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Summary
The role that in vitro systems can play in toxicological risk assessment is determined by the appropriateness 
of the chosen methods, with respect to the way in which in vitro data can be extrapolated to the in vivo 
situation. This report presents the results of a workshop aimed at better defining the use of in vitro-derived 
biomarkers of toxicity (BoT) and determining the place these data can have in human risk assessment.  
As a result, a conceptual framework is presented for the incorporation of in vitro-derived toxicity data into 
the risk assessment process. The selection of BoT takes into account that they need to distinguish adverse 
and adaptive changes in cells. The framework defines the place of in vitro systems in the context of  
data on exposure, structural and physico-chemical properties, and toxicodynamic and biokinetic modeling. 
It outlines the determination of a proper point-of-departure (PoD) for in vitro-in vivo extrapolation, 
allowing implementation in risk assessment procedures. A BoT will need to take into account both the 
dynamics and the kinetics of the compound in the in vitro systems. For the implementation of the proposed 
framework it will be necessary to collect and collate data from existing literature and new in vitro test 
systems, as well as to categorize biomarkers of toxicity and their relation to pathways-of-toxicity. Moreover, 
data selection and integration need to be driven by their usefulness in a quantitative in vitro-in vivo 
extrapolation (QIVIVE).
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1  Introduction

This is the report of a workshop organized to identify the pos-
sible next steps in incorporating the use of in vitro, in silico, 
and other non-animal-based methodologies into the process 
of toxicological risk assessment. The workshop was organ-
ized by the Transatlantic Think Tank for Toxicology, a group 
of scientists1 that promotes recent changes in the paradigm of 
toxicity testing (Daneshian et al., 2010). A general outline of 
the new approach to toxicity testing is presented in a number 
of documents produced by the Dutch Health Council (HCN, 
2001), ILSI-Europe (Eisenbrand et al., 2002), and the National 
Research Council report Toxicity Testing in the 21st Century 
(NRC, 2007). The event was hosted by the Institute for Risk 
Assessment Sciences of Utrecht University and was held in 
Utrecht in January 2011. This report has been updated with 
references through 2012. For explanation of terminology used 
in this document, see Table 1.

The workshop was designed to further define the use of bi-
omarkers obtained for in vitro systems (BoT) and to clarify their 
role in toxicological risk assessment. Discussion was driven by 
a question formed at the beginning of the meeting: “How can 
in vitro-derived biomarkers (BoT) be used as input in the risk 
assessment procedure?” 

2  Background

Current practice in toxicological risk assessment of health or 
environmental risk associated with chemical exposure is most 
commonly based on clinical or histopathological endpoints 
determined in animal models. Apart from ethical objections to 
the use of animals (Russell and Burch, 1959), there is also a 
scientific motivation for re-evaluating these models. The use of 
animal data to predict the biological activities of compounds in 
humans is always prone to some degree of uncertainty due to the 
differences in kinetics and dynamics between the animal models 
and humans (Renwick and Lazarus, 1998). In addition, the api-
cal clinical endpoints do not identify mechanisms of toxicity.

A shift in research practices has taken place over the last 
decades. New approaches seek to elucidate the mechanisms 
of toxicity (Hartung, 2011), based on the understanding that a 
chemical can interact with relevant sites or processes in a living 
organism. Mechanism-of-action is defined here as the primary 
chemico-biological interaction between the compound and a 
structural moiety in the biological system (viz. in or on a cell, a 
tissue, or an organ). The functional and structural changes that 
subsequently occur within a biological system, including the re-
sulting clinically observable changes in the organism, are then 
collectively referred to as the toxicologically relevant mode of 
action (MoA) (Blaauboer and Andersen, 2007). 

The above considerations have resulted in a (re)definition of 
the paradigm of toxicology; rather than relying on apical end-
points of toxicity as determined in animal models, the toxicity 
of a compound can be determined by its effect – or the effect of 

a bioactivated metabolite – on a critical target in the biological 
system. This effect, in turn, is governed by the concentration 
of the compound or its metabolite, and the change therein over 
time at the site of action. Depending on the nature of the inter-
action, this dose metric can either be described in terms of the 
area under the curve (AUC), by a peak concentration, or by a 
concentration above a certain threshold, inter alia. These three 
elements: comprehensive information on the active site concen-
tration, critical compound (viz. parent or metabolite), and criti-
cal site of action, should be the basis of our understanding of 
the toxicity of a chemical, together with information about the 
physiological and toxicological relevance of these interactions, 
i.e., a chemical-induced adverse effect (Krewski et al., 2009; 
Blaauboer, 2010; Bhattacharya et al., 2011).

Precise data on the mechanisms and modes of action cannot 
easily be obtained by studying the apical endpoints in animal 
studies. This has led to the development of in vitro methods 
for toxicity testing focusing more specifically on mechanisms 
and modes of action. Over the last decades, test systems for 
evaluating the possible toxicological hazard of chemical 
compounds have been developed that make use of biologi-
cal systems on a lower level of organization: isolated organs, 
cell cultures, and subcellular systems (Worth and Balls, 2002; 
Basketter et al., 2012; Tralau et al., 2012). These in vitro sys-
tems have been very useful for screening purposes, particular-
ly in studying the mechanism(s) of toxic action of potentially 
harmful chemicals (Eisenbrand et al, 2002; Adler et al., 2011; 
Bouvier d’Yvoir et al., 2012). In addition, important develop-
ments have occurred that allow the prediction of biological 
reactivity based on physico-chemical properties such as struc-
ture, molecular size, reactive groups, etc. One application of 
this knowledge is in the construction of structure-activity rela-
tionships (SARs), although they are limited to specific groups 
of chemicals, depending on the applicability domain of the 
model used, that ideally, correlate a quantifiable property to a 
quantifiable biological activity (QSARs) (Ellison et al., 2011; 
Demchuk et al., 2011).

