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 Symposium Report

Summary
A special session at the Toxicology and Risk Assessment Conference in Cincinnati, OH, USA in May, 2012 
presented approaches to expand current uses of in vitro toxicity data for risk assessment. Evaluation of 
xenobiotics through use of in vitro study methods is increasing exponentially and these methodologies 
offer a relatively fast and considerably cheaper way to determine toxicities in comparison to traditional 
animal-based approaches. One of the challenges with in vitro data is to effectively use this information 
for risk assessment purposes. Currently, in vitro studies are used as supportive information for hazard 
characterization and to identify mechanisms associated with toxicity. Being able to effectively correlate in 
vitro effects with in vivo observations represents a major challenge for risk assessors. The presentations 
in this special session provided innovative approaches toward effectively using in vitro data for the human 
health risk assessment process. 
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mals and towards looking at whether chemicals activate key tox-
icity pathways in the species of interest. Recommendations made 
in the report that were also themes of the TRAC session were to 
harness the potential of in vitro high-throughput assays repre-
senting key toxicity pathways and to perform in vitro targeted 
testing studies to complement toxicity pathway analysis. This in-
formation could be effectively used beyond hazard identification 
or mechanism of action analysis to replace the need for data from 
animal experiments in the human health risk assessment process. 
The presentations given in the TRAC session gave an update on 
how in vitro data may be correlated with in vivo findings to allow 
implementation of the NRC recommendations. 

1 Introduction (Ambuja Bale and Geoffrey Patton)

This 2012 Toxicology and Risk Assessment Conference (TRAC) 
session focused on correlating in vitro data with in vivo findings, 
a challenge formulated in the National Research Council report 
Toxicity Testing in the 21st Century: A Vision and a Strategy 
(NRC, 2007). The major theme of this report was to move away 
from whole animal testing toward the use of alternative in vitro 
methods, in agreement with the 3R concept proposed by Russell 
and Burch (1959) to replace, reduce, and refine animal testing. 
This strategy represents a paradigm shift away from observing 
adverse effects of high doses of chemicals in experimental ani-
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Technologies such as genomics, epigenomics, metabolomics, 
transcriptomics, and proteomics are being used to detect com-
mon patterns or molecular signals through examination of tis-
sue, blood, and urine samples that can be qualified as biomark-
ers. For example, male Sprague-Dawley rats were administered 
acetaminophen in 0.5% methylcellulose by oral gavage and then 
sacrificed at multiple time points. Tissue and body fluids from 
the rats were analyzed and it was found that biomarkers of tox-
icity representative of the tissue damage could be followed in 
the body fluids. Therefore, it would be sufficient to take fluid 
samples at different times from one animal instead of sacrific-
ing one at each time point, thus reducing the number of animals 
necessary for such a study. Samples were analyzed by metabo-
lomics 6 h, 24 h, 3 days, and 7 days after administration of aceta-
minophen to include recovery from damage, as in the clinic, a 
liver transplant may be avoided if there are signs of recovery 
from liver injury. Glycolic acid was identified as a biomarker 
of acetaminophen-induced liver injury that normalized quickly 
with recovery of liver injury. Further research is needed in this 
area, but this example demonstrates how qualified biomarkers 
could be employed effectively in a clinical setting.

Metabolomics in body fluids, such as urine, saliva, or blood, 
can also be used to determine the level and extent of exposure 
to chemicals. For example, urinary acetaminophen-NAC levels 
drop considerably 24 h after administration of acetaminophen. 
Quantification of the levels over time can help to predict when 
the dose was administered and help with treatment strategies for 
intoxication. 

In terms of epigenetic mechanisms, 10 urinary microRNAs 
(small, non-coding RNAs) have been identified as biomarkers 
of hepatotoxicity. MicroRNAs are far more stable in extracel-
lular fluids than messenger RNA. These urinary microRNAs 
were increased in rats treated with the hepatotoxicants acetami-
nophen and carbon tetrachloride but were not altered by peni-
cillin or vehicle (Yang et al., 2012). Since acetaminophen and 
carbon tetrachloride cause different types of injury in the liver, 
an area of further research might be to compare the pattern of 
biomarkers induced by the two chemicals. 

The biomarker field has expanded and has been useful for es-
tablishing exposure to and toxicity of compounds. However, the 
omic technologies used to identify biomarkers study many pa-
rameters in very few biological samples and potential biomark-
ers arising from such studies must be rigorously qualified. In the 
MAQC-II project (Shi et al., 2010) 36 expert teams evaluated 6 
microarray datasets. The conclusions from this large-scale eval-
uation were that many different statistical approaches could be 
used to find biomarkers but correct training and test approaches 
as well as documentation are required for quality assurance. 

A further challenge in transferring a biomarker from experi-
mental animals to the clinic is that relatively homogenous popu-
lations are used for animal experiments, which do not represent 
the variability of the patient population. 

2.2  Use of Zebrafish and Stem Cells to  
Identify Developmental Effects 
In the US, about 3% of babies are born with a birth defect. 66% 
of these defects have unknown causes, 28% are assumed to be 

2  New Approaches to Toxicology  
(Donna Mendrick)

2.1  Use of Biomarkers to Identify Adverse Effects 
The number of adverse drug reactions (ADRs) and deaths 
caused by drugs is growing faster than the number of prescrip-
tions (Moore et al., 2007). Clearly, toxicity testing in experi-
mental animals does not predict toxicity in humans with full 
accuracy. 

One approach towards increasing the accuracy of predict-
ing toxicity is to identify and validate biomarkers of toxicity. 
A biomarker is a clinical sign that is objectively measured and 
evaluated (Biomarkers Definitions Working Group, 2001). It 
can be, for example, an individual protein, gene, or metabolite 
whose level changes over the course of a disease. A biomarker 
of toxicity generally is a biomarker of adversity. 

Biomarkers can be used to study the course of disease and the 
benefit of treatment in patients; they may cross-correlate and 
are not necessarily unique for a certain disease. In humans, they 
are primarily measured in body fluids, as it is undesirable to 
take tissue samples from human patients unless necessary and 
in many clinical situations it is not possible. 

A biomarker of toxicity is most useful for predictive toxicity 
testing if it is consistently found across several species, includ-
ing humans, in association with an adverse health outcome and 
can be tracked in body fluids. Such a biomarker allows transla-
tion of effects found in animals to humans. 

Qualification of a biomarker entails its correlation with oth-
er accepted signs of adverse health effects. For example, a set 
of urinary protein biomarkers in rats was qualified by CDER 
(Center for Drug Evaluation and Research) and EMA (Euro-
pean Medicines Agency) against the histological evaluation 
of tissue samples and against changes in serum creatinine and 
blood urea nitrogen (BUN). The study found a good correlation 
between the biomarkers and the histological changes but less 
so between the biomarkers and the creatinine and BUN values 
from the serum samples. Therefore, qualifying these biomarkers 
in patients is challenging in the absence of kidney biopsies, as 
a good correlation with the serum markers cannot be expected 
based on the data from the animal experiments. So, how can the 
biomarker be qualified in patients in the absence of histology 
data and does the close correlation between the urinary biomar-
kers and the histology data in the rats suggest that the serum 
biomarkers measured in patients are under-performing? 

