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This series of articles has already addressed in vitro and in vivo 
tools (Hartung, 2007; Hartung, 2008b). With this contribution 
addressing computational toxicology we now try to complete 
considerations on the main methodological approaches in toxi-
cology. However, we do still plan to address specific aspects, 
such as endpoints (omics, image technologies), high-throughput 
testing or physiology-based pharmaco-(toxico-)kinetic model-
ling (PBPK), in later issues. All of these aspects have major in 
silico components, which already shows how difficult it is to 
discuss in silico methods on their own. Indeed, their integration 
and interplay with in vivo and in vitro approaches is critical, at 
least in the way their development often depends critically on 
the input of either in vitro or in vivo data. This is a major differ-
ence to experimental approaches. An important consideration 
will thus be whether in silico methods are limited by the limita-
tions of their input and whether we have any hope of overcom-
ing their weaknesses or can only approximate them…  

There are some excellent introductions to and reviews of 
computational toxicology (Durham and Pearl, 2001; van de 
Waterbeemd, 2002; Greene, 2002; Veith, 2004, Helma, 2005; 
Simon-Hettich et al., 2006; Kavlock et al., 2008; Merlot, 2008; 
Nigsch et al., 2009; Greene and Naven, 2009). In addition, the 
ex-ECB website (http://ecb.jrc.ec.europa.eu/qsar/), hosted by 

Andrew Worth and his team (chronically understaffed given the 
high expectations) who act as key promoters of computational 
toxicology, is an excellent resource. The same holds true for the 
US-based International QSAR Foundation (http://www.qsari.
org/) around Gil Veith, non-profit research organization devoted 
solely to creating alternative methods for identifying chemical 
hazards without further laboratory testing, and Angelo Vedani̓s 
Biographics Laboratory 3R in Basel, Switzerland (see his article 
in this issue). As usual this article aims less at summarizing the 
state of the art than at feeding discussions and showing up the 
critical issues faced by a central element of this increasingly 
important approach to toxicology. 

Consideration 1: In silico methodologies comprise a 
number of very heterogeneous approaches 

If we define “in silico methodologies” as anything we can do 
with a computer in toxicology, there are indeed few tests that 
would not fall into this category, as most make use of computer-
based planning and/or analysis. Thus, the first types of in silico 
approaches (Fig. 1) are certainly:
1.	Planning of experiments and power analysis, i.e. tools to im-

prove the design of our in vivo and in vitro experiments (Puo-
polo, 2004). This tool is at best not being fully exploited in 
toxicology. Especially for in vitro tests we have rarely seen 
that even the reproducibility of a test system has been sys-
tematically addressed in order to establish the number of rep-
licates necessary to align biological relevance and statistical 
significance. However, this is a must for human clinical trials, 
and the number of replicates should be requested by animal 
use committees.  

2.	Data analysis procedures (DAP) – every experiment requires 
analysis: calculating a result, a number, a percentage, a thres-
hold met and, usually, statistical analysis. All this is typically 
done in silico. There is astonishingly little guidance on this 
for those working in vitro or in vivo. In consequence, too of-
ten we see that analysis is crude, not substantiated by statistics 
and, even worse, that significance is mistaken for relevance. 
The result is often that each significant effect is reported as a 
result – a key problem in our field, where everything outside 
the norm is too easily interpreted as a threat. Together with a 
bias toward the publication of positive results, an impression Fig. 1: The various types of in silico tools in toxicology
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predicted from structure by estimated octanol/water partition 
coefficients. However, often such relationships are based en-
tirely on correlation, sometimes even trying various descrip-
tors until a fit is found. Here, the problem of multiple test-
ing arises: The more descriptors we try to include, the more 
likely we are to find one that correlates well, whether it makes 
biological sense or not. And a certain percentage will even 
show up again when “validating” with a second data set, even 
more if there is a partial connection, e.g. with a descriptor. For 
example, if lipophilicity is a contributing factor to a certain 
toxicity, it is likely to show up as a descriptor for a (Q)SAR, 
because it correlates with whether the substance can reach its 
target. This will result in some correlation, whether the other 
descriptors make sense or not. In addition, too often limited 
structural variety of substances feeding into the generation of 
a (Q)SAR will create an unrealistic predictivity if the limited 
applicability in turn is not understood.

