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reduce animal testing and to enhance safety assessment largely 
based on developing in vitro systems or in silico approaches 
tailored to toxicologically relevant mechanisms. An example of 
this is the REACH (Registration, Evaluation, Authorization and 
Restriction of Chemicals) program in Europe (Abbott, 2005), 
which is driving for earlier identification of the intrinsic prop-
erties of chemical substances, aligned with encouraging meth-
ods to “reduce, refine and replace” (3Rs) animal testing. In the 
United States, there are several relevant programs such as “Ad-
vancing Regulatory Science” initiated by the Food and Drug 
Administration (FDA) (Hamburg, 2011), the Toxicology in the 
21st Century (Tox21) program led by multiple governmental 
agencies (Tice et al., 2013) and the ToxCast program (Dix et al., 
2007) developed by the U.S. Environmental Protection Agency 

1  Introduction

Before a potential new medicine can progress to clinical trials 
in humans, it must be assessed for safety and tolerability in both 
rodent and non-rodent toxicology studies to limit and manage 
risk to human volunteers and patients. This current paradigm 
is based on law and also on historical data that show a concor-
dance of the toxicity of pharmaceuticals in humans and animals 
(Olson et al., 2000). However, this concordance is challenged 
by many groups who argue that a systematic review of animal 
data demonstrate poor human clinical correlation and question 
the validity of these models (Knight, 2007; Bailey et al., 2013).

In addition to questions on the correlation between animal 
models and human toxicity, worldwide efforts are being made to 
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systems for their consistency, predictivity and their ability to de-
tect underlying toxicity mechanisms. Several studies have been 
reported to address different toxicological questions using these 
big TGx datasets (Otava et al., 2015; Hardt et al., 2016; Bell et 
al., 2016; Sutherland et al., 2016; Liu et al., 2016).

In this study, we examined in vitro to in vivo extrapolation 
(IVIVE) potential by assessing the similarity of gene activities 
between in vitro and in vivo TGx systems using Open TG-
GATEs, a TGx database that stores gene expression profiles and 
traditional toxicological data derived from in vivo (rat) and in 
vitro studies (primary rat hepatocytes or primary human hepato-
cytes) on 131 compounds at multiple doses/concentrations and 
time points. A pair ranking (PRank) method was developed to 
assess the IVIVE potential, based on determining ranking pres-
ervation of drug-drug pairs according to their transcriptomic 
profiles between two assay systems. Furthermore, we examined 
IVIVE potential for specific human hepatotoxic endpoints such 
as drug-induced liver injury, hepatocellular injury, and choles-
tatic injury.

 
2  Materials and methods

Toxicogenomics datasets
The Open Japanese Toxicogenomics Project-Genomics Assist-
ed Toxicity Evaluation System (Open TG-GATEs, http://toxico.
nibiohn.go.jp/english/) was employed for studying IVIVE po-
tential (Uehara et al., 2010; Igarashi et al., 2015). The dataset 
was generated in two phases. Phase I, which involved 131 com-
pounds (mainly drugs), was used in this study. The in vivo data 
was derived from standard preclinical studies with daily dosing 
using three doses (low, medium and high) and four treatment 
durations (3, 7, 14, and 28 days), sampled 24 h after the last 
dose. The in vitro data used 3 concentrations (low, medium and 
high) and 3 treatment durations (2, 4, 24 h). For the in vitro 
study, the highest concentration was defined as that yielding 
80-90% survival; the low and middle concentrations were then 
derived using a 1:5:25 ratio for low: medium: high, all given as 
µM in DMSO. For the in vivo study, 0.5% methylcellulose or 
corn oil (oral dose, mg/kg), saline or 5% glucose solution (in-
travenous dose, mg/kg) were employed for repeat dosing with a 
ratio of the low, middle and high dose of 1:3:10. Blood samples 
for routine bio-chemical analyses were collected in heparinized 
tubes under ether anesthesia from the abdominal aorta at the 
time of sacrifice. In total, 12 time/dose combinations of each 
compound were profiled for the in vivo samples while 9 time/
concentration combinations of each compound were profiled 
for the in vitro samples (Tab. S11). There were 120 common 
compounds among the three assays.

Microarray data processing
Microarray data were processed with two methods, MAS5 
(Hubbell et al., 2002) and FARMS (Factor Analysis for Ro-
bust Microarray Summarization) (Hochreiter et al., 2006). An 

(EPA). The common driver for these programs is to encourage 
the development of animal-free approaches with the assistance 
of in silico methodologies for enhancing drug safety and risk as-
sessment (DeJongh et al., 1999). A key indicator of success will 
be to define which methodological approaches conducted either 
in vitro or in vivo offer the best correlation with human data and 
therefore the best opportunity to predict human toxicity. Among 
these methodologies, toxicogenomics (TGx) has great potential 
as highlighted by a Health and Environmental Sciences Institute 
(HESI) survey (Pettit et al., 2010).

TGx has drawn wide attention as an approach to study the 
underlying molecular mechanisms of toxicity since it allows the 
generation of large and highly informative data sets that lend 
themselves to bioinformatic analyses (Nuwaysir et al., 1999; 
Aardema and MacGregor, 2002). Efforts have been made to 
investigate the potential of TGx data to supply better informa-
tion for toxicity assessment than traditional animal toxicology 
studies (Liu et al., 2011, 2016; Ippolito et al., 2016; Sutherland 
et al., 2016). Furthermore, TGx has been used to investigate 
similarities between in vitro and in vivo assay systems and to 
develop translational biomarkers across the species. Hrach et 
al. (2011) developed an in vitro liver toxicity prediction model 
based on a rat primary hepatocyte sandwich culture, generating 
a 724-gene signature model that is capable of discriminating 
compounds according to their in vivo hepatotoxicity with a mis-
classification rate of only 7.5%. Furthermore, in order to assess 
the difference between in vitro systems and in vivo systems, sev-
eral studies focused on comparing various in vitro liver models 
against liver tissue from in vivo exposure in terms of their gene 
expression profiles. Boess et al. (2003) demonstrated that in 
vitro TGx results, regardless of the system used, do not directly 
compare to the results obtained in vivo, at least not on a gene to 
gene comparison basis. Cheng et al. (2011) developed a novel 
genomic prediction technique based on rat in vivo TGx data, 
where a subset of 32 genes were subsequently used to predict 
hepatotoxicity in test sets of in vitro human liver and in vivo 
animal toxicity experiments. Deng et al. (2010) investigated 
2,4,6-trinitrotoluene (TNT) effects on gene expression in the 
liver. It was suggested that gene regulatory networks obtained 
from an in vitro system can predict in vivo function and mecha-
nisms. We recently described a text-mining methodology based 
on topic modeling that could assist in exploring the correlation 
between in vitro and in vivo assay systems (Lee et al., 2014, 
2016; Chung et al., 2015).