Regulatory qualification of a biomarker is a very rigorous 
process and is contextually driven. This qualification process is 
generally for a particular type of assay and use. The benefit of 
following this process is that it leads to acceptance and use of 
the specific biomarker for regulatory purposes. If a biomarker is 
not needed for regulatory use, such a qualification process is not 
necessary, though it does certainly help to establish it as a reliable 
and relevant research tool in the scientific community. For exam-
ple, new liver biomarkers of injury are being compared to ALT 
(alanine aminotransferase) values in serum. However, the per-
formance characteristics of ALT have never been officially quali-
fied and it may therefore not be an ideal gold standard, although 
it has been used as a marker of liver injury for decades. 
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tional genomics, proteomics, metabolomics, high-throughput 
screening and systems biology, we can replace current toxicol-
ogy assays with tests that incorporate the mechanistic underpin-
nings of disease and of underlying toxic side effects” (Hamburg, 
2011). In 2009, the National Academy of Science (NAS) Toxic-
ity Testing in the 21st Century (Tox-21c) paradigm was accepted 
by the U.S. Environmental Protection Agency (US EPA) as its 
strategy for evaluating chemicals. Therefore, there is an impetus 
in these new approaches. 

The primary concept is that there possibly is a limited number 
of pathways of toxicity. This theory is supported by the fact that 
there are certain critical infrastructures in a cell. Only when these 
infrastructures are hit does this lead to damage, otherwise cells 
can compensate. If it is possible to identify crucial pathways of 
toxicity, define them on a molecular basis, and use rather simple 
testing systems to establish a battery of pathways of toxicity-
based tests, fewer tests and animals could be used to assess the 
toxicity of compounds. So, instead of taking the 450 different 
cell types of humans into culture and looking at all the possible 
co-cultures for interactions, it is better to go back to the common 
denominator – toxicity pathways. For example, oxidative stress 
is commonly observed as a marker of toxicity and perhaps there 
really is a rather limited number of pathways of concern. After 
identifying key pathways, one could start to annotate pathways 
to different cell types, with the understanding that there will be 
some overlap. Then we might understand why, for example, the 
hepatocyte is vulnerable and the cardiomyocyte is not; or how 
certain groups of toxicants have a certain effect by perturbing a 
certain pathway of toxicity; or that certain manifestations of cel-
lular phenotype require certain types of disruption. Generating a 
comprehensive list of toxicity pathways – or a largely compre-
hensive list – could be useful in understanding why, for exam-
ple, a rat shows a certain adverse effect and a rabbit does not. 
This comprehensive list of pathways of toxicity is also known as 
the Human Toxome (http://humantoxome.com). 

Perhaps one could conclude, for the first time, that a substance 
is “clean” or “non-toxic” by finding no effects on the conserved 
toxicity pathways. If we know that a certain pathway of toxicity 
needs to be engaged to trigger adverse effects and a substance 
does not perturb the pathway, we may conclude that the respec-
tive hazard can be excluded. Negative results from animal tests 
cannot definitively lead to this conclusion, since there may be 
species differences. Similarly, with in vitro tests effects may de-
pend on culture conditions and cell types and it is difficult to test 
all possible permutations and combinations to conclude that a 
substance is non-toxic. 

The National Academies, when talking about pathways of 
toxicity, consider several different pathways: endogenous hor-
mones, DNA damage, different nuclear receptors, hypo-osmo-
larity, Nrf-2 to oxidative stress, heat shock proteins. It is very 
challenging to determine how these toxicity pathways can all 
be annotated in a common way and put together. The Center for 
Alternatives to Animal Testing (CAAT) is aiming to map and 
identify novel pathways and develop a method of annotating 
these pathways by hazard, chemical/toxin class, cell type, and 
species (Hartung and McBride, 2011). While these approach-
es seem to be complementary to approaches by EPA and The 

genetic, and about 6% are assumed to be due to diabetes and 
drugs. The in vivo animal study designed to identify develop-
mental toxicity effects of compounds has been in place for 30 
years and a higher throughput and cheaper approach, particu-
larly for screening compounds, is needed. 

Stem cells and zebrafish are being used increasingly to exam-
ine developmental changes caused by compounds, in particular 
regarding neural development. It is investigated whether com-
pounds added to murine embryonic stem cells that are induced 
to differentiate into more mature neurons disrupt this process. 
The expression of pluripotent markers, e.g., Nanog and Sox2, 
decreases as cells differentiate, while the expression of neuronal 
markers, such as Nestin and Sox1, increases (Lee et al., 2012). 
Changes in this process and changes in the morphological dif-
ferentiation of the stem cells caused by chemicals can be fol-
lowed.

Zebrafish embryos have very specific developmental stages 
and their translucence allows evaluation of the organs for signs 
of developmental toxicity as is being done at the National Cent-
er for Toxicological Research. One study found a correlation be-
tween F-actin integrity and development (Kanungo and Paule, 
2011). High throughput technologies have been developed for 
this model: Manually dechorionated embryos were placed into 
individual wells of a 384-well plate at 28 h post-fertilization fol-
lowing ethanol exposure. High throughput imaging documented 
the effects of ethanol on the axon length (Kanungo et al., 2011). 
Zebrafish offer exciting opportunities to increase the screening 
capabilities for new chemical entities although there are several 
drawbacks including the requirement for the test compounds to 
be water soluble (Lee et al., 2012). 

In summary, new approaches are needed that increase the 
throughput of toxicity studies. Increasing costs and a con-
cern for using animals are pushing the field to develop higher 
throughput and less invasive approaches. There is a high barrier 
to replacing animal studies since the scientific field is accus-
tomed to them. New translational biomarkers are needed in in 
vitro assays, animal studies, and in humans so that exposure and 
toxicity can be better predicted and to enable the acceptance of 
alternative models. 

3  Mapping the Human Toxome (Thomas Hartung)

Toxicology was stirred up in 2007 by the NRC report Toxic-
ity Testing in the 21st Century: A Vision and a Strategy (NRC, 
2007), stating that scientists must embrace new technologies 
from the biotech and bioinformatics revolution. It also puts for-
ward the concept of pathways of toxicity. This concept has been 
embraced well as a scientific endeavor. An example is a Science 
article, first-authored by Francis Collins of the National Insti-
tutes of Health (NIH), in which he said, “we propose now a shift 
from primarily in vivo animal studies to in vitro assays, in vivo 
assays with lower organisms and computational modeling for 
toxicity assessments” (Collins, 2008). Similarly, Peggy Ham-
burg of the Food and Drug Administration (FDA) says “with an 
advanced field of regulatory science, new tools including func-

http://humantoxome.com
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biological interaction hits acutely. If the cell survives this hit, 
the pathways of defense and a lot of epiphenomena will lead to 
a new stabilization. But if the hits continue, either over time or 
if excessive doses are applied, they may lead to chronic mani-
festations. Currently, typical measurements occur at very late 
stages where a new homeostasis has been established, because 
a signature of toxicity is observed at this point. Having infor-
mation at later stages and not earlier stages is one of the key 
problems, since the initial insult (or hit) and the new equilibrium 
(from the hit) are two different things. 

Toxicometabolomic strategies have been used to start iden-
tifying and elucidating pathways of toxicity (Bouhifd et al., 
2013). An advantage is that a lot of other information is avail-
able, especially with regards to known mechanisms and identi-
fied modes of action. The pathway analysis can build on many 
decades of toxicology and mechanistic toxicology. However, 
there are several challenges, including bringing together the 
different areas of biology, mass spectrometry, and especially 
bioinformatic pathway identification. Additionally, complex 
detection methods, the sample handling, the throughput, the re-
producibility, and toxicology information are needed. The end 
goal is to produce a Human Toxome database into which, like a 
“Wiki” approach, scientists can feed in further pathways identi-
fied in a similar way. This all is not only about producing tech-
nological results. It is about coalition and concept forming. It is 
about building a framework in which these things can happen.