The next type of in silico tool is the modelling tool:
8.	Modelling tools, originating from computer-aided drug de-

sign (CADD) approaches to model a receptor and test the fit 
of new structures to this, are increasingly being used. Typical 
examples come from protein modelling, such as models of the 
estrogen receptor or various P-450 enzymes, where crystal 
structures are used to model the fit of the test compound into 
the reactive site of the receptor and to determine the likeli-
hood of its triggering a response. These models are typically 
three-dimensional, but notably there are also 4D-models,  
which accommodate the induced fit of the substance on  
the receptor  (Vedani et al., 2007) or pseudo-receptor models 
(Vedani et al., 2005). In case of the latter, in the absence of 
a real receptor, available data on a training set of ligands are 
used to emulate a hypothetic receptor to then be applied to 
new, untested substances. We might consider this a specific 
form of (Q)SAR, since the structures of training compounds 
are used for prediction. Thus the approach is clearly placed 
somewhere in-between (Q)SAR and receptor modelling.  

9.	Models of kinetics of substances aim to predict the fate of 
substances over time in the human organism, i.e. absorp-
tion, distribution, metabolism and excretion (ADME) (van 
de Waterbeemd and Gifford, 2003, Dearden, 2007). By 1997 
it was reported (Kennedy, 1997) that poor ADME properties 
and toxicity accounted for 60% of failures of chemicals in the 
drug development process. These models are often based on 
models of blood flow, compartment sizes, organ character-
istics, etc. on the one hand and physico-chemical properties 
of the test compound on the other hand, which can be either 
default values or actual measurements. Such measurements 
feeding into the models might in the simplest cases be li-
pophilicity (octanol/water distribution), solubility and charge, 
while more complex input could be metabolism or specific 
pathways triggered, etc.

These nine groups of in silico tools are neither exhaustive nor 
entirely distinct, as we have already seen in the last example. 
Table 1 lists the main approaches and some pertinent commer-
cial products. In this article we shall especially deal with the 

of risk and danger is created, not only for the lay audience 
but also for professionals exposed to the constant mantra of 
hazard and risk.

3.	The most advanced (or the one most lacking) use of DAP is 
certainly DAP for omic and image analysis technologies. On 
the one hand, sophisticated data-mining techniques are avail-
able, but often the essential step leading to the derivation of 
a result, in our case the prediction of a hazard, is lacking. 
This becomes especially complex when physiological and 
biochemical knowledge on pathways and modes of toxic ac-
tion are used in systems biology approaches, in our case the 
area of systems toxicology (Hartung and Leist, 2008; Leist et 
al., 2008). When does a derangement of a pathway become 
adverse, how do we interpret the concomitant activation of 
damaging and protective pathways?

4.	Prediction models – these might be considered specific vari-
ants of DAP for alternative methods: Early on in the valida-
tion of alternative methods it was recognized that we need 
to translate the in vitro outcome into the outcome expected 
for in vivo tests. For example, cytotoxicity rates need to be 
converted into estimates of toxicity classifications, IC50 val-
ues need to predict whether significant organ toxicity is to be 
expected, etc. Prediction models are thus algorithms used to 
convert a result into an estimate of the result of the reference 
method. This often but not always requires computation. 

The next series of in silico tools formalize what is called the “art 
of toxicology”, i.e. (“eminence-based”) expert knowledge. In 
the worst case “expert knowledge” only represents gut feelings 
of the evaluators. In expert systems they are at least system-
atically defined and applied by the software to compounds of 
interest:
5.	Expert systems formulate rules to give guidance for decision-

making. Rules such as structural alerts are often not explic-
itly formulated, compiled, combined or are too complex to 
be applied without a computer. The nature of these rules is 
often empirical, but they offer the advantage of challenge-
able definitions in contrast to most “expert judgements” in 
risk assessment. Expert systems have a major advantage over 
QSAR methods in that the prediction is related to a specific 
mechanism (Durham and Pearl, 2001).