One limitation of many of the reported studies is that they 
are based on relatively small numbers of compounds, limiting 
the statistical measures that can be used for a comprehensive 
assessment, which in turn limits conclusions that can be drawn 
in general (Chen et al., 2012). Several large TGx databases 
derived from well-designed studies are available such as The 
Open Japanese Toxicogenomics Project (TG-GATEs) (Uehara 
et al., 2010; Igarashi et al., 2015), DrugMatrix (Ganter et al., 
2005) and PredTox (Suter et al., 2011). These databases provide 
the opportunity to evaluate systematically different TGx assay 

1 doi:10.14573/altex.1610201s
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probe-level data of the microarrays were quantile normalized. 
Second, a compound batch correction was made by calculating 
the probe intensity ratios using the corresponding control mea-
surement for the cell culture (vehicle-only without compound) 
as a reference. For the next preprocessing step, probe sets were 
defined corresponding to genes using alternative chip defini-
tion files (CDFs) (Version 15.1.0, ENTREZG) (Dai et al., 2005) 

extensive comparison of the results between the two methods 
was made and found to give similar results (see Discussion 
section), therefore we present FARMS processed data. The 
Open TG-GATEs data were downloaded from CAMDA 20132. 
Briefly, for each compound, the gene expression profiles were 
generated for two (in vitro) or three (in vivo) replicate samples 
and two or three matched control replicate samples. First, the 

Tab. 1: IVIVE potential for hepatotoxic endpoints

Categories*	 Number of	 InVitro_Rat-	 InVitro_Human-	 InVitro_Rat- 
	 compounds	 InVivo	 InVivo	 InVitro_Human

All compounds	 120	 0.71	 0.58	 0.77

Drug induced liver injury (DILI)

Most DILI concern	 46	 0.76	 0.62	 0.74

Xu’s label	 47	 0.82	 0.53	 0.73

Sakatis’s label	 51	 0.77	 0.63	 0.73

Hepatic failure	 24	 0.77	 0.72	 0.82

Other hepatotoxic endpoints

Biochemical parameters

AST increased	 13	 0.69	 0.62	 0.78

ALT increased	 9	 0.81	 0.52	 0.88

Hepatic enzyme increased	 8	 0.71	 0.68	 0.80

Blood bilirubin increased	 6	 0.81	 – 	 – 

Liver injury patterns

Cholestasis	 7	 0.95	 0.71	 0.70

Hepatocellular injury	 16	 0.75	 0.57	 0.89

Hepatobiliary abnormality

Cholelithiasis	 6	 0.86	 – 	 – 

Foetor hepaticus	 7	 0.81	 0.62	 0.96

Hepatomegaly	 5	 0.89	 0.59	 0.50

Jaundice	 49	 0.69	 0.63	 0.76

Jaundice cholestatic	 21	 0.40	 0.61	 0.74

Histologic findings

Hyperbilirubinaemia	 7	 0.84	 0.68	 0.78

Hepatitis	 43	 0.70	 0.61	 0.73

Hepatic cirrhosis	 7	 0.80	 0.44	 0.89

Liver disorder	 8	 0.82	 0.68	 0.96

Hepatic function abnormal	 33	 0.77	 0.62	 0.71

Steatosis	 13	 0.67	 0.70	 0.85

Hepatic necrosis	 13	 0.64	 0.63	 0.68

Cytolytic hepatitis	 10	 – 	 0.61	 0.87

Total (%) of IVIVE score increased		  78.3%	 73.9%	 43.5%

*	 The different DILI endpoints are based on published datasets as described in the Materials and Methods section. The value in the table  
is the area under curve (AUC) value for comparison between assay systems based on the proposed PRank methodology.

2 http://dokuwiki.bioinf.jku.at/doku.php/contest_dataset

http://dokuwiki.bioinf.jku.at/doku.php/contest_dataset


Liu et al.

ALTEX 34(3), 2017402

sponding treatment condition. Then, a principal component 
analysis (PCA) was implemented on the matrix. The Matlab 
function princomp.m under Statistics and Machine Learning 
Toolbox (Matlab R2014a) was employed to carry out the PCA 
calculation. Furthermore, we also carried out a hierarchical 
clustering analysis (HCA) to further investigate the treatment 
effect reflected in the TGx data within the same matrix.

Pair ranking (PRank) method
In order to study the IVIVE potential in TGx, we developed a 
pair ranking (PRank) method including the following steps:
1)	We first ranked genes by fold change (treated vs control) for 

each compound. The top 200 (the highest up-regulated) and 
bottom 200 (the highest down-regulated) genes were select-
ed as the signature for the compound. In each TGx assay 
system (e.g., in vitro or in vivo), the similarity between any 
two compounds was assessed by comparing their signatures 
using Dice’s coefficient (Wang et al., 2014), as shown in the 
formula below,

                             
where Ni, j denotes the number of overlapping genes be-
tween compound i and compound j, Ni and Nj represent the 
number of significant genes of compound i and compound j, 
respectively.

2)	The compound-compound pairwise similarities were ranked 
from the most similar to least similar in each assay system.