Despite the great potential these developments offer for 
chemical risk assessment, the use of in vitro toxicity data is 
highly dependent on the physiological relevance of the in vitro-
derived data and its potential use in an in vitro-in vivo extrapola-
tion (IVIVE) (Blaauboer, 2008). Because many in vitro systems 
lack specific biokinetic relevance, extrapolation using these 
data would be particularly difficult (Gülden and Seibert, 2006; 
Blaauboer, 2010).

Selection of the appropriate in vitro system and relevant bio-
logical parameters to be measured is critical to ensuring useful 
data for analysis. For some parameters, it is possible to pre-
dict the most relevant physico-chemical features, toxicological 
modes of action (e.g., mutagenicity) or (bioactivated or deac-
tivated) metabolites on the basis of the compound’s structure. 
Such methods make use of systems such as DEREK, Hazar-
dExpert, TOPKAT, METEOR and MultiCase. This approach 
is not successful for all classes of chemicals, nor is it easily 
quantifiable (Ellison et al., 2011). It may, however, allow a bet-
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biomarker of toxicity 

biomarker of effect 

biomarker of exposure 

in vitro biomarker of toxicity (BoT) 

endpoint 

apical endpoint 

mechanism of action 

mode of action (MoA) 
 

pathway of toxicity (PoT) 

adverse outcome pathway (AOP) 
 
 

dosimetry 

reverse dosimetry 
 

nominal concentration 

point of departure (PoD) 
 

quantitative in vitro-in vivo  
extrapolation (QIVIVE) 
 

QSAR
Area-under-the curve (AUC)
DEREK (Lhasa Ltd) 

TOPKAT (Accelrys) 
 

METEOR (Lhasa Ltd)
HazardExpert (CompuDrug Ltd) 

Multicase  
(MultiCase Inc)

Tab. 1: Glossary of terms used in the context of this paper

A parameter that provides quantitative information that is mechanistically relevant to 
and predictive of an adverse effect (Boekelheide and Schuppe-Koistinen, 2012)
A parameter that provides quantitative information for an effect but does not necessarily 
discriminate between adverse and non-adverse effects
A parameter that provides quantitative information on exposure (in vitro: of the cellular 
system; in vivo: of organisms)
An in vitro derived parameter that provides quantitative information that is 
mechanistically relevant to and predictive of an adverse effect in vivo
The biological or chemical process response of effects assessed by a test method 
(Leist and Karreman, 2010; Crofton et al., 2011)
An empirically verifiable outcome of exposure, assessed in an intact organism  
(Krewski et al., 2010)
The primary chemico-biological interaction between the compound and a structural 
moiety in the biological system (Blaauboer and Andersen, 2007)
Functional and structural changes that occur subsequent to the primary chemico-
biological interaction within a biological system, including the resulting clinically 
observable changes in the organism (Blaauboer and Andersen, 2007)
A cellular response pathway that, when sufficiently perturbed, is expected to result  
in an adverse health effect (NRC, 2007)
A pathway of events, starting with a molecular initiating event in which a chemical 
interacts with a biological target, leading to a sequential series of higher order effects to 
produce an adverse outcome with direct relevance to a given risk assessment context 
(Ankley et al., 2010)
An estimation of the external or internal dose in organisms or tissues resulting from  
the exposure to a chemical (exposure being a function of dose and time)
The process of calculating the dose to which an organism would be exposed to  
produce a concentration in tissues that is equivalent to a concentration measured  
in an in vitro system
The amount of a compound added to the culture medium of an in vitro test system 
divided by the volume thereof
The concentration or dose of a compound that is taken from a concentration-  
or dose-effect relationship in a test system and is used as a starting point for 
extrapolations in a risk assessment
The process of estimating the environmental exposures to a chemical that could 
produce target tissue exposures in humans equivalent to those associated with effects 
in an in vitro toxicity test. This calculation is done based on an in vitro concentration-
effect relationship and physiologically-based kinetic modelling (Yoon et al., 2012).
Quantitative structure activity relationship
The integral of the curve in a concentration-time or dose-time diagram
A knowledge-based system that identifies structural alerts for a wide variety of  
toxicities and target organs
A QSAR-based toxicity prediction system that contains models for carcinogenicity, 
developmental toxicity, skin sensitization and various effect levels (e.g., the chronic 
LOAEL)
A knowledge-based system for metabolite prediction, linked to DEREK
A knowledge-based system that identifies structural alerts for a wide variety of  
toxicities and target organs
A system designed to identify automatically all the molecular fragments that may exist 
within a set of diverse chemicals tested under a common protocol for any kind  
of endpoint
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activities, and cytokine responses, among others (Eisenbrand et 
al., 2002; Pöltl et al., 2012). Measurement of such biomarkers 
of effect often is complemented by high-throughput approach-
es such as genomics, transcriptomics, and proteomics. These 
methods provide high-content information on the behavior of in 
vitro test systems, but their interpretation also requires advances 
in bioinformatics and systems biology (Adler et al., 2011; Van 
Summeren et al., 2012; Basketter et al., 2012). The different 
omics methods measure a multitude of endpoints, but not every 
endpoint qualifies as a BoT. In other words: not every parameter 
that changes is relevant and predictive for hazardous effects in 
vivo (see also Fig. 1). This is an important distinction between 
a simple test endpoint (Leist et al., 2010; Crofton et al., 2011; 
Boekelheide and Schuppe-Koistinen, 2012) and a BoT, which is 
the focus of this review. 

