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Summary
An open source implementation of a previously published integrated testing strategy (ITS) for skin 
sensitization using a Bayesian network has been developed using R, a free and open source statistical 
computing language. The ITS model provides probabilistic predictions of skin sensitization potency 
based on in silico and in vitro information as well as skin penetration characteristics from a published 
bioavailability model (Kasting et al., 2008). The structure of the Bayesian network was designed to  
be consistent with the adverse outcome pathway published by the OECD (Jaworska et al., 2011, 2013).  
In this paper, the previously published data set (Jaworska et al., 2013) is improved by two data corrections 
and a modified application of the Kasting model. The new data set implemented in the original  
commercial software package and the new R version produced consistent results. The data and a fully 
documented version of the code are publicly available (http://ntp.niehs.nih.gov/go/its).
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and build on the model. Transparency was identified as one of 
the most important conceptual requirements of a successful ITS 
(Jaworska and Hoffmann, 2010). Accordingly, we developed an 
implementation of the Bayesian network ITS for skin sensiti-
zation using the free and open source statistical programming 
language R (R v3.0.1, GNU Public License v3). 

A categorical representation of a compound’s potency in the 
murine local lymph node assay (LLNA) is used as the target 
endpoint (Tab. 1) in the original Bayesian network ITS models 
(Jaworska et al., 2011, 2013). Relative to other in vivo sensitiza-
tion assays, the LLNA achieves a reduction in number of ani-
mals used, less discomfort associated with a positive response 
and time required for completion, as well as providing a quan-
titative measure of skin sensitization potency. The LLNA is an 
internationally accepted method for assessing skin sensitization 
hazard (OECD, 2010). 

The structure of the Bayesian network was designed to be 
consistent with the adverse outcome pathway (AOP) for sub-
stances that initiate the skin sensitization process by covalently 
binding to skin proteins (Jaworska et al., 2011, 2013). There are 
four key events in the AOP. In order of occurrence they are: 1) 

Toxicity testing in the 21st century is purposefully transitioning 
from traditional disease-related observations in animal models 
towards the use of mechanism-based outcomes from cell-based 
assays and in silico models. However, it is unlikely that a single 
assay or in silico model will provide sufficient information on 
the risk or hazard posed by a chemical. Therefore, data from 
multiple inputs need to be integrated in a way that maximizes 
the utility of the available information. A Bayesian network is a 
graphical model that enables integration of data from multiple 
sources in a transparent and intuitive way. In situations where 
available data is incomplete or uncertain, Bayesian networks 
provide a coherent probabilistic framework for reasoning and 
guiding decisions on the classification of a substance or the need 
for additional testing.

The integrated testing strategy (ITS) using a Bayesian net-
work for skin sensitization was previously developed using 
commercial software (Jaworska et al., 2011, 2013). The use of 
commercial software is convenient in some settings, but can 
limit the utility and awareness of an approach by obscuring the 
details of the analysis. Without full access to the code and data 
used to generate the model, it is difficult for others to test, verify 
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covalent binding to skin proteins, 2) inflammatory responses in 
the keratinocyte, 3) activation of dendritic cells and 4) T-cell 
proliferation (OECD, 2012). Table 2 links these events to the 
nodes (variables) found in the ITS structure (Jaworska et al., 
2013) shown in Figure 1. 

In a previous paper that described the ITS-2 model (Jawor-
ska et al., 2013), both lipid and polar skin diffusion pathways 
were used for the bioavailability calculations and incorporated 
in an MS Excel version of the Kasting skin penetration model 
(Dancik et al., 2013). The bioavailability calculations for the 
lipid diffusion pathway are publicly accessible on the National 
Institute for Occupational Safety and Health website1, but the 
polar skin diffusion pathway module is under development and 
not yet publicly available. Upon re-evaluation of the model, 
the contributed value of the polar skin diffusion pathway was 
not clear. Therefore, that pathway was dropped and the (minor) 
changes to the bioavailability nodes are contained in the current 
data set. Additionally, two errors in the direct peptide reactivity 
assay (DPRA) data for benzoic acid (training set) and imida-

zolidinyl urea (test set) were corrected. This revised model is 
referred to as ITS-2 Lipid.

Application of the Bayesian network requires three distinct 
computational steps as outlined in Figure 2. First, a supervised 
discretization algorithm is used to find cut-points that bin the 

Fig. 1: Directed acyclic graph representing the relationships 
among the variables in the ITS-2 lipid models
Bioavailability and Cysteine represent latent (unobserved) 
variables (see text). All other nodes correspond to manifest 
(observed) variables and are described in Table 2.

Tab. 1: LLNA EC3 correspondence to skin sensitization 
potency categories

Category	 Category Description	 EC3 Range 
Number	

1	 Nonsensitizer	 No EC3

2	 Weak	 EC3 ≥ 10% 

3	 Moderate	 1% ≤ EC3 < 10%

4	 Strong and extreme	 EC3 < 1%

Abbreviations: EC3, effective concentration that produces  
a stimulation index of 3, the threshold for a positive response  
in the LLNA; LLNA, murine local lymph node assay

Fig. 2: Diagram showing the primary computational steps of the ITS-2 lipid modeling process
Abbreviations: BA, bioavailability; LLNA, murine local lymph node assay