3)	The PRank score (a scale of 0~1) measured the IVIVE 
potential between two testing systems that was determined 
based on the area under curve (AUC) value from a receiver 
operating characteristic (ROC) curve analysis, which is used 
to measure the extent of rank preservation of the ranked sim-
ilarity lists from two systems.

Kyoto Encyclopedia of Genes and Genomes (KEGG)  
pathway analysis
The Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID)5 (Huang et al., 2008) was used to conduct the 
KEGG pathway analysis. Specifically, the KEGG pathway was 
enriched by using DAVID with the top 200 and down 200 genes. 
A Benjamini-Hochberg adjusted p value less than 0.05 was used 
as a cut-off to identify the over-representative pathways.

Chemical structure similarity
The structural similarity among the compounds was also cal-
culated to compare the compound pairwise similarity based 
on chemical structure information of compounds in the Open 
TG-GATEs database (see the chemical structure information in 
Table S31). Specifically, the well-established functional class 
fingerprints (FCFPs) with a radius of FCFP 4 were used as 
chemical descriptors to calculate Tanimoto coefficients between 
two compounds (Hassan et al., 2006), which were implemented 
in Pipeline Pilot v8.0 (Accelrys, Biovia, and Dassault Systems).

from Brainarray3 and applied FARMS (Hochreiter et al., 2006) 
for summarizing the intensity ratios at probe set level to obtain 
expression values per gene. Finally, the replicate samples were 
collapsed and the ratio data were calculated by using collapsed 
treated samples divided by the collapsed control samples.

Drug-induced liver injury endpoints
Three publicly available drug-induced liver injury (DILI) clas-
sification schemes were used: NCTR DILI annotation (Chen et 
al., 2011), Xu’s dataset (Xu et al., 2008), and Sakatis’s dataset 
(Sakatis et al., 2012). The drugs from the NCTR dataset (Chen 
et al., 2011) were divided into three categories based on their 
DILI potential: most-DILI concern; less-DILI concern; no- 
DILI concern. In this study, only those drugs falling into the 
“most-DILI-concern” category were considered from the  
NCTR dataset (Chen et al., 2011). The data in Xu’s dataset (Xu 
et al., 2008) are annotated by cellular imaging of several toxici-
ty endpoints in primary human hepatocyte cultures. The Sakatis 
dataset (Sakatis et al., 2012) employs in vitro bio-activation data 
to identify DILI risk of > 200 compounds. In this study, the  
DILI positive drugs in each of the annotations were mapped 
onto the Open TG-GATEs compound list for further analysis  
(Tab. S21).

To address the complexity of DILI in humans, we also in-
corporated hepatotoxic related clinical manifestations in our 
analysis. Specifically, the human hepatic-related side effects 
were downloaded from the SIDER database4 (Kuhn et al., 
2010, 2016), which is based on Natural Language Processing 
(NLP) from drug labels and side effect terms standardized using 
the Medical Dictionary for Regulatory Activities (MedDRA 
v16.1) preferred terms (PTs). The hepatic related side effects 
were collected by attributing PTs to their primary System  
Organ Class (SOC) level of hepatobiliary disorders in Med-
DRA. Compounds that caused hepatic steatosis were curated 
from a literature survey and corrected by domain experts by 
observation of pathologic images (Liu et al., 2016; Sahini et al., 
2014) (Tab. S21). The collated hepatotoxic endpoints occurring 
across the 120 compounds and the three assays were further 
divided by domain experts into five different categories: liver 
transaminase elevations, hepatobiliary abnormality, histologic 
findings, liver injury patterns and severity of liver injury (Tab. 
1).

Principal component analysis (PCA) and hierarchical  
clustering analysis (HCA)
The number of differentially expressed genes (DEGs) obtained 
from a treatment depends on the treatment condition. Use of 
different toxicants or varying doses/concentrations and treat-
ment duration of the same toxicant will lead to a change in the 
number of DEGs identified. Thus, treatment state and effect 
is reflected on the number of DEGs identified. Specifically, a 
matrix (dose/concentration)/time vs compounds) was generated 
with each element denoting a number of DEGs for the corre-

3 http://brainarray.mbni.med.umich.edu/Brainarray/default.asp
4 http://sideeffects.embl.de/
5 http://david.abcc.ncifcrf.gov/

http://brainarray.mbni.med.umich.edu/Brainarray/default.asp
http://sideeffects.embl.de/
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system, the number of DEGs in the assay system was investigat-
ed (Fig. S21). It was shown that the standard deviation of DEG 
distribution within the two in vitro assay systems was higher 
than in the in vivo system, which indicated that the compound 
response was the main influencing effect in the in vitro assay 
and the animal response had more influence in the in vivo assay 
system. Furthermore, the average number of DEG was quite 
different in the three TGx assay systems. Therefore, we used 
a fixed number of gene signatures of each compound and cal-
culated pair-wise similarity (Iorio et al., 2010). To address the 
question of how many genes are sufficient to faithfully represent 
the compound response to the assay system, the rank order of 
the gene list for each compound was generated based on fold 
change from high to low. The top N genes from the up and down 
ranked list were picked to denote the DEG for each drug (N = 50: 
50: 500). The pair-wise similarity was generated using Dice’s 
coefficient between all the compound pairs. Ordered compound 
pair lists were generated based on pair-wise similarity (Spear-
man’s correlation coefficient), which was used to investigate the 
stability of the ranked compound pair list (Fig. S31). It could be 
seen that the ranked order of compound pairs tended to be stable 
with more than 200 genes from the top and down ranked gene 
list. Therefore, the top 200 and bottom 200 genes were selected 
for each compound as the signature to calculate pairs-wise simi-
larity in the PRank process.