Many parameters may technically qualify as a test system 
endpoint. However, the definition of BoT additionally includes 
a conceptual element, linked to toxicological predictivity and 
to the relevance of the parameter with respect to prediction of 
(human) hazard (Fig. 1). Thus, the concept of a BoT goes be-
yond the rather technical definition of an assay “endpoint.” In 
that sense, BoT are related to the concepts of pathways-of-tox-
icity (PoT) (NRC, 2007) as explored within the human toxome 
project (Hartung and McBride, 2011) and to adverse outcome 

ter choice of relevant test systems and BoT for an initial evalu-
ation of a compound’s toxicological profile.

3  Biomarkers 

Progress in the field of alternative methods depends on our abil-
ity to establish relevant in vitro systems (or batteries of systems) 
for the different domains of risk evaluation. In this context, it is 
necessary to improve our ability to select the most appropriate 
(functional or structural) parameters to be used in each of the 
new systems. This consideration is particularly important at a 
time when high-throughput chemical testing (HTS) is needed 
for analysis (Benford et al., 2000; Sipes et al., 2011b; Dix et 
al., 2012; Judson et al., 2012). Not all simple endpoints with 
technical advantages for HTS also qualify automatically as 
relevant biomarkers of toxicity. Therefore, a clear operational 
definition of a BoT and the distinction of BoT from other con-
cepts brought forward in the field of in vitro toxicology become 
important at this point.

Using in vitro systems, early cellular responses can be stud-
ied that may help predict toxic responses in vivo. Examples of 
early cellular responses include: oxidative stress and glutath-
ione homeostasis, cellular stress responses, changes in enzyme 

Fig. 1: Interpretation of concentration-effect relationships  for in vitro experiments
(A) Examples for the many possible relationships between a compound’s concentration and endpoint changes within one give experimental 
system are shown. For instance, different endpoints react at different compound concentrations. Some of these changes will be a reflection 
of adaptation or they may be unrelated to the eventual cell fate. Some will be related to adversity or they reflect a pathway of toxicity (PoT) 
relevant for cell fate and for in vivo toxicity prediction. Note that also the factor time will have an effect on the shape of the curves: duration 
of exposure, timing of (short-term) exposure within a more extended experimental protocol, and timing of measurement. Choices will have to 
be made for selecting the most relevant of these endpoints as BoT.
(B) If a choice has been made for one or more of the relationships in A to be used as BoT, the next step is to define concentration 
thresholds related to adversity. For each BoT, ranges of compound concentrations can be observed that do not affect the biomarker (region 
A). In other concentration ranges (region B) the BoT changes significantly from its baseline, but this effect does not predict adversity. In a 
third concentration range (region C) the change of the BoT is related to adversity
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4  Biokinetic2 considerations

Proper interpretation of in vitro data, particularly for their rel-
evance in a toxicological risk evaluation for intact organisms, 
requires the consideration of kinetic aspects of each system 
(Blaauboer, 2010; Caldwell et al., 2012). Knowledge of the bi-
okinetic behavior of the chemical is required in two areas: first, 
the kinetics of the compound in the in vitro system (“biokinetics 
in vitro”), second, the use of kinetic models in extrapolating the 
in vitro dose metrics to the in vivo situation. 

The first deals with the determination of the actual biological 
exposure. Toxic effects, or biotransformation rates, for in vitro 
models usually are related to the concentrations of the com-
pound added to the medium. These nominal concentrations can 
deviate from the actual free concentration of the compound in 
the system, and they change over time (due to binding to pro-
teins in the medium, adsorption to the plastic devices, evapora-
tion, or uptake in the cells). Since the freely available concen-
tration usually is the driving force for kinetic processes, as well 
as toxic reactions on the (sub-) cellular level, these processes 
will influence the free concentration and thus the effect (Gülden 
et al., 2002). It is therefore necessary to estimate or measure 
this free concentration, especially when it is expected that the 
free concentration will differ from the nominal concentration 
(on the basis of known physico-chemical properties such as li-
pophilicity) (Gülden and Seibert, 2003; Heringa et al., 2004; 
Kramer et al., 2010, 2012). 

Several techniques exist to estimate the free concentration 
of chemicals in an in vitro assay medium, including equilib-
rium dialysis, ultracentrifugation, and ultrafiltration (Oravcová 
et al., 1996). A more recent technique uses the simultaneous 
extraction and sampling of the unbound chemical from culture 
medium with solid-phase micro-extraction (SPME) devices 
and to analyze the compound (Vaes et al., 1997; Kramer et al., 
2007; Broeders et al., 2011). These devices consist of small 
rods covered with material that absorbs the compound in equi-
librium with its free concentration. This technique allows the 
identification of processes that influence the free concentra-
tion, which in turn enables modeling of the in vitro system. 
The application of these techniques has shown that, for some 
compounds, the free concentration can differ up to two orders 
of magnitude from the nominal concentration, emphasizing 
the importance of understanding, measuring, and modeling the 
biokinetics in vitro (Gülden et al., 2006; Kramer et al., 2012). 
Moreover, the cellular concentration can differ from the me-
dium concentration by several orders of magnitude (Zimmer et 
al., 2011; Kramer et al., 2012).