Identification of pathways of toxicity is a very important is-
sue that is of concern worldwide. For example, Europe is con-
cerned about a ban on systemic toxicity testing for cosmetics 
ingredients that came into force in 2013. In a report invited by 
the European Commission (Adler et al., 2011), the concern was 
with regards to replacement of animal studies with alternative 
methods and that the scientific field has not been able to reach 
that threshold. An independent review of this report was con-
ducted where it was concluded that systemic toxicity tests in 
cell cultures and computers are not available (Hartung et al., 
2011). This spurred thirty-five expert scientists to develop a 
consensus roadmap for the development of alternative methods 
(Basketter et al., 2012). These recommendations highlight the 
need for identifying pathways of toxicity and moving forward 
toward alternative toxicity testing.

4  In Vitro to In Vivo Extrapolation for  
Application in Physiologically  
Based Pharmacokinetic (PBPK) Models  
(John Lipscomb and Elaina Kenyon)

Toxic responses are a function of the concentration of the toxi-
cologically active chemical moiety in the target tissue. Dis-
tribution of the toxicant to the tissue is broadly regarded as 
toxicokinetics (TK) and the events surrounding/driving the 
response of the tissue can be broadly described as toxicody-
namics (TD). For TK, in vitro systems offer the advantage of 
studying individual steps or processes (metabolism, transport) 
in isolation; the challenge is to integrate observations into a 
system representing the intact organism so that they can be 

Hamner Institutes, they are actually being developed in a strong 
collaboration, which means our NIH consortium involves both 
US EPA’s ToxCast and the Hamner Institutes, the other major 
players implementing the Tox-21c vision. 

The Pathways of Toxicity Mapping Center (PoToMaC) at 
Johns Hopkins University is a vision for an institutionalized 
effort towards producing a workflow for metabolomics and 
transcriptomics, soon also microRNAs, as tools for identifying 
pathways of toxicity. The concept is to start with the existing 
validated or pre-validated models, which have many advantages 
compared to other tests. First of all, they have very robust proto-
cols, which have been shown in validation exercises to be good 
cell models and have received some regulatory acceptance. Ref-
erence substances are defined for them and, importantly, thresh-
olds of adversity are defined. Estrogenic endocrine disruption 
is being examined as a pilot case since toxicity is known to be 
pathway-based. In the present studies with endocrine disruptors, 
two assays, i.e., MCF-7 and T47-D, are being used. Obviously, 
broad testing for endocrine disruptors needs to be done in the 
near future, so there may be additional benefits. Metabolomics 
and transcriptomics are primarily being used as well as emerg-
ing bioinformatic integration of the two. 

At this moment, the concept of a pathway of toxicity (PoT) 
is not completely developed. The Organisation for Economic 
Co-operation and Development (OECD) talks about adverse 
outcome pathways and defines toxicity pathways as a small part 
of these, i.e., from the chemical biological interaction to cel-
lular hazard manifestation. First, approaches for mapping, an-
notating, and validating need to be addressed. Finding feasible 
solutions for the time and spatial resolution is necessary. Some 
additional needs are identification of distinct pathways and vari-
ants of pathways. Governance for the databases to be created 
and new technologies, other than those few we are now using, 
are needed to really make up a complete picture of a pathway. It 
is about moving away from empirical and towards mechanistic 
approaches. Some predictive models, animal as well as in vitro 
models, are available as well as reference toxicants. In addi-
tion, omics phenotyping and other signatures of toxicity could 
be used to help develop a proof for the existence of pathways. 
There would not be reproducible signatures if there were not 
pathways to produce them. So this result is one of the strongest 
arguments in favor of a limited number of pathways of toxic-
ity. And we might already make some use of Integrated Testing 
Strategies (Hartung et al., 2013), but the interesting point is, we 
now can feed this into the identification of pathways of toxicity, 
because we have at the same time a mechanistic understanding 
from the past and we also have the molecular biology and bio-
chemistry, which are helping us. This should be later integrated 
into a systems biology approach of systems toxicology. 

When a system is in a certain homeostasis and then it is dis-
rupted, it will counteract this disruption by producing a new, 
different level of homeostasis under stress, and only if this is 
exceeded, excessive stimulation will result in some type of ex-
haustion and subsequently hazard manifestation. This concept 
can and should be extended to what one would observe at the 
cellular level. We have a situation where cells in the body or 
in culture are in a certain homeostasis and then the chemical-



SympoSium RepoRtS

Altex 31, 1/14 83

cies (Fig. 1). The results of this comparison are applied to in 
vitro observations with human samples to predict the human 
response in vivo (Sobels, 1989). This section reviews some in 
vitro systems used for TK and demonstrates the utility of the 
resulting data for application in PBPK models.

Toxicokinetics is typically defined as absorption, distribution, 
metabolism, and elimination. Transport across cell membranes 
and transporter mechanisms are important in each process, but 
this section will focus on the study of metabolism because IVIVE 
(in vivo to in vitro extrapolation) for metabolic rate parameters 
has been more broadly applied in the field of PBPK modeling. 
Several systems are available for the in vitro investigation of 
metabolism, and these cover a broad range of biological com-
plexity. These systems include the isolated perfused liver, tissue 
slices, hepatocytes, subcellular fractions (microsomes and cy-
tosol) and recombinantly expressed enzymes (see Tab. 1). Their 
characteristics, advantages, and limitations have been well sum-
marized in Barter et al. (2007) and Lipscomb and Poet (2008).

The isolated perfused liver offers the most complex and physi-
ologically realistic system – it maintains architecture at the level 
of the cell and tissue, maintains the balance of cytoplasmic and 
membrane-bound enzymes, cellular transport mechanisms, as 
well as physiologic levels of cofactors. Blood or medium flow 
can be well regulated and blood or medium can be adjusted to 
mimic the balance of constituents that determine extrahepatic 
protein binding.

Tissue slices have been widely used and are relatively easy to 
prepare. They also are available commercially, fresh or frozen, 
from experimental animals and humans. Slices maintain cellu-
lar architecture and the balance of cytoplasmic and membrane-
bound enzymes, and may maintain physiologic balance of co-
factors, but they do not maintain tissue blood flow. Slices can be 
used to study TK or TD events, but toxicant exposure may be 
problematic due to the need for toxicants to diffuse through the 

appropriately interpreted. For TD, in vitro systems offer the 
advantage of studying the response under circumstances un-
der which the TK influence can be controlled. One of the pri-
mary challenges for TD is that the observed responses must be 
linked to the adverse health outcome of interest, which may 
require an in depth understanding of the mode or mechanism 
of action. Regardless of the application, in vitro systems of-
fer the advantage of studying the human species in the ab-
sence of constraints surrounding intentional human exposures 
(Lipscomb and Poet, 2008). Often, a parallelogram approach 
is employed in which in vitro observations in a test species 
are compared with in vivo findings from the same test spe-

Fig 1: The parallelogram approach involves comparison  
of in vitro observations in a test species with in vivo findings 
from the same test species 
The results of this comparison are applied to in vitro observations 
with human samples to predict the human response in vivo.