6.	This expert guidance can take the form of a structure activ-
ity relationship (SAR), which means that structural alerts are 
formalized, e.g. reactive groups such as aldehydes suggest 
mutagenicity, etc. An excellent example of this is the rule-
based system for skin sensitization hazard developed by the 
German Federal Institute for Risk Assessment (BfR) (Gerner 
et al., 2004).

The most prominent in silico tools at the moment are the (quan-
titative) structure/activity relationships, i.e. 
7. (Q)SAR. These aim to describe chemical structures by certain 

descriptors to correlate (typically biological) effects or prop-
erties. If there is a dominant physicochemical property this 
makes a lot of sense: for example, diffusion through mem-
branes or accumulation from an aqueous environment both 
depend largely on lipophilicity, a property reasonably well 

155-166-AltexHartung.indd   156 4.10.2009   17:07:04 Uhr



Hartung and Hoffmann

Altex 26, 3/09 157

comfort zone. And, not to forget, many have a fear of simply 
being overwhelmed by complex mathematics – a fear captured 
nicely by the statement: “When used improperly, mathemat-
ics becomes a reason to accept absurdity.” (Pilkey and Pilkey-
Jarvis, 2007, p. xiii).

Consideration 2: We must embrace more in silico 
tools in our current approaches

Even if we hesitate to use in silico methods as stand-alone non-test 
methods, we can profit from integrating more in silico, especially 
biometry, into our in vivo and in vitro approaches. Why so? 
1.	Because they allow us to standardise how we analyse and ex-

press results, enabling us to compare and share them. This is 
an objective and transparent way of handling results, reducing 
the reliance on individual expertise – something becoming in-
creasingly important when more and more substances are be-
ing dealt with by more and more regulators in more and more 
economic and geographical regions.

2.	Because we become less likely to fool ourselves into seeing 
what we want to see. We might even identify our prejudices, 
mere traditions, beliefs and fears that are interfering with the 
best possible judgement.

3.	Because it will help us deal with complex situations and 
methodologies where non-formal analysis is not possible.

4.	Because we need fair (biometry-based) assessments of tra-
ditional and new approaches to compare them and decide on 
their usefulness, their compatibility and transition to the new.

5.	Because we need higher through-put to allow proper risk as-
sessment of the multitude of substances, an exercise that is 
not feasible with traditional approaches as shown recently for 
REACH (Rovida and Hartung, 2009b, Hartung and Rovida, 
2009). This can ideally be done with in silico approaches em-
bedded in an over-all strategy. 

What does this comprise? First of all, we need to establish 
the reproducibility of any tool. This sounds simple but it is by 
far not standard for tests used in toxicology. Secondly, this will 
allow power analysis to define which number of replicates will 
actually allow showing significance of a given difference (effect 
size). How often do we miss significance because group sizes 

“non-testing methods”, a terminology used in the REACH leg-
islation to describe ways to generate results to satisfy the data 
requirements without testing. This applies to approaches 5-8, 
but a clear focus will be on (Q)SAR as the most prominent tech-
nique. Only consideration 2 will address approaches 1-4, which 
can be understood as in silico tools used together with in vitro 
and in vivo methods. Approach 9 (PBPK) shall be addressed in 
a separate article soon, since it is a key technology necessary 
to link in vitro findings (or their in silico estimates) with dose/
exposure on the whole organism level. 

