silico models (Hartung, 2023a; Kleinstreuer and Hartung, 2024) 
could help predict the potential hazards of new chemicals before 
they enter the environment, supporting green chemistry initiatives 
(Crawford et al., 2017; Maertens and Hartung, 2018; Maertens et 
al., 2021, 2024b).

c)  Climate change and health
As climate change alters environmental conditions, rapidly vali-
dated NAMs could provide agile tools for assessing new and 
evolving health risks, from altered pathogen distributions to 
changing air pollution profiles. The many connections between 
climate change and health effects of chemicals are often over-
looked (Box 3). In summary, climate change is likely to exacer-
bate many existing chemical-related health risks while also creat-
ing new exposure scenarios and vulnerabilities that will require 
proactive assessment and management strategies10,11,12  (Boxall et 
al., 2009; Balbus et al., 2013). The complex interactions between 
climate factors and chemical pollutants pose significant challeng-
es for protecting public health in a changing environment.

Box 3: Connections between climate change 
and the health impacts of chemicals
1.	Altered chemical behavior and exposure
	 Climate change affects the fate and transport of chemicals 

in the environment through changes in temperature, pre-
cipitation, humidity, wind conditions, and erosion. This can 
lead to increased release and mobility of chemicals, poten-
tially increasing human exposure.

2.	Increased chemical use
	 Climate change may lead to increased use of pesticides and 

fertilizers due to changes in agriculture and pest popula-
tions.

	 There may be greater use of certain chemicals for adapta-
tion purposes (e.g., new pest control methods).

3.	New exposure pathways
	 Changes in human behavior due to climate change (e.g., 

dietary changes) can affect how people come into contact 
with contaminated air, water, and food.

4.	Enhanced toxicity
	 Climate-related stressors like heat stress and air pollution  

tive, human-relevant methods in toxicology, ultimately leading 
to more efficient and effective protection of human health and 
the environment.

5  Potential impact

The potential impact of e-validation extends far beyond the 
realm of toxicology, promising to revolutionize biomedical re-
search, environmental health, and public safety (Fig. 2). By 
radically condensing validation timelines and reducing associ-
ated costs, this innovative approach has the potential to catalyze 
transformative changes across multiple sectors and disciplines.

5.1  Acceleration of biomedical research
E-validation’s promise to expedite the validation of NAMs 
could have a profound impact on biomedical research across a 
wide spectrum of diseases and health conditions. In the field of 
drug discovery and development, validated NAMs could enable 
rapid, high-throughput screening of potential drug candidates, 
significantly reducing the time and cost of early-stage drug dis-
covery and frontloading safety assessments. By providing more 
human-relevant data, validated NAMs could increase the suc-
cess rate of drug candidates in clinical trials, addressing the high 
attrition rates that currently plague the pharmaceutical industry. 
Additionally, NAMs based on human cells and tissues could fa-
cilitate the development of personalized therapies, taking into 
account individual genetic and physiological variations.

In terms of disease modeling, validated NAMs, particularly 
those involving 3D organoids and microphysiological systems, 
could provide unprecedented insights into complex diseases 
such as cancer, neurodegenerative disorders, and autoimmune 
conditions (Marx et al., 2016, 2020; Roth et al., 2019). For rare 
diseases where patient numbers are limited, validated NAMs 
could provide crucial tools for understanding disease mecha-
nisms and testing potential therapies.

In the field of regenerative medicine, accelerated validation of 
NAMs could fast-track the development and safety assessment 
of stem cell-based therapies for a range of conditions, from spi-
nal cord injuries to heart disease. Validated in vitro models could 
accelerate the development of engineered tissues and organs for 
transplantation, addressing critical shortages in donor organs. 
These advancements could potentially revolutionize the field of 
regenerative medicine, offering new hope for patients with pre-
viously untreatable conditions.