Tab. 1: In vitro systems used for the study of metabolism in livera

In vitro system Characteristics and enzymes present Scaling factorb

Isolated perfused liver Intact cellular and organ structure with complete enzyme  Liver weight 
 and physiological milieu

Tissue slices Microsomal and cytosolic enzymes plus cellular structure  HomPPGL 
 including membrane and biliary transporters (mg homogenate protein per g liver)

Hepatocytes Microsomal and cytosolic enzymes plus cell membrane  Hepatocellularity per g liver (HPGL) 
 transporters 

Microsomes Cytochrome P-450s, flavin-containing monooxygenases,  Microsomal protein per g liver (MPPGL) 
 esterases, glutathione S-transferases (GSTs), glucoronyl   
 transferases

Cytosol Sulfotransferases, N-acetyltransferases, amino acid  Cytosolic protein per g liver (CPPGL) 
 conjugators, GSTs, glucoronyl transferases

Expressed or purified Enzyme of interest with constitutively expressed ancillary  MMPGL (or CPPGL) x enzyme 
enzymes proteins or native lipid environment isoforms (pmol/mg)

a Lipscomb and Poet (2008)
b Barter et al. (2007); liver weight is a required scaling factor in all cases.
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The equations are populated with parameters that describe the 
anatomy (e.g., compartment size, spatial relationships), physi-
ology (e.g., blood flow, specialized function) and biochemistry 
(e.g., uptake, partitioning, metabolism) of the experimental ani-
mal or human and its toxicologically and physiologically sig-
nificant organs and tissues. Metabolism parameters (e.g., Vmax, 
Km, and Cl) can be among the most influential parameters de-
termining the target tissue concentrations of a toxicant (Clewell 
et al., 2008). Vmax and Km are interdependent constants describ-
ing saturable metabolism. Vmax is the theoretical maximal initial 
rate of metabolism, and Km is the concentration that drives reac-
tion rates to one-half the rate at Vmax (Figure S1 in supplemen-
tary data at http://www.altex-edition.org). Vmax is determined 
by holding the amount of enzyme constant and increasing the 
amount of substrate until no further increase in metabolic rate 
is observed. Vmax is directly proportionate to the amount of en-
zyme present, but Km is independent of enzyme concentration. 
Km can be influenced by the solubility of the substrate in solu-
tion and by other factors, including binding to macromolecules 
in addition to the enzyme. In vitro systems provide a means to 
control extrinsic factors that can influence the determination of 
these parameters (Lipscomb and Poet, 2008).

Aside from a full toxicokinetic treatment of metabolism as 
offered through PBPK modeling, another measure that can be 
used is intrinsic clearance (Clint). Clint is estimated by dividing 
Vmax by Km (Fig. S1). When units of measurement are mg/h/mg 
MSP and mg/l, the expression reduces to liters cleared per hour 
per mg MSP, and is scaled to the whole liver by accounting for 
the yield of MSP per g and per liver (Houston, 1994; Carlile et 
al., 1997). Clint is often measured for drugs or compounds in 
clinical development, and experiments are often developed that 
also include means to control for or to estimate the impact of 
binding of substrate to non-enzymatic proteins. Clint estimates 
can be useful in estimating doses to be used in preclinical drug 
assessments and have proven quite valuable for that applica-
tion (Houston, 1994). However, measurements of Clint must be 
rather cautiously interpreted beyond this circumstance because 
if the underlying experiments fail to account for binding, solu-
bility, or reactivity, the results can be unreliable.

While both Km and Vmax can be extrapolated to the in vivo 
setting, maximal metabolic rates may not be observed in vivo 
for several reasons. One of the most influential factors is the 
delivery of the substrate to the liver via hepatic blood flow. 
Metabolic rate may be restricted by the rate at which the sub-
strate is delivered to the liver, a function of both the solubil-
ity of the chemical in blood and the rate of hepatic blood flow 
(Ql). Under this condition, called flow-limited metabolism, 
the metabolic capacity of the liver is greater than the rate of 
substrate delivery to the liver in blood. This is often seen with 
halogenated solvents, and has been well characterized by physi-
ologically based pharmacokinetic modeling (Kedderis, 1997). 
Table 2 illustrates the issues with blood flow detailed above 
and explains why measures of intrinsic clearance, in contrast to  
hepatic clearance (ClH), may not always be the best meas-
ures of in vivo clearance. ClH has another term in it relative to  
Vmax / Km - Ql. ClH is actually the model whose structure is 
incorporated into PBPK models.

outer layers of cells to get to the inner layers of the cells. There-
fore, most of the metabolism may occur in the outer layers only, 
complicating not only internal exposure estimation, but also the 
representation of metabolic rate, which is routinely based on 
protein or enzyme recovery in the entire slice.

Isolated hepatocytes are often prepared in the laboratory from 
test species and are available from human organ donors or from 
surgically resected tissues. Recent advances have resulted in 
methods to cryopreserve isolated hepatocytes, which offer the 
advantage of a degree of consistency from experiment to ex-
periment. While this preparation does not preserve architecture 
at the tissue level, the physiologic ratio of cytoplasmic to mem-
brane-bound enzymes is maintained and physiologic balances 
of cofactors can be attained. 

Perhaps the most widely used in vitro system is that of sub-
cellular fractions, i.e., cytosol and microsomes. Microsomal 
protein (MSP) comprises microsomal lipid and membrane 
bound proteins (enzymes) and preparation requires isolation 
from other cellular components by homogenization and cen-
trifugation. This separation from other cellular components 
allows individual steps to be studied without the influence of 
competing factors – the major advantage and disadvantage 
combined. While these systems are relatively cost-effective, 
the disadvantages include a lack of physiological balance 
between cytosolic and membrane bound enzymes, lack of 
maintenance of physiologic levels of cofactors, an absence of 
transport mechanisms and an often overlooked complication 
of the membrane arrangement (geospatial co-localization) of 
enzymes and co-enzymes (e.g., cytochrome P-450 (CYP) en-
zymes and their oxidoreductases).

Recombinantly expressed systems offer the advantage of 
studying actual human enzymes without the complications and 
precautions required by exposure to actual human tissues. The 
optimal application of recombinantly expressed enzymes may 
be in the identification of metabolites of a given compound, or 
in the confirmation of the activity of the studied enzyme toward 
a given substrate. Comparisons of animal to human metabolism 
are complicated due to the infrequent recombinant expression of 
corollary enzymes from test species. The quantitative usefulness 
of metabolic rate data from recombinant enzymes is complicated 
by differences in the lipid constituency of the biological mem-
brane in which the enzyme is bound (complicating examinations 
of substrate solubility/exposure to the active site of the enzyme) 
versus the constituency of the human lipid membrane; as well 
as alterations of any associated co-enzymes. With respect to cy-
tochrome P-450 enzymes, human oxidoreductases may not be 
expressed and the geospatial co-localization of P-450 enzymes 
and oxidoreductases can be altered (Lipscomb and Poet, 2008).

The need for IVIVE for metabolic rate parameters has become 
increasingly important because the application of PBPK mod-
els has become relatively widespread in health risk assessment.  
PBPK models can estimate target tissue concentrations of toxi-
cants following exposure via the oral, dermal, and inhalation 
routes and are useful in risk assessment because they can ex-
trapolate these tissue concentrations across dose, route, time, 
and species. These models comprise a series of simultaneously 
based, simultaneously solved ordinary differential equations. 
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was one criterion. Variation due to inherent species, strain, gen-
der, and age differences was minimized by using data derived 
only from mature male F344 rats. Results of this comparison are 
shown in Table 3 (Kenyon et al., 2012).