3  Results

3.1  The highest dose/concentration and 
longest exposure showed the most variance
TG-GATEs experiments were conducted using multiple time 
and dose/concentration levels for each compound. Figure 1 
shows the PCA results based on the number of DEGs at each 
time and dose/concentration combination. It showed that the 
low and middle doses/concentrations even at different times 
clustered together, indicating a weak response to the assay 
system. However, the highest dose/concentration and longest 
duration in each assay system showed the most variance. We 
further used HCA to investigate the relationship among treat-
ment/system/time/dose (or concentration), as shown in Figure 
S11. It was observed that the high dose/concentration and long 
durations were clustered in each assay system. Therefore, only 
the highest dose/concentration and longest duration of treatment 
was taken forward for further analysis (28 day, highest dose;  
24 h, highest concentration).

3.2  The 200 genes from the top and down 
ranked gene list generated a stable list
Before calculating similarity between compounds in each assay 

Fig. 1: PCA analysis of three toxicogenomics assays
In each compound/time/dose (concentration)/assay setting, the number of differentially expressed genes (DEGs) was calculated  
with the criteria fold change of ≥ 1.5 and p value ≤ 0.05. Then, the matrix about drug vs different time/dose/assay could be constructed 
using the number of DEGs. Finally, the PCA analysis was applied to the matrix and the first three PCs were drawn.
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and InVivo_Rat, indicating the potential to substitute animal 
models with an animal-free in vitro assay. However, the inter-
species concordance between InVitro_Human and InVivo_Rat 
was much lower (score = 0.58).

Over-represented KEGG pathways for each compound were 
also determined in each testing platform. Taking all the com-
pounds together, we examined the concordance between the 
TGx testing platforms with respect to the pathways perturbed 
by the compounds and ranked the pathway by its frequency of 
over-representation in each testing system. The concordance 

3.3  Rat in vitro showed high 
concordance with rat in vivo
Figure 2A shows the concordance among the three testing sys-
tems (referred to as InVivo_Rat, InVitro_Rat, and InVitro_Hu-
man hereafter) based on their PRank score. Concordance was 
highest between the two in vitro systems, i.e., InVitro_Rat and 
InVitro_Human (score = 0.77), indicating that species difference 
was less pronounced within the same testing system. There was 
also a high IVIVE potential (score = 0.70) between InVitro_Rat 

Fig. 2: The concordance among the three different toxicogenomic assay systems
(A) PRank methodology: the gene expression data is processed using FARMERS, (B) The percentage of overlapping adverse outcome 
pathways (AOPs) among the three toxicogenomic assay systems.

Tab. 2: Common pathways between InVitro_Rat and InVivo_rat

KEGG entry	 Pathway names	 Class

rno00830	 Retinol metabolism	 Lipid metabolism

rno00140	 Steroid hormone biosynthesis	 Lipid metabolism

rno01040	 Biosynthesis of unsaturated fatty acids	 Lipid metabolism

rno00071	 Fatty acid metabolism	 Lipid metabolism

rno00100	 Steroid biosynthesis	 Lipid metabolism

rno00280	 Valine, leucine and isoleucine degradation	 Amino acid metabolism

rno00330	 Arginine and proline metabolism	 Amino acid metabolism

rno00380	 Tryptophan metabolism	 Amino acid metabolism

rno00480	 Glutathione metabolism	 Metabolism of other amino acids

rno00982	 Drug metabolism	 Xenobiotics biodegradation and metabolism

rno00980	 Metabolism of xenobiotics by cytochrome P450	 Xenobiotics biodegradation and metabolism

rno00650	 Butanoate metabolism	 Carbohydrate metabolism

rno03320	 PPAR signaling pathway	 Endocrine system
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mechanisms. Among these approaches, toxicogenomics (TGx) 
shows great potential to facilitate method developments for 
predicting long-term toxic effects and to provide mechanistic 
elucidation at the molecular level (Pettit et al., 2010). Howev-
er, if TGx data generated in vitro are to supplement or replace 
animal use in predicting human safety, it is key to understand 
how the data are similar to those from rat in vivo systems. We 
therefore explored in vitro to in vivo extrapolation using gene 
expression data retrieved from TG-GATEs to determine the 
utility of IVIVE.

Overall, the data show a good potential for InVitro_Rat to 
InVivo_Rat extrapolation suggesting that a 1-day in vitro TGx 
system could yield meaningful data. When the analysis was 
limited to DILI related drugs, the IVIVE potential improved 
in both systems. An analysis of POPs as an indicator of over-
lapped pathways shows large numbers of overlapping pathways 
between rat hepatocytes and other assay systems, but the POPs 
between rat in vivo and human in vitro was low, indicating that 
when both the species and assay system differ, extrapolation can 
be challenging.

Various in vitro and in vivo testing strategies have been devel-
oped to assess drug sensitivity and toxicity, and within a given 
system a wide range of endpoints can be studied. For example, 
in vitro testing strategies may rely on immortalized cell lines, 
primary cell cultures, or more physiologically relevant cell en-
vironments (Tice et al., 2013; Michelini et al., 2010). Addition-
ally, cell lines can be grown in three-dimensional (3D) models 
and cells may be derived from susceptible individuals to mimic 
idiosyncratic responses. The diversity of choice creates a chal-
lenge as to whether the different assay results yield comparable 
assessments, especially on how they rank drugs with respect 
to efficacy or toxicity (Haibe-Kains et al., 2013; Garnett et al., 
2012; Barretina et al., 2012).

In the pair ranking analysis (Prank) we refer to “similar” 
compounds that imply similar toxicity profiles based on toxi-
cogenomic data and the phrase “a highly similar pair of com-
pounds” must be seen in the context of a comparison against 
other pairs. If the pairwise similarity of two compounds is 
consistently ranked at the top by various assays among all other 
pairs of compounds compared, these two compounds are high-
ly likely similar. The same concept can be used to assess the 
similarity of any two assays where if two assays produce the 
same ranking resolution, we consider them interchangeable. 
Therefore, the PRank method compares any two assay systems 
by their preservation of the ranking of transcriptomic profiles 
perturbed by compounds.