5.2  Systematic identification of environmental hazards
E-validation’s impact on environmental health and safety could be 
transformative:

a) Chemical safety assessment
Rapid validation of NAMs could enable the systematic screening 

10 https://assets.publishing.service.gov.uk/media/65705ea1739135000db03bc1/HECC-report-2023-chapter-12-chemicals.pdf 
11 https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_dialogue/%40lab_admin/documents/publication/wcms_887111.pdf 
12 https://minamataconvention.org/climatechange-report/ 
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integrative, systems-level understanding of human biology and pa-
thology, i.e., towards human-centric models based on human cells 
and tissues. This transition provides a more directly relevant con-
text for studying human health and disease, potentially leading to 
more accurate and translatable research outcomes.

In the realm of systems toxicology (Sauer et al., 2015), NAMs 
enable the study of toxicological effects as perturbations of com-
plex biological networks rather than isolated endpoints. This ho-
listic approach allows for a more comprehensive understanding 
of how substances interact with biological systems, capturing the 
intricate interplay between different physiological processes and 
pathways.

Furthermore, the field of computational biology is significantly 
enhanced by validated NAMs, which provide rich datasets for 
developing and refining computational models of human biology 
and toxicology. These data-driven models can simulate complex 
biological processes, predict toxicological outcomes, and gener-
ate hypotheses for further research, all while reducing the need 
for animal testing. They offer the potential for more relevant, effi-
cient, and ethical research practices that could accelerate scientific 
discovery and improve human health outcomes.

This transition could catalyze the development of network med-
icine approaches, where diseases are understood as perturbations 
of complex biological networks rather than isolated molecular 
events. Ultimately, this enables the creation of digital twins (Sillé 
et al., 2024). NAMs based on human embryonic tissues and stem 
cells could revolutionize our understanding of human develop-
ment and developmental toxicity, areas where animal models have 
significant limitations.

In the realm of precision health, human-derived NAMs could 
capture the genetic and physiological diversity of human popula-
tions more effectively than animal models, supporting the devel-
opment of precision health strategies. Especially, induced pluri-
potent stem cell (iPSC)-based models allow the comparison of 
individual patients’ genetic backgrounds toward chemical expo-
sure (Suciu et al., 2023; Butera et al., 2023). Some NAMs, such as 
organs-on-chips, could enable long-term studies of an individual’s 
cellular and tissue responses, providing insights into chronic dis-
eases and aging processes (Smirnova et al., 2018).

Furthermore, validated NAMs could provide crucial tools for 
exposome research, allowing for the assessment of the totality of 
environmental exposures (the exposome) and their health impacts 
throughout an individual’s lifetime. This is particularly important 
in the context of a possible Human Exposome Project (Sillé et al., 
2020, 2024; Hartung, 2023a; Sillé and Hartung, 2024). These ad-
vancements collectively represent a significant paradigm shift to-
wards human biology-focused science, promising more relevant 
and accurate insights into human health and disease.

5.4  Implications for translational science
For translational scientists, validated NAMs offer several sig-
nificant advantages. By facilitating and accelerating validation, 
e-validation lends itself also to test methods that do not formal-
ly require validation, but where important product development 
decisions profit from tool validation. In terms of improved com-

	 may increase human vulnerability to the toxic effects of 
chemicals.

5.	Indirect health effects
	 Climate change can increase chemical contamination of 

food and water supplies, indirectly impacting human health.
6.	Industrial accidents
	 Extreme weather events linked to climate change may in-

crease the risk of chemical releases from industrial sites 
and waste facilities.

7.	Impacts on vulnerable populations
	 Workers in certain industries (e.g., agriculture, construc-

tion) and people in low/middle-income countries may face 
disproportionate risks from the combined effects of climate 
change and chemical exposures.

8.	Challenges for risk assessment
	 Current chemical risk assessment and management prac-

tices may need to be updated to account for how climate 
change alters exposure patterns and human vulnerabilities.