Inspection of this table reveals that most of the estimates are 
within a factor of two to three of each other as shown in the 
column labeled “Ratio”. Given the various assumptions inher-
ent in this approach, this degree of agreement is fairly good. 
Some of these assumptions will be highlighted and described 
subsequently, but for now the chemical to focus on is bromodi-
chloromethane (BDCM), a drinking water disinfection byprod-
uct that has been shown to cause cancers of the colon and kid-
ney in rats. It is noteworthy that the in vivo and in vitro scaled 
estimates for Vmax C differ by a factor of 4.8 for BDCM, with 
the in vitro scaled to in vivo estimate being much lower. One 
possible explanation for this difference is the assumption that 
in vitro metabolism in liver quantitatively accounts for most 
in vivo metabolism. Comparatively lower estimates of Vmax C 
on the basis of hepatic microsomal data might be explained by 
quantitatively significant extrahepatic metabolism. Although 
extrahepatic metabolism is frequently thought of as being of 
mechanistic significance for organ-specific toxicity, it may in 
some cases be quantitatively significant enough to impact whole 
body metabolic clearance which is what is actually measured by 
the in vivo vapor uptake technique.

Obvious sources of uncertainty in this type of extrapolation 
are the scaling factors used in the calculation. In this case that 
would be mg of microsomal protein per g liver (MMPGL) 
and liver weight (LW). Typically, rates of microsomal metab-
olism are reported normalized to mg of microsomal protein. 
In order to scale these rates to the in vivo case, it is necessary 
to multiply the rate of metabolism by MMPGL and LW to 
scale it to the whole body. In practice, these factors are rarely 
measured and reported for the experimental conditions under 
which the in vitro metabolism data were generated. Thus it is 
generally necessary to use default scaling factors (Table S1 
in supplementary data at http://www.altex-edition.org) which 
may vary due to both intrinsic host factors and experimental 
conditions.

In the context of metabolism, in vitro systems can be used 
qualitatively as well as quantitatively. Qualitatively, because 
MSP contains multiple enzymes and families of enzymes, it can 
be used in conjunction with specific chemical and immunologic 
inhibitors to identify enzymes associated with specific meta-
bolic processes. Quantitatively, metabolic rate constants can be 
identified through kinetic analysis and then extrapolated back 
to the intact organ. This requires that the amount of MSP per 
unit mass of tissue be determined. One favored method is to 
select an enzyme or protein expressed only in MSP and focus 
on determining the amount of that enzyme in intact tissue and 
in resulting MSP. Using CYP2E1 as the example, an ELISA has 
been developed and applied (Snawder and Lipscomb, 2000). 
Quantitatively, the equation is:

(nmol CYP2E1/g tissue) / (nmol CYP2E1/mg MSP) = mg MSP/g tissue

Once Vmax values have been determined in MSP, they are read-
ily converted from units of mg/min/mg MSP to mg/min/g liver 
(MMPGL) by simple multiplication. Several values for the 
amount of MSP per g liver are available that have been gener-
ated using various proteins and enzymes (Table S1 in supple-
mentary data at http://www.altex-edition.org).

The reliability of PBPK model predictions is directly related 
to the accuracy of the chemical-specific parameters used as 
model inputs. A fundamental question in regards to IVIVE for 
metabolic rate constants is how well and to what extent param-
eters derived from in vitro data predict in vivo metabolism. In 
an effort to systematically begin examining this issue for envi-
ronmental chemicals, a preliminary analysis using data from the 
published literature was conducted. In vivo estimates of Vmax C 
(mg/h/kg) from in vivo vapor uptake studies to scaled-up Vmax C 
values derived from in vitro studies of microsomal metabolism 
were compared. Criteria for chemical selection were designed 
to minimize potential sources of variation. Use of a common 
set of techniques for in vivo data (vapor uptake) and in vitro 
data (microsomal metabolism) that measures disappearance of 
parent chemical from the atmosphere of either a closed recircu-
lating chamber containing a rat or a vial containing microsomes 

Tab. 2: The impact of hepatic blood flow (QL) on  
hepatic clearance (ClH) of xenobiotics 

QL (L/h) Vmax (mg/h) Km (mg/l) Clint (l/h) ClH (l/h)

 0.005 5 10 0.5 0.00495

 0.05 5 10 0.5 0.04546

 0.5 5 10 0.5 0.25

 5 5 10 0.5 0.4545

 50 5 10 0.5 0.4951

 500 5 10 0.5 0.4995

ClH = (QL x V/k) / (QL + V/k). When hepatic blood flow is 
much lower than V/k, flow (delivery to the liver) determines 
the overall clearance rate.

Tab. 3: Preliminary comparison of in vivo and scaled in vitro 
metabolism parameters a

Chemical Parameter Units in vivo in vitro  Ratio

1,1-dichloropropene VmaxC mg/h/kg 5.58 7.22 0.77

1,2-dichloroethane VmaxC mg/h/kg 3.25 5.50 0.59

2,2-dichloropropane Vmax/Km l/h/kg 1.55 0.80 1.94

bromodichloromethane VmaxC mg/h/kg 12.8 2.65 4.83

chloroform VmaxC mg/h/kg 6.8 3.77 1.80

toluene VmaxC mg/h/kg 7.5 2.93 2.56

benzene VmaxC mg/h/kg 3.3 2.05 1.61

aKenyon et al. (2012). Ratio calculated as in vivo/in vitro.
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Another important issue to consider is parameter variability 
and its impact on IVIVE and dose metric estimation in the con-
text of PBPK model application. An example of a study on vari-
ability and the influence of enzyme content is an analysis of the 
variability of CYP2E1 and resulting influence on the oxidation 
of trichloroethylene (TCE) (Lipscomb et al., 2003). Because the 
oxidation of TCE results in the formation of toxicologically ac-
tive metabolites and because CYP2E1 content was known to 
vary among humans, an analysis was conducted to capture hu-
man variability of hepatic CYP content and include this vari-
ability in a PBPK model (Fig. 3). The amount of CYP2E1 in 
human hepatic MSP samples was determined via ELISA. The 
results indicated a range of approximately 12-fold (11-134 pmol 
CYP2E1/mg MSP) from a sample of 60 individuals. For 20 in-
dividuals, the amount of MSP per g liver (25.2-103.5 mg MSP/g 
liver) was determined. A statistical combination of these data 
sets according to the statistical method of moments indicated a 
variability of hepatic CYP2E1 (1231.7 - 5004 pmol CYP2E1/g 
liver) of approximately 4-fold. A biochemical analysis was 
used to quantify the specific activity of CYP2E1 toward TCE 
(GSM ±GSD: 32.5 ±1.538 pmol TCE metabolized/min/pmol 
CYP2E1), and was also included. A PBPK model was reparam-
eterized to include the bounds of variability and exercised to 
simulate exposure at regulated environmental contaminant lev-
els. The result is that a 6-fold difference in metabolic capacity 
(Vmax; pmol TCE oxidized/min/g liver) resulted in a 2% change 
in TCE oxidation in vivo. The underlying factor in mediating the 
effect was hepatic blood flow – for TCE, the hepatic metabolic 
capacity far outstrips the rate of delivery to the liver. This case is 
illustrative and demonstrates the value of sensitivity analysis in 
identifying the most influential causes of toxicokinetic variabil-
ity. However, the data describing the variability of human he-
patic CYP2E1 content can be used in other models for CYP2E1 
substrates, where the specific activity of CYP2E1 for the given 
substrate is known. 

Another noteworthy assumption embedded in IVIVE for met-
abolic rate constants is that other physiological processes such 
as binding to tissue constituents and blood flow to the liver do 
not significantly alter the concentration of chemical available 
for metabolism as discussed previously. The impact of these 
physiological processes can sometimes be evaluated in com-
panion in vitro assays (e.g., measuring binding to specific pro-
teins) or their impact assessed via sensitivity analysis combined 
with the use of PBPK models. The key factor to remember is 
that IVIVE must be conducted and considered in the context 
of the experimental system used to generate the data and any 
chemical-specific attributes (e.g., solubility, reactivity) that may 
influence the interpretation of data obtained from these systems. 
Some of these issues and impacts are further explored in the 
remainder of this section.