The read-across concept assumes that compounds with simi-
lar chemical structure have similar biological activity or toxicity 
(Zhu et al., 2016). However, this approach is not always robust 
as illustrated by ibuprofen and ibufenac. These two drugs are 
NSAIDs with very similar chemical structures (only one methyl 
group difference) but ibufenac was withdrawn from the market 
due to severe DILI whereas ibuprofen continues as one of the 
most popular over-the-counter pain relief medications. Three 
TGx assay systems were used to carry out a comparison be-
tween the chemical similarity and outcome (Fig. 3). The PRank 

between the two testing platforms was defined as the percentage 
of overlapped pathways (POP) between them. As depicted in 
Figure 2B, the highest concordance in the POP plot (0.76) was 
between the two in vitro systems, followed by InVitro_Rat-In-
Vivo_Rat (0.71) and InVitro_Human-InVivo_Rat (0.57). Thus, 
the pathway-level analysis was consistent with the findings from 
the proposed PRank methodology at the gene level. Thirteen 
pathways were common between InVitro_Rat and InVivo_Rat 
(Tab. 2), most of them involved in different metabolic processes 
such as lipid metabolism.

Since TGx data are generated using microarray technolo-
gy, the influence of the different preprocessing strategies was 
also investigated. Here, the TGx data of three different assay 
systems were processed using a MAS5.0 expression summary 
(Pepper et al., 2007). The same conclusion could be drawn from 
the analysis (see Fig. S41).

3.4  IVIVE potential for drug-induced  
liver injury (DILI)
We further examined whether IVIVE potential could be im-
proved when the proposed PRank methodology was applied 
to different DILI-related endpoints. To this end, we analyzed 
IVIVE for four groups of compounds (under DILI classification 
in Tab. 1), two of which are associated with severe DILI (“most 
DILI concern” and “hepatic failure”) and two for general DILI 
(Xu and Sakatis labels). The IVIVE potential (PRank score) of 
InVitro_Rat-InVivo_Rat was marginally increased by 7% for 
all four groups (ScoreMost-DILI concern = 0.76, ScorehepaticFailure 
= 0.77, ScoreXu = 0.82, and ScoreSakatis = 0.77) in comparison 
to all the compounds studied (Score = 0.71). In addition, the 
PRank scores of InVitro_Human-InVivo_Rat were also im-
proved for three out of four DILI groups. In contrast, a slight 
decrease in the score was observed between the two in vitro 
systems for three of the four DILI groups (from 0.77 to 0.73-
0.74, last column of Tab. 1). 

To ensure that the above observations were not due to chance, 
an equal number of compounds from all the study compounds in 
each of four DILI groups was selected and analyzed by PRank 
individually. This process was repeated N = 100,000 to remove 
the potential bias in the compound selection process. Results in 
Table 1 were statistically significantly different from those of 
the random test with an adjusted p value less than 1×10-6.

Lastly, compounds were sorted according to their DILI mani-
festations and the PRank analysis was conducted for each group. 
There was a total of 20 different DILI endpoints grouped into  
4 categories (see Tab. 1). The IVIVE potential was significantly 
improved for most of the categories when compared to all the 
compounds used.

4  Discussion

Owing to the poor correlation between animal models and 
human toxicology, tremendous efforts have been made to 
investigate whether in vitro systems or in silico approaches 
could provide better representation of toxicologically relevant 



Liu et al.

ALTEX 34(3), 2017406

niques in drug discovery through an improved understanding 
of the IVIVE potential of different techniques such as toxicog-
enomics, high throughput screening assays and other testing 
systems. The data presented suggest that PRank methodology 
offers a promising approach to assess transferability between 
the testing systems.

References
Aardema, M. J. and MacGregor, J. T. (2002). Toxicology and ge-

netic toxicology in the new era of “toxicogenomics”: Impact 
of “-omics” technologies. Mutat Res 499, 13-25. doi:10.1016/
S0027-5107(01)00292-5

Abbott, A. (2005). More than a cosmetic change. Nature 438, 
144-146. doi:10.1038/438144a

Bailey, J., Thew, M. and Balls, M. (2013). An analysis of the 
use of dogs in predicting human toxicology and drug safety. 
Altern Lab Anim 41, 335-350.

Baldi, P. and Benz, R. W. (2008). BLASTing small molecules – 
statistics and extreme statistics of chemical similarity scores. 
Bioinformatics 24, i357-i365. doi:10.1093/bioinformatics/
btn187

Barretina, J., Caponigro, G., Stransky, N. et al. (2012). The can-
cer cell line encyclopedia enables predictive modelling of an-
ticancer drug sensitivity. Nature 483, 603-307. doi:10.1038/
nature11003

Bell, S. M., Angrish, M. M., Wood, C. E. and Edwards, S. W. 
(2016). Integrating publicly available data to generate com-
putationally predicted adverse outcome pathways for fatty 
liver. Toxicol Sci 150, 510-520. doi:10.1093/toxsci/kfw017

Boess, F., Kamber, M., Romer, S. et al. (2003). Gene expression 

score between chemical space and TGx space was less than 0.6 
for all three TGx testing systems, which implied that there was 
no concordance between chemical space and TGx space.

We further investigated the ability of the TGx systems to 
detect compounds with high chemical similarity (Tanimoto 
correlation coefficient cut-off = 0.4, which is close to similarity 
value of the top one percentile of total pairs, see Fig. S51) (Baldi 
and Benz, 2008). There were 48 drug pairs with chemical sim-
ilarity greater than 0.4. We further compared the similarity ob-
served to the similarity in different TGx space, as listed in Tab. 
S31. There are 20.8%, 12.5% and 8.3% compound pairs with 
similarity more than 0.4 in the InVitro_Rat, InVitro_Human, 
and InVivo_Rat, respectively. In addition, 33.3% and 39.6% 
compound pairs with chemical similarity more than 0.4 have 
the same therapeutic uses and DILI concern, respectively. It was 
suggested that the combination of chemical structure and TGx 
may be a better way to conduct a safety assessment (Low et al., 
2011). For example, chlorpheniramine and ticlopidine have a 
chemical similarity of 0.45 but the therapeutic uses and DILI 
concern are quite different for the two compounds. The TGx 
systems show that the two compounds are quite different with 
similarity less than 0.2, demonstrating that the difference be-
tween the compounds could be distinguished in the TGx assay 
systems.