d) Support of occupational health
Validated NAMs could significantly enhance the assessment of 
occupational exposures, leading to improved safety standards and 
practices across various industries. These methods could provide 
more rapid, cost-effective, and ethically sound ways to evaluate 
potential health risks associated with workplace chemicals, par-
ticulates, and other hazards. By offering high-throughput screening 
capabilities, NAMs could enable the assessment of a wider range 
of substances and exposure scenarios than traditional animal test-
ing allows. This could lead to more comprehensive and nuanced 
understanding of occupational hazards, including the effects of 
low-dose, long-term exposures that are often challenging to study 
in animal models. Furthermore, NAMs based on human cells or 
tissues could provide more relevant data for human health risk as-
sessment, potentially improving the accuracy of exposure limits 
and safety guidelines. The implementation of validated NAMs in 
occupational health contexts could also facilitate more frequent re-
assessment of existing standards as new data becomes available, 
ensuring that worker protection measures remain up-to-date with 
the latest scientific evidence. Additionally, these methods could be 
particularly valuable in emerging industries or for novel materi-
als where traditional toxicology data may be limited. Overall, the 
integration of validated NAMs into occupational health practices 
has the potential to enhance worker safety, reduce the incidence of 
occupational diseases, and support the development of safer indus-
trial processes and materials.

5.3   Paradigm shift toward human biology-focused  
science
The increasing integration of quality-verified NAMs facilitated by 
e-validation contributes to a broader paradigm shift in biomedi-
cal science and toxicology. This shift is characterized by a move 
towards a systems biology approach (Hartung et al., 2012, 2017), 
moving away from reductionist animal models to support a more 
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to more efficient, scientifically robust, and harmonized regulatory 
processes, benefiting both industry and public health.

5.6  Commercial impact
For commercial enterprises, the adoption of validated NAMs 
could drive significant improvements across various aspects of 
their operations (Meigs et al., 2018). In terms of R&D produc-
tivity, rapid and reliable screening using NAMs could accelerate 
product development timelines across pharmaceuticals, chemi-
cals, cosmetics, and consumer products. This acceleration could 
lead to faster time-to-market for new products, providing com-
panies with a competitive edge. Moreover, by providing early 
prediction of potential toxicities, NAMs could reduce late-stage 
failures, significantly cutting R&D costs and improving overall 
efficiency in the development process.

In the realm of innovation, validated NAMs could enable the 
development of products that are challenging to assess using tra-
ditional methods, such as complex combination therapies or ad-
vanced nanomaterials. This capability could open new avenues 
for product development and innovation, allowing companies to 
explore and bring to market novel products that were previously 
difficult or impossible to evaluate for safety and efficacy.

Furthermore, NAMs could contribute significantly to sustain-
ability efforts (Maertens et al., 2024b). By supporting the de-
velopment of safer, more sustainable chemicals and materials, 
NAMs align with the growing market demand for environmen-
tally friendly products. This alignment could not only improve a 
company’s environmental footprint but also enhance its market 
position and brand image among increasingly environmentally 
conscious consumers. Overall, the adoption of validated NAMs 
presents a compelling opportunity for commercial enterprises to 
improve their productivity, innovate more effectively, and align 
with sustainability goals, potentially leading to significant com-
petitive advantages in their respective markets.

5.7  Public health impact
The integration of validated NAMs into safety assessment and 
biomedical research could have profound implications for pub-
lic health. In the realm of predictive toxicology, NAMs could 
provide early indicators of potential health risks from environ-
mental exposures or new products, enabling proactive public 
health interventions. This early warning system could allow 
for more timely and effective measures to protect public health. 
Furthermore, human cell-based NAMs could better account for 
variability in susceptibility across different population groups, 
including children, the elderly, and individuals with pre-existing 
conditions. This enhanced understanding of population-specific 
vulnerabilities could lead to more tailored and effective public 
health strategies.

Regarding combined exposures, validated NAMs could pro-
vide new tools for assessing the health impacts of complex en-
vironmental mixtures, addressing a major gap in current risk 
assessment practices. This capability is particularly important 
given the reality that humans are typically exposed to multiple 
substances simultaneously, rather than single chemicals in isola-

pound prioritization, NAMs that more accurately reflect human 
biology could provide greater confidence in compound selection 
for further development (Hartung, 2024a). Validated NAMs could 
enable selection of compounds based on specific mechanistic ac-
tions, rather than relying on phenotypic outcomes in animal mod-
els. This approach could lead to more efficient and targeted drug 
development processes.

In bridging the preclinical-clinical gap, NAMs could help iden-
tify and validate biomarkers that are more translatable from pre-
clinical to clinical stages (Hartung et al., 2024). PBPK models 
integrated with validated NAMs could improve the prediction of 
safe and efficacious doses for first-in-human trials. This integra-
tion could significantly reduce the risk and increase the efficiency 
of early-stage clinical trials.