When evaluating metabolic rate constants in a single organ, 
units of expression for metabolic rate may be sufficiently de-
scribed as rate per unit subcellular fraction (e.g., nmol/min/mg 
MSP). However, this level of expression is problematic when 
attempting to extrapolate measured in vitro metabolic rates to 
other organs, tissues, or species. There are two reasons for this: 
1) different tissues contain different concentrations of MSP, and 
2) MSP from different tissues contains different concentrations 
of individual enzymes. Table S1 illustrates rat-human differences 
in measured MSP per g liver; Table S2 demonstrates some dif-
ferences in MSP content for specific CYP enzymes. When it can 
be determined that metabolism proceeds via a single enzyme, 
this complication can be overcome by determining the amount 
of the given enzyme per unit mass of tissue, and avoiding the 
estimation of MSP content altogether, but it requires one addi-
tional step – metabolic rate determined initially as rate per mg 
MSP must be converted to units of rate per pmol enzyme. This 
procedure and its application for IVIVE are illustrated in Figure 2 
for trichloroethylene (Lipscomb et al., 2003). This procedure has 
also recently been applied in the IVIVE of the CYP2E1-mediated 
hepatic and renal metabolism of chloroform (Sasso et al., 2013).

Fig 2: Illustration of IVIVE scaling calculations for 
trichloroethylene based on microsomal metabolism 
measurements

Fig 3: Framework for extrapolation and incorporation of  
in vitro derived metabolic rates in PBPK modeling 
The model was exercised to simulate environmentally and 
occupationally relevant exposures.
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of HepG2/C3A cells are that they synthesize and excrete physi-
ological levels of albumin but little or no alpha-fetoprotein, they 
can be grown in glucose-free medium, they have low but meas-
urable activities of all the major cytochromes P450, and they are 
commercially available. 

For building reality into the hepatotoxicity assay, it was im-
portant that the HepG2/C3A line is capable of recapitulating 
as many of the known mechanisms of liver toxicity as pos-
sible. As listed in Table 4, this system has been used to model 
many of the known mechanisms of liver toxicity. At the plating 
density used, 6 x 104/cm2, the cells reach confluence in 4 to 
5 days. The cells are allowed another 3 days to differentiate, 
and treatment of the cells with drugs or chemicals is typically 
started on day 8. Figure S2 (in supplementary data at http://
www.altex-edition.org) depicts HepG2/C3A cells at culture 
day 8. Unlike many transformed cells, these cells do not pile 
up on each other, and they retain many of the characteristics of 
normal liver cells. 

Following the development of a well-characterized biological 
system (e.g., HepG2/C3A cells), it was important to develop a 
good prediction model by first creating a gold standard list of 
“known” positives and negatives that can be used to determine 
the operating parameters of the assay, specifically parameters 
such as sensitivity, specificity, and positive prediction value. 
To create a short and fairly comprehensive list, the criteria 
for selection focused on liver toxicants for which human data 
were available. The responses observed after treatment with the 
known liver toxicants were highly concordant with the known 
in vivo effects. One particularly interesting observation with the 
pharmaceutical human liver toxicants was that the lowest con-
centration producing a toxic response in the in vitro assays was 
at the upper level of the therapeutic blood concentration range. 

One of the challenges with in vitro testing is analyzing and in-
terpreting the data in an effective manner. The statistician evalu-
ated a number of standard mathematical models and analyses 
for interpreting the data that were generated with the HepG2 
cell line assays. Ultimately, the goal was to review the math-
ematical models and determine the best predictive model for the 
in vitro assay. Also, since multiple endpoint assays were being 
used, it was important to demonstrate that there was very little 
or no cross-correlation between assays, as highlighted in Table 
S3 (supplementary data at http://www.altex-edition.org). 

5  Building “Reality” Into In Vitro  
Hepatotoxicity Assays (Tom Flynn)

One of the major barriers to the acceptance of in vitro assays 
is the perception that the assays do not reflect reality. After all, 
how could a two-dimensional growth of cells in a Petri dish be 
informative about three-dimensional animals that have multi-
ple organs with multiple interactions between them? However, 
there are some ways that scientists can build enough “reality” 
into in vitro assays to make them possibly more acceptable to 
the risk assessment community. 

The first question is how does one address known in vivo reali-
ties in an in vitro model? For example with in vitro hepatotoxic-
ity assays, one could start off by developing a list of desirable 
properties of what the in vitro model for hepatotoxicity should 
look like, especially that it should display as many human liver-
specific functions as possible. The model should focus on post-
mitotic cells. People typically and mistakenly use hepatic cell 
lines while they are still actively proliferating, and that would 
not model reality since the adult liver is almost exclusively post-
mitotic. Also, with respect to cell lines, a low-glucose medium 
should be used instead of the commonly used high-glucose me-
dium, since it is well known that high glucose medium can mask 
mitochondrial toxicity. In choosing doses of a test compound, 
one should use a “reasonable” maximum concentration in the 
test system based on expected exposures in humans. And finally, 
if multiple concentrations of test agent are used, take heed of the 
concentration response, since it is less informative to only report 
the EC50 and not the effects at other concentrations. In building 
reality into in vitro assays, one has to first consider cell lines that 
accurately simulate mechanisms of toxicity and second, develop 
a good prediction model. In this discussion, the focus is on ap-
plying these concepts to in vitro hepatotoxicity assays.

One of the cell lines used to study hepatotoxicity in vitro 
is HepG2/C3A, which is a sub-clone of the commonly used 
HepG2 human hepatocellular carcinoma that was developed by 
Kelly (1994). One little-appreciated property of HepG2 cells is 
that they will undergo differentiation in vitro if grown to con-
fluence. The doubling time, which is approximately 24 h while 
they are in log growth phase, increases to over 200 h after con-
fluence. While this is not totally post-mitotic, it is good enough 
for modeling a post-mitotic tissue. Other desirable properties 

Tab. 4: Endpoint assays and the mechanisms of hepatotoxicity modeled

Endpoint assay Hepatotoxicity mechanism modeled

Total double-stranded DNA (H33258 fluorescence) Cell death (necrotic)

Rhodamine 123 uptake and retention Mitochondrial membrane depolarization,  
 P-glycoprotein induction/ inhibition

Nile red uptake Steatosis (“fatty liver”), phospholipidosis

Dihydrodichlorofluorescein oxidation Oxidative stress

Ethoxyresorufin-O-deethylase (predominantly CYP1A) Modulation of CYP450 activities

Benzyloxyresorufin-O-debenzylase (predominantly CYP2B and CYP3A) Modulation of CYP450 activities
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teins are expressed in HepG2 cells. However, HepG2 cells do 
not express C-reactive protein, which was the primary reason 
this protein level was not studied in these assays. But IL-1ra 
has been shown to be equally as responsive and informative as 
C-reactive protein. With the albumin response, a significant in-
teraction between the hormones and the cytokines was observed 
as indicated in Table 5. The next step in this series of studies is 
to understand the impact of the hormonal composition and the 
presence or absence of cytokines on the response to known liver 
toxicants. 