The IVIVE between the assay systems was endpoint depen-
dent and we found lipid metabolism to be consistently perturbed 
among the three testing strategies (rat or human in vitro, rat  
in vivo). For instance, a high similarity was observed among the 
PPARα agonists (fenofibrate, clofibrate and WY-14643), which 
influence lipid metabolism (Tab. S41). In our previous study, we 
also demonstrated that these three compounds clustered togeth-
er using topic modeling with network approaches (Lee et al., 
2014).  

There are several caveats to the current study. Firstly, pharma-
cokinetics and pharmacodynamics (PK/PD) are not considered 
within the proposed IVIVE assessment of toxicogenomic data. 
The PK/PD properties of a molecule influence the concentration 
that ultimately reaches the cell, and are essential in interpreting 
in vitro data in the context of drug potency (Groothuis et al., 
2015; Kramer et al., 2015). In the current PRank methodology, 
we evaluated IVIVE potential based on the gene activity among 
different assay systems, which does not take into account the 
actual concentration reaching the cell. In future studies, PK/PD 
properties will be factored in to enhance interpretation of the 
data and further improve the assessment. Secondly, there are 
no negative controls in the Open TG-GATEs database for the 
different DILI related endpoints; this limits the assessment of 
the methodology for discrimination of IVIVE potential. Fur-
thermore, in future, genetic elements such as miRNA and long 
non-coding RNAs implicated in regulating specific toxicologi-
cal or biological processes could be integrated into our proposed 
PRank methodology.

In the current drug discovery paradigm, animal testing sys-
tems are still considered the standard way to assess drug safety 
and detect potential safety concerns. As emerging techniques 
develop, it is the key to understand how to apply these tech-

Fig. 3: The concordance between three different  
toxico-genomic assay systems and chemical space using  
the PRank method

https://doi.org/10.1016/S0027-5107(01)00292-5
https://doi.org/10.1038/438144a
httpa://doi.org/10.1093/bioinformatics/btn187
https://doi.org/10.1038/nature11003
https://doi.org/10.1093/toxsci/kfw017


Liu et al.

ALTEX 34(3), 2017 407

(2006). Cheminformatics analysis and learning in a data pipe-
lining environment. Mol Divers 10, 283-299. doi:10.1007/
s11030-006-9041-5

Hochreiter, S., Clevert, D.-A. and Obermayer, K. (2006). A 
new summarization method for affymetrix probe level data.  
Bioinformatics 22, 943-949. doi:10.1093/bioinformatics/ 
btl033

Hrach, J., Mueller, S. O. and Hewitt, P. (2011). Development 
of an in vitro liver toxicity prediction model based on longer 
term primary rat hepatocyte culture. Toxicol Lett 206, 189-
196. doi:10.1016/j.toxlet.2011.07.012

Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008). 
Systematic and integrative analysis of large gene lists using 
DAVID bioinformatics resources. Nat Protocols 4, 44-57. 
doi:10.1038/nprot.2008.211

Hubbell, E., Liu, W.-M. and Mei, R. (2002). Robust estima-
tors for expression analysis. Bioinformatics 18, 1585-1592. 
doi:10.1093/bioinformatics/18.12.1585

Igarashi, Y., Nakatsu, N., Yamashita, T. et al. (2015). Open 
TG-GATEs: A large-scale toxicogenomics database. Nucleic 
Acids Res 43, D921-D927. doi:10.1093/nar/gku955

Iorio, F., Bosotti, R., Scacheri, E. et al. (2010). Discovery of 
drug mode of action and drug repositioning from transcrip-
tional responses. Proc Natl Acad Sci 107, 14621-14626. 
doi:10.1073/pnas.1000138107

Ippolito, D. L., AbdulHameed, M. D. M., Tawa, G. J. et al. 
(2016). Gene expression patterns associated with histopathol-
ogy in toxic liver fibrosis. Toxicol Sci 149, 67-88. doi:10.1093/
toxsci/kfv214

Knight, A. (2007). Systematic reviews of animal experiments 
demonstrate poor human clinical and toxicological utility. 
Altern Lab Anim 35, 641-659.

Kramer, N. I., Di Consiglio, E., Blaauboer, B. J. et al. 
(2015). Biokinetics in repeated-dosing in vitro drug toxic-
ity studies. Toxicol In Vitro 30, 217-224. doi:doi:10.1016/j.
tiv.2015.09.005

Kuhn, M., Campillos, M., Letunic, I. et al. (2010). A side effect 
resource to capture phenotypic effects of drugs. Mol Syst Biol 
6, 343. doi:10.1038/msb.2009.98

Kuhn, M., Letunic, I., Jensen, L. J. and Bork, P. (2016). The 
SIDER database of drugs and side effects. Nucleic Acids Res 
44, D1075-D1079. doi:10.1093/nar/gkv1075

Lee, M., Liu, Z. C., Kelly, R. and Tong, W. (2014). Of text and 
gene – using text mining methods to uncover hidden knowl-
edge in toxicogenomics. BMC Syst Biol 8, 93. doi:10.1186/
s12918-014-0093-3

Lee, M., Huang, R. and Tong, W. (2016). Discovery of transcrip-
tional targets regulated by nuclear receptors using a probabi-
listic graphical model. Toxicol Sci 150, 64-73. doi:10.1093/
toxsci/kfv261

Liu, Z., Kelly, R., Fang, H. et al. (2011). Comparative analysis 
of predictive models for nongenotoxic hepatocarcinogenicity 
using both toxicogenomics and quantitative structure-activity 
relationships. Chem Res Toxicol 24, 1062-1070. doi:10.1021/
tx2000637