Furthermore, in the realm of failure analysis, when clinical tri-
als fail, validated NAMs could provide platforms for in-depth 
mechanistic analysis, informing future drug design and devel-
opment strategies. Similarly, when drug candidates fail in con-
comitant animal safety studies, they support the derisking of these 
substances in investigative toxicology (Beilmann et al., 2019). 
This capability could not only help in understanding why certain 
compounds fail but also guide the development of more success-
ful drug candidates in the future, potentially reducing the high at-
trition rates in drug development.

5.5  Regulatory impact
E-validation’s promise to provide robust, scientifically sound 
validation of NAMs could have far-reaching regulatory impli-
cations. In the realm of risk assessment, validated NAMs could 
provide more detailed, mechanism-based information for risk-
benefit assessments, enabling more nuanced regulatory decisions. 
This enhanced level of detail could allow regulators to make more 
informed and precise judgments about the safety and efficacy of 
new products. Additionally, by providing human-relevant data, 
NAMs could reduce uncertainties associated with extrapolating 
from animal data to human outcomes, potentially leading to more 
accurate and reliable risk assessments.

The impact on policy evolution could be significant (von Au-
lock et al., 2022). The availability of validated NAMs could drive 
the evolution of regulatory policies towards more flexible, sci-
ence-based approaches. This shift could allow for more adaptive 
and responsive regulatory frameworks that can keep pace with 
rapid scientific advancements. Furthermore, globally accepted 
validation processes could facilitate international harmonization 
of regulatory requirements, streamlining product development and 
approval processes across different countries and regions. This 
harmonization could significantly reduce the time and cost associ-
ated with bringing new products to market globally.

In terms of post-market surveillance, validated NAMs could 
provide valuable tools for quickly assessing newly identified 
safety concerns for marketed products. This rapid response capa-
bility could enhance the ability of regulatory agencies to address 
emerging safety issues promptly, potentially preventing adverse 
outcomes and improving public health protection. Overall, the 
regulatory impact of e-validation and validated NAMs could lead 
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success rate. This transformation is characterized by several key 
developments. First, data integration is becoming increasingly 
sophisticated, incorporating information from genomics, prot-
eomics, metabolomics, and other high-dimensional biological 
measurements to provide a comprehensive view of toxicological 
responses. This multi-omics approach allows for a more holistic 
understanding of how substances interact with biological systems.

AI plays a crucial role in this revamping, with ML and LLM 
being leveraged to develop predictive models that can anticipate 
toxicological outcomes for novel chemicals and mixtures. These 
advanced computational tools are enhancing our ability to extrap-
olate from existing data to new scenarios, potentially reducing the 
need for extensive testing of every new substance.

The field is also moving towards personalized toxicology, ac-
counting for genetic, epigenetic, and physiological variations in 
toxicological assessments. This approach recognizes that individ-
uals may respond differently to the same exposure based on their 
unique biological makeup, leading to more nuanced and accurate 
risk assessments.

Furthermore, there is a shift towards dynamic assessments, 
moving from fixed testing batteries to adaptive approaches that 
evolve based on accumulated data. This flexibility allows for more 
efficient and targeted testing strategies that can be adjusted as new 
information becomes available.

By replacing dated animal models with validated human-fo-
cused approaches, this movement promises to enhance our un-
derstanding of the complex interplay between environmental fac-
tors, genetic predispositions, and lifestyle choices in determining 
health outcomes. This shift could lead to more effective strategies 
for disease prevention, more targeted therapeutic interventions, 
and ultimately, improved public health outcomes. The revamping 
of toxicology through e-validation and related approaches repre-
sents a significant step forward in our ability to assess and mitigate 
risks associated with chemical exposures, potentially revolutioniz-
ing how we approach safety science and public health protection.

In conclusion, the potential impact of e-validation extends far 
beyond the realm of toxicology, promising to catalyze transforma-
tive changes across biomedical research, environmental health, 
regulatory science, and public health. By accelerating the valida-
tion and adoption of human-relevant NAMs, e-validation could 
play a pivotal role in ushering in a new era of predictive, personal-
ized, and preventive health sciences.