Biokinetic considerations are equally important when design-
ing the technical set-up of an in vitro experiment, particularly on 
the relationship between the amount of the compound present in 
the in vitro system and the number of cells. If these conditions 
are different from those expected in vivo, the relevance of the 
in vitro-derived toxicity data may be diminished. If the number 

pathways (AOP), as explored by the OECD and other regula-
tory agencies (Ankley et al., 2010). In simple terms, BoT, PoT, 
and AOP are related, but they differ mainly in scale. A PoT is a 
chain of events triggered by a chemical and leading to a hazard-
ous outcome for the cell (Hartung and McBride, 2011; Perkel, 
2012). A BoT could be regarded as an important component of 
a PoT, particularly useful for quantification in an in vitro assay. 
AOPs were originally used in environmental toxicology to de-
scribe the chain of events starting from molecular interaction of 
a chemical with a target (mechanism-of-action) and ending at 
effects on the organism and even its population. In the last two 
years the concept has been more broadly used to link toxicant 
effects on many levels of toxicity. The intention is to link initial 
mechanistic knowledge to the prediction of hazard for humans 
(Ankley et al., 2010; Sipes et al., 2011; Watanabe et al., 2011). 
Thus, an AOP provides the rationale for the use of one or the 
other BoT by showing how the changes measured by the BoT 
relate to the prediction of human hazard.

How to define “biomarkers of toxicity,” specifically as rel-
evant to in vitro systems, was the topic of an extensive discus-
sion during the workshop. Since relevance of the chosen in vitro 
approaches greatly determines their ability to be extrapolated 
to an in vivo context, the choice of what to measure (i.e., the 
biomarkers) is also of high importance. Moreover, to define the 
distinction between terms was also considered essential, e.g., 
between “biomarkers of effect” and “biomarkers of exposure.” 
Furthermore, the relationship between a “biomarker of effect,” 
the primary mechanism of action, the MoA as defined above, 
adaptive responses versus adverse responses, etc., were dis-
cussed. These issues will be treated in detail below. A number of 
terms are included in Table 1, also referring to earlier published 
definitions (Ankley et al., 2010; Leist et al., 2010; Crofton et 
al., 2011). 

During the discussion, the following biomarker-defining ques-
tions helped to create a broad definition for biomarkers in vitro:
–	 Is it a measureable variable?
–	 Is it quantifiable?
–	 Does it represent a chemico-biological interaction?
–	 Is it predictive of the most sensitive (rate limiting) toxic proc-

esses?
–	 Is it representative of a toxic pathway?
–	 Does it have one or a set of measurable endpoints (finger-

print)?
–	 Is it a parameter that represents or mirrors a toxic response in 

vivo?
–	 Does it provide information on the rate, magnitude and re-

versibility of a parameter?

After ample discussion we agreed upon the following definition: 

An in vitro biomarker of toxicity (BoT) provides quantitative 
information that is mechanistically relevant to and predictive 
of an adverse effect in vivo.

2 Quote from Clewell et al., 2008: “The time-course of drugs in biological systems has traditionally been referred to as 
pharmacokinetics. On the other hand, it has become popular to use the term toxicokinetics when dealing with chemicals that 
are toxic. This, of course, ignores the wisdom of Paracelsus: only the dose differentiates a poison and a remedy. To avoid  
this false distinction, the term biokinetic will be used in this paper.”
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3)	 the appropriate parameters for constructing an adequate 
PBBK model are available. 

Ideally, these parameters also are derived from non-animal 
studies (Adler et al., 2011; Basketter et al., 2012; Coecke et al., 
2012). For a recent review of these “Quantitative In Vitro-In 
Vivo Extrapolations,” (QIVIVE) we refer to Yoon et al. (2012).

5  Adversity versus adaptation

The use of cell culture in toxicity testing of chemicals has the 
potential to provide a detailed picture of the changes of many 
parameters at once. Even if these changes show a clear con-
centration-effect relationship, care must be taken in interpreting 
the results in view of their relevance to the compound’s toxic-
ity. Most likely, the sensitivity of these detailed studies will be 
much higher than what can be derived from the interpretation of 
apical endpoints in an animal study, e.g., due to the lack of com-
pensatory/homeostatic processes, usually working in vivo. The 
question is then: when is a change related to an adverse effect, 
and when should a change be interpreted as falling within the 
boundary of the physiologically “normal” adaptive range? 

of cells in the system is changed, the amount of test compound 
available for the individual cells in the system also will change 
(Gülden et al., 2001, 2006). In addition to the experimental 
setup itself, the compound’s dynamics also can influence the 
system’s kinetics: compounds with a high reactivity can react 
with a cellular component, causing an immediate effect on or 
in the cells and thereby leading to a decrease in the compound’s 
concentration (Gülden et al., 2010). 