Liu, Z., Wang, Y., Borlak, J. and Tong, W. (2016). Mechanis-

in two hepatic cell lines, cultured primary hepatocytes, and 
liver slices compared to the in vivo liver gene expression in 
rats: Possible implications for toxicogenomics use of in vitro 
systems. Toxicol Sci 73, 386-402. doi:10.1093/toxsci/kfg064

Chen, M., Vijay, V., Shi, Q. et al. (2011). FDA-approved drug 
labeling for the study of drug-induced liver injury. Drug Dis-
cov Today 16, 697-703. doi:10.1016/j.drudis.2011.05.007

Chen, M., Zhang, M., Borlak, J. and Tong, W. et al. (2012). 
A decade of toxicogenomic research and its contribution to 
toxicological science. Toxicol Sci 130, 217-228. doi:10.1093/
toxsci/kfs223

Cheng, F., Theodorescu, D., Schulman, I. G. et al. (2011). In 
vitro transcriptomic prediction of hepatotoxicity for early 
drug discovery. J Theor Biol 290, 27-36. doi:10.1016/j.jt-
bi.2011.08.009

Chung, M. H., Wang, Y. P., Tang, H. L. et al. (2015). Asym-
metric author-topic model for knowledge discovering of big 
data in toxicogenomics. Front Pharmacol 6, 81. doi:10.3389/
fphar.2015.00081

Dai, M., Wang, P., Boyd, A. D. et al. (2005). Evolving gene/
transcript definitions significantly alter the interpretation of 
GeneChip data. Nucleic Acids Res 33, e175. doi:10.1093/nar/
gni179

DeJongh, J., Nordin-Andersson, M., Ploeger, B. A. and Fors-
by, A. (1999). Estimation of systemic toxicity of acrylamide 
by integration of in vitro toxicity data with kinetic simula-
tions. Toxicol Appl Pharmacol 158, 261-268. doi:10.1006/
taap.1999.8670

Deng, Y. P., Johnson, D. R., Guan, X. et al. (2010). In vitro gene 
regulatory networks predict in vivo function of liver. BMC 
Syst Biol 4, 18. doi:10.1186/1752-0509-4-153

Dix, D. J., Houck, K. A., Martin, M. T. et al. (2007). The Tox-
Cast program for prioritizing toxicity testing of environmen-
tal chemicals. Toxicol Sci 95, 5-12. doi:10.1093/toxsci/kfl103

Ganter, B., Tugendreich, S., Pearson, C. I. et al. (2005). Devel-
opment of a large-scale chemogenomics database to improve 
drug candidate selection and to understand mechanisms of 
chemical toxicity and action. J Biotechnol 119, 219-244. 
doi:10.1016/j.jbiotec.2005.03.022

Garnett, M. J., Edelman, E. J., Heidorn, S. J. et al. (2012). 
Systematic identification of genomic markers of drug sen-
sitivity in cancer cells. Nature 483, 570-575. doi:10.1038/
nature11005

Groothuis, F. A., Heringa, M. B., Nicol, B. et al. (2015). Dose 
metric considerations in in vitro assays to improve quanti-
tative in vitro-in vivo dose extrapolations. Toxicology 332, 
30-40. doi:10.1016/j.tox.2013.08.012

Haibe-Kains, B., El-Hachem, N., Birkbak, N. J. et al. (2013). 
Inconsistency in large pharmacogenomic studies. Nature 504, 
389-393. doi:10.1038/nature12831

Hamburg, M. A. (2011). Advancing regulatory science. Science 
331, 987-987. doi:10.1126/science.1204432

Hardt, C., Beber, M. E., Rasche, A. et al. (2016). ToxDB: Path-
way-level interpretation of drug-treatment data. Database 
2016, baw052. doi:10.1093/database/baw052

Hassan, M., Brown, R. D., Varma-O’Brien, S. and Rogers, D. 

https://doi.org/10.1093/toxsci/kfg064
https://doi.oeg/10.1016/j.drudis.2011.05.007
https://doi.org/10.1093/toxsci/kfs223
https://doi.org/10.1016/j.jtbi.2011.08.009
https://doi.org/10.3389/fphar.2015.00081
https://doi.org/10.1093/nar/gni179
https://doi.org/10.1006/taap.1999.8670
https://doi.org/10.1186/1752-0509-4-153
https://doi.org/10.1093/toxsci/kfl103
https://doi.org/10.1016/j.jbiotec.2005.03.022
https://doi.org/10.1038/nature11005
https://doi.org/10.1016/j.tox.2013.08.012
https://doi.org/10.1038/nature12831
https://doi.org/10.1126/science.1204432
https://doi.org/10.1093/database/baw052
https://doi.org/10.1007/s11030-006-9041-5
https://doi.org/10.1093/bioinformatics/btl033
https://doi.org/10.1016/j.toxlet.2011.07.012
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1093/bioinformatics/18.12.1585
https://doi.org/10.1093/nar/gku955
https://doi.org/10.1073/pnas.1000138107
https://doi.org/10.1093/toxsci/kfv214
https://doi.org/10.1016/j.tiv.2015.09.005
https://doi.org/10.1038/msb.2009.98
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1186/s12918-014-0093-3
https://doi.org/10.1093/toxsci/kfv261
https://doi.org/10.1021/tx2000637


Liu et al.