6  Conclusions

E-validation aims to transform rate-limiting validation barriers 
into catalysts for progress by providing the missing AI ingredi-
ents needed to realize next-generation safety sciences. Similar 
to technological leaps in other fields, NAM translation likely 
necessitates disruptive innovation versus incremental change. E-
validation provides the vehicle to determine valid replacements 
in toxicology’s modernization to protect public health with 21st 

century tools.
Several additional challenges to the validation process could 

potentially be addressed or mitigated using AI: AI could help 

tion. Additionally, NAMs could help elucidate how genetic fac-
tors interact with environmental exposures to influence disease 
risk, supporting more targeted public health strategies. This gene-
environment interaction insight could pave the way for more per-
sonalized approaches to public health interventions.

In the context of emerging health threats, the ability to quickly 
validate new testing approaches could significantly enhance pre-
paredness for novel challenges, from new pathogens to new class-
es of environmental contaminants. This rapid validation capability 
could be crucial in responding effectively to unexpected public 
health crises, allowing for faster development of diagnostic tools, 
treatments, and preventive measures. Overall, the integration of 
validated NAMs into public health practices promises to enhance 
our ability to predict, prevent, and respond to a wide range of 
health threats, potentially leading to significant improvements in 
population health outcomes.

5.8  Animal testing reduction
The expedited verification of NAMs through e-validation has 
significant implications for reducing animal testing. From an 
ethical standpoint, validated NAMs provide a scientifically sound 
basis for reducing and ultimately replacing many forms of ani-
mal testing, addressing long-standing ethical concerns about the 
use of animals in research. This shift towards NAMs aligns with 
growing public and scientific sentiment favoring more humane re-
search practices.

In terms of improved predictivity, NAMs that focus on human 
biology can often provide more relevant and predictive informa-
tion than animal models, especially for human-specific biological 
processes. This increased relevance to human physiology not only 
enhances the quality of scientific research but also potentially im-
proves the translation of findings from laboratory to clinical ap-
plications.

The regulatory landscape is also likely to evolve as more NAMs 
become validated. Regulatory agencies are expected to increas-
ingly accept and even prefer these methods over traditional animal 
tests. This shift in regulatory acceptance could significantly accel-
erate the adoption of NAMs across various industries and research 
fields.

Finally, e-validation provides a pragmatic approach to imple-
menting the 3R principle (replacement, reduction, refinement) in 
toxicology and biomedical research (Balls et al., 2024). By offer-
ing a systematic and efficient method for validating alternatives 
to animal testing, e-validation supports the broader goal of mini-
mizing animal use in scientific research while maintaining or im-
proving the quality of scientific outcomes. This approach not only 
addresses ethical concerns but also promotes the development of 
more sophisticated, human-relevant research methodologies.

5.9   Revamping of toxicology
In its grandest incarnation, e-validation will contribute to the re-
vision of the toolbox of toxicology, representing a fundamental 
reimagining of toxicology and safety science (Leist et al., 2008; 
Hartung and Leist, 2008). By accelerating the building of trust 
through improved validation, the modernization of toxicology 
is boosted, allowing more methods to be validated with a higher 
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real-world validation and pilot studies are necessary to demon-
strate its practical benefits and feasibility. We must develop a 
roadmap for conducting such validation studies to build confi-
dence in the approach.

In summary, e-validation proposes an ambitious and innovative 
framework for transforming the validation of NAMs using AI and 
ML. The approach has the potential to address significant chal-
lenges in traditional validation methods, offering a more efficient, 
transparent, and adaptive process. However, the success of e-val-
idation will depend on addressing practical implementation chal-
lenges, ensuring high-quality data, and navigating ethical and reg-
ulatory landscapes. Real-world validation and case studies will be 
crucial to demonstrate the feasibility and impact of this approach 
in advancing toxicological science and regulatory practices. The 
vision of e-validation laid out here presents a timely adaptation of 
the revolutionary changes AI is bringing to science. It will have to 
prove whether it can hold these promises – failure is an option, not 
trying it is not!
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