Because biokinetic considerations are critical to accurately 
interpreting in vitro data (Blaauboer, 2010; Adler et al., 2011; 
Coecke et al., 2012) the use of physiologically-based biokinetic 
(PBBK) models has become critical in translating the concen-
tration-effect relationships found in relevant in vitro models to 
dose-effect relationships in vivo. In essence, the kinetic models 
are used to estimate the external exposure that would result in 
effective concentrations at relevant targets. In these so-called 
“reverse dosimetry” calculations, it is assumed that: 
1)	 the in vitro toxicity data reflect the relevant toxicity param-

eters for the in vivo situation (see also the next section: in 
vitro effects battery); 

2)	 the in vitro effective concentrations are representative of ef-
fective concentrations in vivo; and 

Fig. 2: Responses of an in vitro test system over time
The test system is characterized by a multitude of parameters that are initially within their homeostatic range. After a chemical insult 
(indicated by an arrow hitting the horizontal time axis) many of these parameters (e.g., metabolites, transcripts or cell organelle functions) 
will change in a time-dependent manner. For the selection of relevant BoT, these parameters may be grouped according to their  
relation to cell fate and hazard of the chemical. The first group reflects the immediate mechanism of action of the chemical (e.g., binding 
to an enzyme). As chemicals may have multiple targets, the predictivity of changes of one of these early parameters is often low,  
but it can be useful as BoT, especially for pharmaceuticals. The second group reflects the downstream mode of action (MoA) of 
the chemical and often is very suitable as BoT. Some parameters change without having a predictive value for the fate of the cell 
(epiphenomena) or they are cellular counter-regulations of the initial insult. They are not suitable as BoT. In late phases, there is a strong 
change of parameters, e.g., related to cell death. These appear useful at first sight, but they are often unspecific, and often only reflect  
a general breakdown of homeostasis. A complicated group of changes is related to altered cellular differentiation. They reflect a  
new form of homeostasis and are difficult to interpret. They can be useful in the field of developmental toxicity, but their use as  
BoT requires great care and validation. The gaps in some box outlines symbolize that such changes phase in and phase out at different 
time points that cannot be sharply defined.
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These considerations need to be taken into account when select-
ing a BoT and using it to determine point-of-departure (PoD) 
for evaluation of human risk. 

One caveat in the use of in vitro systems is the absence of in-
tegrative systems occurring in more complex tissues, whole or-
gans, or the total organism, so it is important that mechanistical-
ly-based BoT derived from non-animal systems are predictive 
for the adverse effect in the whole, integrated organism. It will 
be a challenge to select those BoT and their relevant values to 
take both the inherent high sensitivity in vitro and the possible 
feedback loops present at higher levels of biological complexity 
into account (Aldridge et al., 2006; Boekelheide and Andersen, 
2010). The use of in vitro methods is therefore complicated 
by a potential lack of interactions (i.e., between compounds 
and cells) that otherwise would be present at higher levels of 
biological integration (Kadereit et al., 2012; van Thriel et al., 
2012). These feedback mechanisms should be considered when 
interpreting the results of in vitro toxicity testing for risk assess-
ment. Organ slices have the capability to show the interaction of 
cells in their in situ tissue coherence, e.g., the hepatocytes with 
Kupffer cells in liver slices (van de Bovenkamp et al., 2005; Ca-
tania et al., 2007). Examples exist where these interactions are 

In analyzing in vitro toxicity data it is important, then, to dis-
tinguish between adaptive changes and adversity. Within one 
given experimental system many possible relationships between 
a compound’s concentration and endpoint changes can be envi-
sioned (Fig. 1A). For instance, different endpoints react at dif-
ferent compound concentrations. Some of these changes will be 
a reflection of adaptation or they may be unrelated to the even-
tual cell fate, while others will be related to adversity or they 
reflect a pathway-of-toxicity (PoT) relevant for cell fate and 
for prediction of in vivo toxicity. Note that the time factor will 
have an effect on the shape of the curves: duration of exposure, 
timing of (short-term) exposure, and timing of measurement. 
Moreover, since the different processes may have different dy-
namics and dynamic ranges, the types of phenomena observed 
also will change with time (Fig. 2). 

For each chosen BoT there will be a range of concentrations 
at which there is a measurable effect, which is within the nor-
mal physiological range and not related to the adverse effect 
that will occur at higher concentrations (range B in Fig. 1B). 
For example, if the chosen BoT is the inhibition of an enzyme 
activity, a relatively small inhibition would not result in cellu-
lar dysfunction, while higher levels of inhibition would do so. 

Fig. 3: Scheme for the incorporation of in vitro biomarker-derived toxicity data in the process of chemical risk assessment
For further explanation see text, section 6.
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be evaluated using a read-across approach based on known 
data from similar compounds (Vink et al., 2010; Schüürmann 
et al., 2011). Since such knowledge can be useful to predict 
possible toxicological targets, structural and physicochemical 
properties of compounds can be the basis for selecting a proper 
in vitro test battery. However, selection of appropriate cellular 
systems also should involve biokinetic considerations. For ex-
ample, there is no need for the determination of any systemic 
effects if a topically applied compound has very low or no in-
ternal exposure due to a minimal level of dermal absorption; 
this situation most likely suggests that the internal threshold of 
toxicological concern is not exceeded. In that case only local 
toxicity would have to be assessed, for which the appropriate 
in vitro models should be selected. 

As mentioned above, the structural properties of a compound 
can help guide the selection of an appropriate cell culture sys-
tem. A number of software systems are available for making 
these in silico predictions of toxicity, either employing knowl-
edge-based data sets or QSAR-based models. An example of the 
former is DEREK, which identifies structural alerts for a variety 
of toxicological endpoints (Marchant et al., 2008). Examples 
of QSAR-based approaches are TOPKAT and the OECD Tool-
box. TOPKAT is a commercial QSAR-based toxicity prediction 
system that contains models for carcinogenicity, developmen-
tal toxicity, skin sensitization and various effect levels (e.g., 
the chronic Lowest Observed Adverse Effect Level (LOAEL); 
Venkatapathy et al., 2004). The freely available OECD Toolbox 
(van Leeuwen et al., 2009) identifies the potential for macro-
molecular interactions (DNA binding, protein binding, estrogen 
receptor binding) based on the physico-chemical properties of 
the compound. 