ALTEX 34(3), 2017408

Uehara, T., Ono, A., Maruyama, T. et al. (2010). The Japanese 
toxicogenomics project: Application of toxicogenomics. Mol 
Nutr Food Res 54, 218-227. doi:10.1002/mnfr.200900169

Wang, C., Gong, B., Bushel, P. R. et al. (2014). The concordance 
between RNA-seq and microarray data depends on chemical 
treatment and transcript abundance. Nat Biotech 32, 926-932. 
doi:10.1038/nbt.3001

Xu, J. J., Henstock, P. V., Dunn, M. C. et al. (2008). Cellular 
imaging predictions of clinical drug-induced liver injury.  
Toxicol Sci 105, 97-105. doi:10.1093/toxsci/kfn109

Zhu, H., Bouhifd, M., Kleinstreuer, N. et al. (2016). t4 report: 
Supporting read-across using biological data. ALTEX 33, 167. 
doi:10.14573/altex.1601252

Conflict of interest
Ruth Roberts is co-founder and co-director of Apconix, an inte-
grated toxicology and ion channel company that provides expert 
advice on nonclinical aspects of drug discovery and drug devel-
opment to academia, industry and not-for-profit organisations.

Acknowledgements
We specially thank Dr John Senior for categorizing DILI pat-
terns and also thank Dr Takeki Uehara, Dr Ikuo Kato and the 
TGP group for helpful discussions and for their expert opinion 
on histopathology of the livers after treatment of rats with ste-
atosis/phospholipidosis causing drugs.

Correspondence to
Zhichao Liu, PhD
National Center for Toxicological Research (NCTR)
U.S. Food and Drug Administration
3900 NCTR Road, HFT-020
Jefferson, AR 72079, USA
Phone: +1 870 543 7909
Fax: +1 870 543 7662
e-mail: zhichao.liu@fda.hhs.gov

Weida Tong, PhD
National Center for Toxicological Research (NCTR)
U.S. Food and Drug Administration
3900 NCTR Road, HFT-020
Jefferson, AR 72079, USA
Phone: +1 870 543 7142
Fax: +1 870 543 7662
e-mail: weida.tong@fda.hhs.gov

tically linked serum miRNAs distinguish between drug in-
duced and fatty liver disease of different grades. Sci Rep 6, 
23709. doi:10.1038/srep23709

Low, Y., Uehara, T., Minowa, Y. et al. (2011). Predicting drug-in-
duced hepatotoxicity using QSAR and toxicogenomics 
approaches. Chem Res Toxicol 24, 1251-1262. doi:10.1021/
tx200148a

Michelini, E., Cevenini, L., Mezzanotte, L. et al. (2010). Cell-
based assays: Fuelling drug discovery. Anal Bioanal Chem 
398, 227-238. doi:10.1007/s00216-010-3933-z

Nuwaysir, E. F., Bittner, M., Trent, J. et al. (1999). Mi-
croarrays and toxicology: The advent of toxicogenom-
ics. Mol Carcinog 24, 153-159. doi:10.1002/(sici)1098-
2744(199903)24:3<153::aid-mc1>3.0.co;2-p

Olson, H., Betton, G., Robinson, D. et al. (2000). Concor-
dance of the toxicity of pharmaceuticals in humans and in 
animals. Regul Toxicol Pharmacol 32, 56-67. doi:10.1006/
rtph.2000.1399

Otava, M., Shkedy, Z., Talloen, W. et al. (2015). Identification 
of in vitro and in vivo disconnects using transcriptomic data. 
BMC Genomics 16, 1-10. doi:10.1186/s12864-015-1726-7

Pepper, S., Saunders, E., Edwards, L. et al. (2007). The utility 
of MAS5 expression summary and detection call algorithms. 
BMC Bioinformatics 8, 273. doi:10.1186/1471-2105-8-273

Pettit, S., des Etages, S. A., Mylecraine, L. et al. (2010). Current 
and future applications of toxicogenomics: Results summary 
of a survey from the HESI genomics state of science subcom-
mittee. Environ Health Perspect 118, 992-997. doi:10.1289/
ehp.0901501

Sahini, N., Selvaraj, S. and Borlak, J. (2014). Whole genome 
transcript profiling of drug induced steatosis in rats reveals a 
gene signature predictive of outcome. PLoS One 9, e114085. 
doi:10.1371/journal.pone.0114085

Sakatis, M. Z., Reese, M. J., Harrell, A. W. et al. (2012). Preclin-
ical strategy to reduce clinical hepatotoxicity using in vitro 
bioactivation data for >200 compounds. Chem Res Toxicol 
25, 2067-2082. doi:10.1021/tx300075j

Suter, L., Schroeder, S., Meyer, K. et al. (2011). EU Framework 
6 Project: Predictive toxicology (PredTox)-overview and 
outcome. Toxicol Appl Pharmacol 252, 73-84. doi:10.1016/j.
taap.2010.10.008

Sutherland, J. J., Jolly, R. A., Goldstein, K. M. and Stevens, J. 
L. (2016). Assessing concordance of drug-induced transcrip-
tional response in rodent liver and cultured hepatocytes. PLoS 
Comput Biol 12, e1004847. doi:10.1371/journal.pcbi.1004847

Tice, R. R., Austin, C. P., Kavlock, R. J. and Bucher, J. R. 
(2013). Improving the human hazard characterization of 
chemicals: A Tox21 update. Environ Health Perspect 121, 
756-765. doi:10.1289/ehp.1205784

mailto:zhichao.liu@fda.hhs.gov
mailto:weida.tong@fda.hhs.gov
https://doi.org/10.1289/ehp.1205784
https://doi.org/10.1371/journal.pcbi.1004847
https://doi.org/10.1016/j.taap.2010.10.008
https:doi.org/10.1021/tx300075j
https://doi.org/10.1371/journal.pone.0114085
https://doi.org/10.1289/ehp.0901501
https://doi.org/10.1186/1471-2105-8-273
https://doi.org/10.1186/s12864-015-1726-7
https://doi.org/10.1006/rtph.2000.1399
https://doi.org/10.1002/(sici)1098-2744(199903)24:3<153::aid-mc1>3.0.co;2-p
https://doi.org/10.1007/s00216-010-3933-z
https://doi.org/10.1021/tx200148a
https://doi.org/10.1038/srep23709
https://doi.org/10.1002/mnfr.200900169
https://doi.org/10.1038/nbt.3001
https://doi.org/10.1093/toxsci/kfn109
https://doi.org/10.14573/altex.1601252