In terms of building further reality into an in vitro hepatotox-
icity assay, one needs to consider the marked prevalence of non-
alcoholic fatty liver disease. There are several models that could 
be incorporated to make the in vitro system more representative 
of some in vivo factors. In the case of in vitro hepatocytes, add-
ing an excess amount of fatty acids to the culture medium for 48 
h will result in the cells accumulating neutral lipid similar to a 
fatty liver, as depicted in Figure S2 (supplementary data at http://
www.altex-edition.org). Prior to treatment with oleic acid, there 
is a uniform distribution of neutral lipids (yellow/green fluores-
cence) and polar lipids (red fluorescence) with a Nile red stain. 
After oleic acid treatment, there is a significant shift to primarily 
neutral lipid droplets. In Figure 4, a dose-dependent increase in 
total neutral lipid stored in the cell is observed with increased 

After developing the prediction model, it was tested using an-
other group of model compounds as listed in Table S4 (supple-
mentary data at http://www.altex-edition.org). As is also shown 
in Table S4, the uniqueness of the predictive model is reflected 
by how the response is evaluated at every concentration tested. 
The predictive model was able to distinguish and differentiate 
between similar compounds like androstenedione and testoster-
one, and between some of the flavonoids listed in Table S4. A 
key point here is that, out of all the compounds that were evalu-
ated in this system, either in the model development set or in 
the validation set, 100% cell lethality was only observed with 
propranolol at the two highest test concentrations. Thus, this 
model really focuses mostly on overall metabolic changes that 
reflect pathways of toxicity because multiple endpoints are be-
ing examined which capture multiple physiological pathways 
within these cells. 

Another factor that was built into this liver toxicity prediction 
model takes into account the reality that not all dose responses 
are monotonic. In fact, it has been shown that as many as 20% to 
30% of the endpoints measured in vitro have a non-monotonic 
or U-shaped dose response. The predictive model detected and 
interpreted these responses (see Tab. S4). 

In the in vitro HepG2/C3A cell prediction model that was de-
veloped, one of the objectives was to find the lowest liver active 
concentration and to determine whether or not it could be inter-
preted as a lowest observed effect level (LOEL), a value that is 
of interest to risk assessors and would be meaningful for risk as-
sessment of chemicals and drugs. Another advantage in this ap-
proach was that the gold standard list was based exclusively on 
human data so that the validation was against only one species, 
which is also the same species of origin of the liver cells. The 
actual parameter returned by the prediction model is the prob-
ability of a binary classifier being liver active or not for each ob-
servation, thereby allowing for an estimation of the percentage 
of observations indicating liver activity at each concentration 
rather than a simple overall dichotomous classification. 

Known sex differences in liver toxicity also can be modeled 
in an in vitro hepatotoxicity assay. One of the most obvious 
differences between men and women is the difference in blood 
levels of steroid hormones. To build more “reality” into the 
model, mixtures of hormones that were consistent with those in 
both human males and females were added to the culture sys-
tem. Another parameter that might be related to sex differences 
in liver toxicity is inflammation because the immune systems 
of men and women are very different. For example, the inci-
dence of autoimmune disease is much higher in women, and 
women recover from sepsis much faster than men. In modeling 
the immune response for the liver, the liver Kupffer cells, a 
class of macrophage, were considered. Kupffer cells respond to 
any kind of inflammatory challenge by releasing pro-inflamma-
tory cytokines, primarily IL-1β, IL-6, and TNF-α. To add an in 
vivo reality to the in vitro model, a mixture of these cytokines 
was included that is consistent with an inflammatory state in 
the human liver.

Acute phase proteins released by liver in response to inflam-
mation, such as albumin and interleukin-1 receptor antagonist 
(IL-1ra), were measured in the in vitro assay because these pro-

Tab. 5: Effects of sex hormones and cytokines on acute 
phase proteins in HepG2 human hepatoma cells

  Acute phase protein 
  % control ±SE

Hormones Cytokines Albumin IL-1ra

None – 100 ±1  100 ±3

None + 89 ±1 553 ±41

Female – 100 ±2 112 ±6

Female + 88 ±2 625 ±47

Male – 129 ±6 133 ±4

Male + 85 ±2 723 ±26

 Effect Albumin IL-1ra

 Hormones 0.0794 0.0903

 Cytokines 0.0021 0.0396

 Interaction 0.0093 0.1813

HepG2/C3A cells were grown for 8 days in either male hormone, 
female hormone, or sex hormone-free medium, then exposed  
to a mixture of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) 
for 72 h. The amounts of human albumin and human IL-1ra in the 
medium were measured by ELISA. Data are expressed as percent 
of control (no hormones, no cytokines) mean ±SE. Statistically 
significant (p <0.05) effects are shown in bold. Data are from Flynn 
and Ferguson (2010).
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demic institutions, and industry. Future work in this area toward 
addressing the recommendations made by the NRC in Toxicity 
Testing in the 21st Century (NRC, 2007) will require continued 
collaboration and cooperation amongst these key groups.

References 
Adler, S., Basketter, D., Creton, S., et al. (2011). Alternative 

(non-animal) methods for cosmetics testing: current status 
and future prospects – 2010. Arch Toxicol 85, 367-485.

Barter, Z. E., Bayliss, M. K., Beaune, P. H., et al. (2007). Scal-
ing factors for the extrapolation of in vivo metabolic drug 
clearance from in vitro data: reaching a consensus on values 
of human microsomal protein and hepatocellularity per gram 
of liver. Curr Drug Metab 8, 33-45.

Barter, Z. E., Chowdry, J. E., Harlow, J. R., et al. (2008). Co-
variation of human microsomal protein per gram of liver with 
age: absence of influence of operator and sample storage may 
justify interlaboratory data pooling. Drug Metab Dispos 36, 
2405-2409. 

Basketter, D. A., Clewell, H., Kimber, I., et al. (2012). A road-
map for the development of alternative (non-animal) methods 
for systemic toxicity testing. ALTEX 29, 3-91.

Biomarkers Definitions Working Group (2001). Biomarkers and 
surrogate end points: Preferred definitions and conceptual 
framework. Clin Pharmacol Ther 69, 89-95.

Bouhifd, M., Hartung, T., Hogberg, H. T., et al. (2013). Review: 
Toxicometabolomics. J Appl Toxicol 33, 1365-1383. 

Carlile, D. J., Zomorodi, K., and Houston, J. B. (1997). Scaling 
factors to relate drug metabolic clearance in hepatic micro-
somes, isolated hepatocytes and the intact liver – studies with 
induced livers involving diazepam. Drug Metab Dispos 25, 
903-911.

Clewell, H. J., Reddy, M. B., Lave, T., and Andersen, M. E. 
(2008). Physiologically based pharmacokinetic modeling. In 
S. C. Gad (ed.), Preclinical Development Handbook: ADME 

concentration of oleic acid in the medium. Conversely, the total 
phospholipid is reduced. Therefore, in developing a prediction 
model, this information must be incorporated as it appears that 
the accumulating neutral fat crowds out the other intracellular 
membranes, such as the endoplasmic reticulum. The amount of 
total reduced glutathione also increased in the cells in response 
to the oleic acid treatment in a dose dependent manner. Future 
studies will determine the effect of the excess intracellular fat on 
the response to toxicants.

In conclusion, the primary goal has been to build reality into 
in vitro hepatotoxicity assays with an eye towards using the as-
says for actual risk assessment rather than merely as screening 
assays to guide future animal studies. The approaches outlined 
here for hepatotoxicity assays will hopefully provide some 
guidelines or a pathway that will allow scientists to see how 
these assays may someday become useful as replacements for 
animal-based liver toxicity testing. 