On the basis of these data an initial selection of the appropri-
ate cell culture systems may be determined. As an example, if 
the systems find structural properties that indicate a possible or 
probable interaction with a certain target tissue, this may guide 
the choice of the most appropriate in vitro systems to study a 
concentration-effect relationship. 

Evaluation of biokinetic behavior
The importance of biokinetics in the interpretation of in vitro 
data for risk assessment was discussed earlier. It remains only 
to explain why the evaluation of biokinetic behavior should be 
placed prior to the in vitro test battery in Figure 3. The answer 
again comes from the importance of using the appropriate bi-
omarker – in this case the biomarker of exposure. It has already 
been discussed that the use of nominal concentration as the 
measure of exposure in an in vitro system overlooks a number 
of factors that may lead to the free concentration of chemical be-
ing different from the nominal. However, there is also a second 
concern that must be considered: that the toxicity of a chemical 
may result from the action of one or more of its metabolites 
rather than from the chemical itself. In vitro toxicity tests will 
inevitably possess differing capabilities for metabolic trans-
formation (Coecke et al., 2006). It is therefore critical to know 
whether metabolism needs to be considered during the design 
and interpretation of the in vitro tests for a particular chemical 
and, if necessary, its metabolites (NIEHS, 2001).

studied by employing in vitro co-cultures of the relevant cells 
(Heneweer et al., 2005; Hallier-Vanuxeem et al., 2009; Henn et 
al., 2009; Li et al., 2012; Leite et al., 2011; Schildknecht et al., 
2009, 2011, 2012). The human- or organ-on-a-chip techniques 
provide another example where different cell cultures can be 
employed in the same system, offering a more integrated in vitro 
system (van Midwoud et al., 2010; Hartung and Zurlo, 2012; 
Prot and LeClerc, 2012). New and developing methods allow 
these integrative effects to model the whole organism (Bosgra et 
al., 2009). The examples listed above show that the integration 
of kinetic and dynamic models is adding crucial power to these 
approaches (e.g., see DeJongh et al., 1999; Bushnell et al., 2005; 
Forsby and Blaauboer, 2007; Paini et al., 2010). 

There are many different options for studying toxicologically 
relevant effects in vitro. However, the interpretation of data with 
regard to the difference between adversity and adaptation is still 
a challenge: to address it would make in vitro data more applica-
ble for assessing risks. The conceptual framework described in 
the next paragraph highlights the most urgent issues.

6  Conceptual framework

Taking the above kinetic and mechanistic considerations into 
account, a conceptual scheme is proposed for the integration of 
in vitro-derived biomarkers into the process of risk assessment 
(Fig. 3). A number of schemes that modernize the process of 
chemical risk assessment, e.g., the one developed by the Health 
Council of the Netherlands (HCN, 2001), have been presented 
in the literature. The specific purpose of the scheme presented 
here is to place the proper use of in vitro-derived biomarkers in-
to the perspective of the risk evaluation of chemicals. In this re-
spect, we build on earlier reports on integrated testing schemes 
(Blaauboer et al., 1999; Jaworska and Hoffmann, 2010; Kins-
ner-Ovaskainen et al., 2012).

Exposure
In this scheme, a risk evaluation begins by considering the prob-
able exposure scenarios for a given chemical. In cases where all 
relevant exposures will be low, i.e., below the threshold of toxi-
cological concern (TTC) (Kroes et al., 2007), a risk evaluation 
for that chemical could be initiated without any need for testing. 

For many chemicals, some toxicity data are available in the 
literature. The next step, therefore, would be a proper evaluation 
of available data using an evidence-based approach (e.g., Har-
tung, 2009) and thus further testing may also be unnecessary. 
In vitro testing could provide additional mechanistic insights, 
and this could be a reason to continue experimental work, as 
proposed in the scheme. 

Structural properties
After the evaluation of potential exposure scenarios, a next 
step is evaluation of the structural properties of the chemical 
and/or its active metabolites. Knowledge of specific physi-
cochemical characteristics, e.g., a high reactivity towards bi-
omacromolecules, can then form a starting basis for risk evalu-
ation (Ellison et al., 2011). Adverse effects of chemicals may 
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is to design a fit-for-purpose set of optimized in vitro cellular 
systems that provide maximal coverage of human functionality 
while minimizing cost, complexity, and testing time.

In vitro effects batteries can also be used to model the vari-
ability of human susceptibility due to a genetic background or 
environmental factors. The parallel use of several cell lines from 
different donors for the same assay and endpoint can model dif-
ferent human genotypes (Lock et al., 2012). Alternatively, cells 
may be tested in different situations, e.g., after preconditioning, 
in inflammatory situations, and at different metabolic situations 
and ages/passage numbers (Latta et al., 2000; Falsig et al., 2004; 
Lotharius et al., 2005; Henn et al., 2011).

Combining data from different, complementary platforms 
and assays into a coherent testing package that appropriately 
weights and evaluates the different data sources will be a chal-
lenging task. An important part of this integration will be the 
development of visualization tools that display the combined 
data in an easily understood format. In addition, the develop-
ment of tiered testing strategies is likely to provide an efficient 
means of identifying stopping points when sufficient data is 
available for decision making (HCN, 2001; Combes and Balls, 
2011). However, such strategies should not be too rigid (Ja-
worska et al., 2010, 2011).