1 http://www.cdc.gov/niosh/topics/skin/finiteSkinPermCalc.html
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the Cysteine latent variable. Forming latent variables increas-
es the interpretability of the network, while at the same time 
reducing its computational complexity. Finally, the relation-
ships among variables in the discretized training data (includ-
ing the latent variables) are described and quantitated using 
a Bayesian network. The Bayesian network has a qualitative 
and quantitative component. The qualitative part consists of 
a directed acyclic graph where each node represents an assay 
and each edge (arrow) indicates that there is a relationship be-
tween the variables it connects (Fig. 1). The strength of each 

continuous assay data in the training data into intervals. The 
test data set cannot be used to find the discretization cut points, 
since doing so would result in biased and overly optimistic 
prediction results. The cut-points found for the training data 
are used to discretize the test data. Second, mechanistically 
related assays are clustered to form latent (unobserved) vari-
ables. The discretized logKow, AUC120 and Cfree variables 
are clustered to form the Bioavailability latent variables. Sim-
ilarly, the discretized results from the U937 assay, CD86, and 
the KeratinoSens assay, KEC3 and KEC1.5, are clustered to 

Tab. 2: Variables for the open source ITS-2 lipid model

Measurement	 Description	 Model Variable 	 AOP Key Event

Physicochemical property	 Octanol-water partition	 logKow: Log Kow 	 Substance must penetrate the  
	 coefficient	 	 stratum corneum (step 1 of the  
			   AOP; not a key event)
Epidermal bioavailability 	 Concentration of chemical	 1) Cfree: free test substance 	 Substance must penetrate the 
	 reaching the mid-epidermal layer	 concentration in midepidermis	 stratum corneum (step 1 of 
	 of skin calculated using a	 multiplied by thickness of viable	 the AOP; not a key event) 
	 transdermal transport model 	 epidermis (0.01 cm) expressed	  
	 (Kasting et al., 2008)	 as percent of applied dose   
		  2) AUC120: area under the flux 	  
		  curve at 120 h as percent of  
		  applied dose	
Direct Peptide Reactivity	 In chemico method that	 1) DPRACys: percent cysteine 	 1) Binding to skin proteins 
Assay (DPRA)	 measures peptide remaining 	 peptide remaining  	  
	 after the test substance binds 	 2) DPRALys: percent lysine	  
	 to two model heptapeptides	 peptide remaining	
KeratinoSens Assay	 In vitro test that detects	 1) KEC1.5: average concentration	 2) Keratinocyte inflammatory 
	 electrophiles using the Nrf2 	 that produces 1.5-fold enhanced	 responses 
	 electrophile-sensing pathway 	 activity (µM)		   
	 in KeratinoSens cells, a reporter	 2) KEC3: average concentration	  
	 cell line derived from immortalized	 yielding 3-fold enhanced  
	 HaCaT keratinocytes	 activity (µM)  
		  3) IC50: concentration producing  
	 	 50% cytotoxicity (µM)	
U937 Activation Test 	 In vitro test that uses the	 CD86: EC150 (µM) for CD86 cell	 3) Dendritic cell activation 
	 human myeloid cell line U937	 surface marker expression
LLNA	 In vivo test for skin sensitization; .	 LLNA: categorical representation	 4) T-cell proliferation 
	 EC3 is used to categorize 	 of LLNA potency	  
	 potency as noted in Table 1	 1 = nonsensitizer 	  
		  2 = weak sensitizer 	  
		  3 = moderate sensitizer 	  
		  4 = strong and extreme  
		  sensitizers	
TIMES-M 	 In silico categorical prediction 	 TIMES: three categories: 	 Not a key event of the AOP.  
	 of skin sensitization potency 	 nonsensitizer, weak sensitizer, 	 Model links parent and 
	 using TIMES (Tissue Metabolism 	 and moderate/strong/extreme	 metabolite structures to skin 
	 Simulator) software (V.2.25.7), 	 sensitizer	 sensitization outcomes in 
	 an expert system that makes 		  animals and humans 
	 predictions based on knowledge 		   
	 about the parent compound and 		   
	 potential skin metabolites 		   
	 (Dimitrov et al., 2005).	  

			 
Abbreviations: AOP, adverse outcome pathway (OECD, 2012); EC150, effective concentration that produces a 1.5-fold increase in the 
CD86 cell surface marker expression, the threshold for a positive response; EC3, effective concentration that produces a stimulation 
index of 3, the threshold for a positive response in the LLNA; LLNA, murine local lymph node assay.
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verify their computations. The model is documented using the 
Sweave application (Leisch, 2002), which produces a “dynamic 
document” that integrates R code and expository text, thereby 
making each analysis step explicit. The Sweave document cou-
pled with input and output datasets makes the Bayesian network 
ITS model independently reproducible (Fomel and Claerbout, 
2009; Koenker and Zeileis, 2009; Walters, 2013; Peng, 2009). 

The modular nature of the network programmed in R allows 
for alternative in silico and in chemico modules to serve as in-
puts to the Bayesian network ITS, which would then need to be 
retrained. Substituting in vitro modules could be more challeng-
ing, as that could potentially affect the structure of the network, 
but represents another opportunity provided by this transparent 
and flexible approach. A forum to exchange information and up-
dates to the R code for the user community interested in Baye-
sian approaches to skin sensitization modeling is also available 
at the NTP website. This open source version provides the trans-
parency necessary to make the model reproducible and accessi-
ble to others within the scientific and regulatory communities.

The present work reflects an ongoing collaboration between 
(NICEATM) and scientists from Procter & Gamble and Social 
and Scientific Systems, Inc, to develop and promote Bayesian 
networks as an operational framework for an ITS. NICEATM 
primarily provides technical and scientific support for the In-
teragency Coordinating Committee on the Validation of Alter-
native Methods (ICCVAM), however it also conducts various 
collaborative projects that are independent of this committee, 
an example of which is presented here. Finally, ICCVAM is also 
committed to the evaluation of skin sensitization test methods 
and testing strategies that do not require the use of animals, 
however its plans to address such methods have not yet been 
finalized (NIEHS, 2013). 
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