6  Conclusion

Recent advances in the development of in vitro assays make the 
results more useful for risk assessment. This session highlighted 
approaches in which toxicologists are more effectively incorpo-
rating in vitro and alternative data to understand the toxicity of 
chemicals and drugs. Models have been and are being developed 
to address specific sensitive subpopulations. Omics technology 
has been used to help identify common effects of toxicants, 
such that the effects of unknown compounds can be compared 
to those of known toxicants in order to assist with risk assess-
ment strategies. In vitro information is being incorporated into 
PBPK models that are routinely used in risk assessment of drugs 
and other chemicals. These advances in effectively incorporat-
ing in vitro data into risk assessment and linking the findings 
to observed effects in vivo is the result of a collaborative effort 
amongst federal agencies, non-profit science organizations, aca-

Fig 4: Effects of 48 h treatment with oleic acid on HepG2/C3A cells
A) Effects of oleic acid on neutral and polar lipid content. Neutral and polar lipids were quantified in a spectrofluorometer in cells  
stained with Nile red. B) Effects of oleic acid on reduced glutathione (GSH) content. Data are from Garcia et al. (2011).

http://www.ncbi.nlm.nih.gov/pubmed/18775982


SympoSium RepoRtS

Altex 31, 1/1490

Lipscomb, J. C., Fisher, J. W., Confer, P. D., and Byczkowski, 
J. Z. (1998). In vitro to in vivo extrapolation for trichloroeth-
ylene metabolism in humans. Toxicol Appl Pharmacol 152, 
376-387.

Lipscomb, J. C., Teuschler, L. K., Swartout, J. C., et al. (2003). 
Variance of microsomal protein and cytochrome P450 2E1 
and 3A forms in adult human liver. Toxicol Mechanisms Meth 
13, 45-51.

Lipscomb, J. C. and Poet, T. S. (2008). In vitro measurements 
of metabolism for application in pharmacokinetic modeling. 
Pharmacol Therap 118, 82-103

Moore, T. J., Cohen, M. R., and Furberg, C. D (2007). Serious 
Adverse Drug Events Reported to the Food and Drug Admin-
istration, 1998-2005. Arch Intern Med 167, 1752-1759.

NRC (2007). Toxicity Testing in the 21st Century: A Vision and a 
Strategy. Washington, DC, USA: National Academy Press.

Russell, W. M. S. and Burch, R. L. (1959). The Principles of 
Humane Experimental Technique. London, UK: Methuen. 
Reprinted by Universities Federation for Animal Welfare, 
Potters Bar, UK, 1992.

Sasso, A. F., Schlosser, P. M., Kedderis, G. L., et al. (2013). Ap-
plication of an updated physiologically based pharmacokinet-
ic model for chloroform to evaluate CYP2E1-mediated renal 
toxicity in rats and mice. Toxicol Sci 131, 360-374.

Shi, L., Campbell, G., Jones, W. D., et al. (2010). The MicroAr-
ray Quality Control (MAQC)-II study of common practices 
for the development and validation of microarray-based pre-
dictive models. Nat Biotechnol 28, 827-838. 

Snawder, J. E. and Lipscomb, J. C. (2000). Interindividual 
variance of cytochrome P450 forms in human hepatic mi-
crosomes: Correlation of individual forms with xenobiotic 
metabolism and implications in risk assessment. Reg Toxicol 
Pharmacol 32, 200-209.

Sobels, F. H. (1989). Models and assumptions underlying ge-
netic risk assessment. Mutat Res 212, 77-89.

Yang, X., Greenhaw, J., Shi, Q., et al. (2012). Identification of 
urinary microRNA profiles in rats that may diagnose hepato-
toxicity. Toxicol Sci 125, 335-344. 

Correspondence to
Ambuja S. Bale, PhD 
U.S. Environmental Protection Agency – Office of  
Research and Development
National Center for environmental Assessment
1200 Pennsylvania Ave., NW
Washington, DC 20460, USA
Phone: +1 703 347 8643 
Fax: +1 703 347 8693
e-mail: ambujabale@gmail.com

and Biopharmaceutical Properties (1167-1227). John Wiley 
& Sons, Inc.

Collins, F. S., Gray, G. M., and Bucher, J. R. (2008). Toxicol-
ogy. Transforming environmental health protection. Science 
319, 906-907.

Flynn, T. J. and Ferguson, M. S. (2008). Multiendpoint mecha-
nistic profiling of hepatotoxicants in HepG2/C3A human 
hepatoma cells and novel statistical approaches for develop-
ment of a prediction model for acute hepatotoxicity. Toxicol 
In Vitro 22, 1618-1631.

Flynn, T. J. and Ferguson, M. S. (2010). An in vitro system for 
studying potential biological mechanisms of human sex dif-
ferences in susceptibility to acute liver injury. Toxicol Lett 
198, 232-236.

Garcia, M. C., Amankwa-Sakyi, M., and Flynn, T. J. (2011). 
Cellular glutathione in fatty liver in vitro models. Toxicol In 
Vitro 25, 1501-1506. 

Hamburg, M. A. (2011). Advancing regulatory science. Science 
331, 987.

Hartung, T., Luechtefeld, T., Maertens, A., and Kleensang, A. 
(2013). Integrated testing strategies for safety assessments. 
ALTEX 30, 3-18.

Hartung, T. and McBride, M. (2011). Food for thought … on 
mapping the human toxome. ALTEX 28, 83-93.

Hartung, T., Blaauboer, B., and Bosgra, S. (2011). An expert 
consortium review of the EC-commissioned report “Alterna-
tive (non-animal) methods for cosmetics testing: Current sta-
tus and future prospects – 2010”. ALTEX 28, 183-209.

Houston, J. B. (1994). Utility of in vitro drug metabolism data 
in predicting in vivo metabolic clearance. Biochem Pharma-
col 47, 1469-1479.

Kanungo, J., Lantz, S., and Paule, M. G. (2011). In vivo imag-
ing and quantitative analysis of changes in axon length using 
transgenic zebrafish embryos. Neurotoxicol Teratol 33, 618-
623.

Kanungo, J. and Paule, M. G. (2011). Disruption of blastomeric 
F-actin: a potential early biomarker of developmental toxicity 
in zebrafish. Mol Cell Biochem 353, 283-290.

Kedderis G. L. (1997). Extrapolation of in vitro enzyme induc-
tion data to humans in vivo. Chem Biol Interact 107, 109-
121.

Kelly, J. H. (1994). Permanent human hepatocyte cell line and its 
use in a liver assist device (LAD). U.S. Patent No. 5290684.

Kenyon, E. M., Pegram, R. A., Eklund, C. E., and Lipscomb, J. 
C. (2012). Comparison of in vivo derived and scaled in vitro 
metabolic rate constants for some volatile organic compounds 
(VOCs). The Toxicologist, Supplement to Tox Sci 126(S-1), 
1892. SOT Annual Meeting, San Francisco, CA, USA.

Lee, H. Y., Inselman, A. L., Kanungo, J., and Hansen, D. K. 
(2012). Alternative models in developmental toxicology. Syst 
Biol Reprod Med 58, 10-22. 

mailto:ambujabale@gmail.com
http://www.ncbi.nlm.nih.gov/pubmed/9402953
http://www.ncbi.nlm.nih.gov/pubmed/?term=HY+Lee%2C+AL+Inselman%2C+J+Kanungo+and+DK+Hansen%2C+Alterative+models+in+developmental+toxicology%2C+Syst+Biol+Reprod+Med++58%3A10-22%2C+2012
http://www.ncbi.nlm.nih.gov/pubmed/20676074
http://www.ncbi.nlm.nih.gov/pubmed/20676074