With respect to the type of BoT used in test batteries, differ-
ent directions are being followed. A traditional approach is to 
use a single, relatively complex endpoint. This may be neu-
rite growth, cell proliferation, or the change of reporters that 
respond to oxidative stress or inflammatory stimuli. This ap-
proach has the advantage that the BoT reflects different types 
of primary mechanisms of action, and it can be related to the 
MoA and hence to adverse effects in vivo. Therefore, this will 
most likely play an important role in the near future. Other 
approaches use multiple endpoints. Low numbers and high 
complexity of endpoints is typical for high-content imaging. 
High numbers (tens of thousands) of endpoints are tested in 
many “omics” approaches. A considerable amount of future 
work will be required to extract the most meaningful informa-
tion from these approaches. An opposite type of development 
uses single endpoints and highly simplified test systems. In 
extreme cases, these may only consist of an isolated enzyme 
or receptor. Instead, very large test batteries are used (e.g., in 
the ToxCast program: Judson et al., 2012; Dix et al., 2012; 
Sipes et al., 2011a). Machine learning approaches are being 
developed to correlate the pattern of changes in such test bat-
teries to in vivo data, and to use knowledge of such corre-
lations for future predictions. Possibly, these three types of 
approaches (use of many single simple endpoints; use of few 
single complex endpoints; use of multiple endpoints) will be 
used in the future to define the best BoT and to provide predic-
tions on chemical hazard.

Two major alternative approaches to the design of the in vitro 
test battery are proposed. In one approach, the in vitro-to-in vivo 
extrapolation occurs from the analysis of systems biology in-
formation after the execution of a common test platform. This 
approach depends on the development of a broad-based, de 
novo, holistic, and self-contained test system that is predictive 
of adverse effects based on alterations within components of 

Similarly, when extrapolating in vitro test results to the equiv-
alent in vivo exposures the comparison must be made on the 
basis of the correct biomarker of exposure (Yoon et al., 2012). 
For direct chemical toxicity the appropriate quantity to measure 
would usually be the area under the concentration curve (AUC) 
or average concentration (AUC divided by duration of exposure) 
of the parent chemical (Andersen et al., 1987b); however, for a 
chemical whose toxicity results from a metabolite, the appro-
priate dose metric would be related to the concentration of the 
metabolite rather than that of the parent (Andersen et al., 1987a; 
Clewell et al., 2002). Whereas the average concentration of the 
parent is proportional to the ratio of dose to parent clearance, the 
metabolite concentration is proportional to the ratio of parent 
clearance to the clearance of the metabolite (Andersen, 1987). 
Further, in the case of a highly reactive metabolite, where its 
disappearance is due to chemical reactivity rather than enzyme 
mediated clearance, the appropriate biomarker of exposure is 
the rate of formation of the metabolite divided by the volume 
(media or target tissue) into which it is generated (Andersen et 
al., 1987a). To ensure that the correct biomarker of exposure is 
measured in the in vitro assays, it is necessary to identify those 
cases where the toxicity of a chemical may be due to a metabo-
lite prior to conducting the in vitro effects battery. 

In vitro effects battery
An in vitro effects battery for the new toxicity testing paradigm 
needs to be designed to efficiently detect biomarkers of toxic-
ity. This test battery will depend upon a thorough systems biol-
ogy understanding of cellular function, and will use a variety of 
test platforms, including reporters for stress pathways, omics 
approaches (transcriptomics, proteomics, and metabolomics) 
(Adler et al., 2011; Kienhuis et al., 2011; Van Summeren et al., 
2012), and high-content analysis imaging platforms (Zanella 
et al., 2010; Stiegler et al., 2011). Many of these technical ap-
proaches are likely to provide complementary information, and 
only through experience and inter-laboratory validations will 
the most sensitive and robust tests and platforms be identified.

The development of the in vitro effects battery will be an it-
erative process, likely beginning with established cell lines that 
are well understood and well characterized, and building on les-
sons learnt (Boekelheide and Andersen, 2010; Basketter et al., 
2012). The ideal test system will display all of the differentiated 
features and cellular functions found in intact organisms of vari-
ous life stages, disease states, and conditions. Potential models 
for a cellular test system could use human embryonic stem cells 
(hESCs), or other types of stem/progenitor cells, in conjunction 
with protocols that allow these cells to differentiate along nu-
merous organ-specific pathways (Leist et al., 2008; Kuegler et 
al., 2010; Wobus and Löser, 2011; Zimmer et al., 2011, 2012; 
Balmer et al., 2012; Meganathan et al., 2012). 

By incorporating reporters that mark differentiated functions 
into these cells, toxicant-induced perturbation of organ-specific 
attributes could be examined and deduced. Further, the use of 
three-dimensional and heterogeneous cellular aggregates may 
provide additional insight into cell-cell interactions and the dis-
ruption of paracrine signaling processes by toxicant exposure 
(Heneweer et al., 2005; Cantòn et al., 2010). The broad goal 
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The rules for choice of the PoD
Depending on the features of the test system and the nature of 
the BoT chosen, the concentration used for QIVIVE may differ 
(Fig. 4). For instance, the minimal significant effect concentra-
tions corresponding to the lowest observed effect level (LOEL) 
of in vivo toxicity are relevant if mutations are chosen as BoT. 
In many cases the EC50 values may be a good choice as this 
parameter is the mathematically most robust datapoint to deter-
mine. Furthermore, the EC60 or EC90 value could be determined 
for instance in cases when cells have large reserve/buffering ca-
pacity, which is relevant, e.g., for glutathione depletion or ATP 
depletion, as biomarker. 

the interacting pathways that contribute to overall function. This 
approach demands that a broad range of differentiated charac-
teristics of cells are represented, and that effects on this broad 
range of targets can be evaluated. Bioinformatics and systems 
biology approaches could be used to further extrapolate these 
results to understand the possible responses in individual organ 
systems.

In an alternative approach, the test system itself would be 
compartmentalized by the different types of biology inherent 
in the in vivo endpoints of concern. Development of test system 
modules would then be based on the apical endpoints of interest 
(Maxwell et al., 2008). In this approach, the specialized biology 
inherent to each apical endpoint would be emphasized in the 
development of each module, optimizing the tests within the 
module for sensitive detection of the specific biological areas 
of concern. Examples of such distinct modules might include 
a general screening test battery, with more specific test systems 
for reproductive and developmental effects, (developmental) 
neurotoxicity, hepatic toxicity, etc. The interpretation of the 
combined result of a high-throughput test battery was discussed 
by Judson et al. (2011), who used the lowest “biological path-
way altering concentrations”, together with probability distribu-
tions of kinetic and dynamic parameters in selecting a PoD.

Concentration-effect data 
An important outcome of any in vitro toxicity test is the ad-
equate evaluation of the concentration-dependent effects for the 
relevant parameters. As mentioned above, it is important to as-
sess relevant concentration of the compound driving the toxicity 
(this might be the active metabolite(s)), taking into account their 
possible losses due to absorption to plastic, binding to proteins 
or chemical instability in the medium, or by evaporation (Seibert 
et al., 2002; Kramer et al., 2007), as well as biotransformation 
to innocuous metabolites. It is also important to consider the 
appropriate metric for the effective concentration, which can ei-
ther be the peak concentration, or a peak concentration above a 
certain threshold level, or an area under the curve. Alternatively, 
the amount of the compound present in the cells (“cell burden”) 
or even subcellular distribution may be the determining factor 
for the observed effect (Gülden et al., 2010). 

Modeling and determination of points-of-departure  
for further evaluation of risk
Once reliable concentration-effect relationships have been es-
tablished, these data need to be interpreted for their usefulness 
in determining risk. The above-mentioned notions regarding 
“adaptation vs. adversity” should be considered. Furthermore, 
a proper quantification of the results will help in determining an 
appropriate PoD for inclusion in risk evaluation. The applica-
tion of modeling the concentration-effect relationship derived in 
a relevant in vitro system by means of the benchmark approach 
may be considered (Crump and Teeguarden, 2009; Sand et al., 
2012). This process could then help identify a possible PoD for 
the next step of evaluation. One example is the use of the BM-
CL10: the benchmark concentration-lower limit of confidence 
for 10% of the maximal response (Fig. 4).

Fig. 4: Modeling and determination of points of  
departure (PoD)
The concentration-dependent change of a BoT, which is related  
to the hazard of the respective chemical tested, is shown.  
Such curves, obtained from experimental data and modeling,  
are used to determine the appropriate PoD for quantitative  
in vitro ➔ in vivo extrapolations (QIVIVE). The PoD is named after  
its role as starting point for QIVIVE modeling and calculations, 
and it is expressed as a concentration. It is NOT pre-defined 
which part of the curve is most appropriate for determination of 
the PoD. This information depends on the underlying biology 
and toxicological relevance. For instance IC50, IC90 or lowest 
observed effect level (LOEL) may be used, if this is toxicologically/
biologically justified. Two examples are given: PoD1 is defined by 
the BMD10, i.e., the lowest concentration that results in a  
10% change of the baseline; PoD2 is defined as the IC60 of  
the curve. Concentrations smaller than the PoD would be 
considered non-significant with respect to hazard-prediction. 
Different statistical and modeling approaches are available to 
define such PoD. 



Blaauboer et al.

Altex 29, 4/12 421

put more research effort into building experience with chemi-
cal risk assessment using a scheme like the one proposed here. 
The identification of a “catalogue” of appropriate biomarkers 
for important pathways that are good indicators of adversity 
would be useful (Zimmer et al., 2012). Such pathways of toxic-
ity will have to be biologically relevant and clearly related to 
toxicological endpoints. If a certain biomarker is a good indica-
tor of adversity, (e.g., hepatotoxicity), the appropriate pathways 
of toxicity should be identified, and the in vitro systems selected 
should be able to identify the related biomarkers and pathways 
(OECD, 2012). 

Although many in vitro toxicity data exist in the literature, a 
systematic overview of these data (which endpoints, which path-
ways, which biomarkers) is lacking. Data mining of the litera-
ture and the development of a monitored open-access database 
is recommended (Leist et al., 2008a). Such a database could also 
include data on other essential parts of the scheme proposed 
above, including the interaction of chemicals with biomacro-
molecules (proteins, lipids, DNA, etc.). These data could also be 
derived from computational toxicology techniques as these are 
further developed (Krewski et al., 2010). 

An important conclusion from this workshop is that the inte-
gration of in silico and in vitro data in a risk assessment stands 
and falls with proper quantification – for biokinetics as well as 
for effect parameters. The study of the behavior of a chemical 
in vitro by measuring concentration (free concentration, dose in 
cells) or modeling biokinetics needs more toxicological empha-
sis. The same applies to proper quantification of the toxicologi-
cal read-outs. Furthermore, the development and application 
of new tools or integrated strategies to evaluate the risk on a 
weight-of-evidence approach will also require adequate training 
for future risk assessors (Daneshian et al., 2011; Håkansson et 
al., 2011).
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