In toxicology and environmental health sciences in gener-
al, in silico tools boast a remarkably dichotomous following: 
While some colleagues uncritically embrace them, others are 
reluctant, sceptical and avoidant, such as Orrin Pilkey and Lin-
da Pilkey-Jarvis in their book “Useless arithmetic” (2007). The 
cartoonist Scott Adams (The Dilbert Future) put it like this: 
“There are many methods of predicting the future. For exam-
ple, you can read horoscopes, tea leaves, tarot cards, or crystal 
balls. Collectively, these methods are known as ‘nutty meth-
ods’. Or you can put well-researched facts into sophisticated 
computer models, more commonly referred to as ‘a complete 
waste of time’.” Moderates recognising these methods as useful 
tools with limitations are slowly appearing. The authors count 
themselves as belonging to this species of method-critical us-
ers with high expectations as to the future of these approaches. 
This certainly has to do with our formal university training in 
mathematics, informatics and statistics, but also with impres-
sions gained in some years of experience in the formal valida-
tion of methods, which intriguingly exposes the shortcomings 
of all models. We have proposed earlier (Hoffmann and Har-
tung, 2006) to translate evidence-based medicine to toxicol-
ogy, which might be considered in a nutshell as the marriage 
of toxicology and biometry, i.e. applying objective and quan-
titative assessments to toxicology (Hartung, 2009a). We are 
aware of the problems this proposal is creating on both sides 
of the spectrum, for believers in in silico tools and for those 
“basing their toxicology on bloody evidence”. The former fear 
that the basis of their modelling is de-valued, highlighting the 
limitations of the input of their modelling. The latter fear (con-
sciously or unconsciously) that these authoritative tools will 
challenge or even destroy their traditional tools, endanger their 

Tab. 1: Principal classes of in silico approaches and pertinent commercial offers

	 Expert Systems, SAR	 Statistical Systems, 	 Molecular Modelling	 Tools
		  QSAR		
Basis	 Expert knowledge,	 Data driven, molecular 	 Protein structure, 	 Biometry, data mining, 
	 rules, decision trees	 descriptors,	 ligands	 data analysis
Variants	 Structural alerts (2D) 	 Correlation vs. artificial	 Pseudo receptor
	 vs. pharmacophores 	 neural networks	 modelling	
	 (3D)			 
Prominent 	 Oncologic	 TOPKAT	 VirtualToxLab	 SAS
(commercial) 	 DEREK	 MULTICASE*		  SPSS
products	 METEOR	 CASE		  jmp
	 META	 LAZAR		  MatLab
	 HazardExpert			   GraphPad
	 COMPACT

* includes an expert system component
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started in the 70s and 80s1 and is entering formal validation right 
now. Thus, in silico toxicology is at the stage in vitro tests were 
at twenty years ago. Given the enormous speed of development 
of all informational technologies and the fact that many experi-
ences gained in the in vitro field can be adopted, a much quicker 
development can be anticipated. 

Much development with regard to the robustness of modelling 
systems occurred in the 1990s (Durham and Pearl, 2001), but 
major developments were stimulated especially by the REACH 
legislation. Increasing consideration and experience from vali-
dation (Worth et al., 2004 a and b) in these years also serves as 
a sparring partner for model development. 

The dual problem of the in silico technologies for regulatory 
use is that they are both “emerging” and “volatile”. They are 
emerging because they are the new kids on the block; experience 
with them in (non-)regulatory use is short and they are emerging 
more quickly than other technologies because of the dynamics of 
the informatics revolutions and their ease of generation and ap-
plication. In consequence the accumulated experiences are lim-
ited and often relate to earlier states of development, letting prej-
udices persist. It is part of their nature at the same time that they 
are “volatile”, i.e. permanently changing. It would most prob-
ably be a waste of opportunities if we did not continuously incor-
porate new data to fine-tune our models. “No predictive system 
should be considered as the ‘finished article’. All expert systems 
require the capability of being updated as new knowledge be-
comes available.” (Cronin, 2000). However, any quality assess-
ment such as validation requires freezing the methods in time. 
What is the value of an assessment when the method has been 
changed in the meantime? We cannot even assume that changing 
tests will make them better. In case of in vitro tests the effort of 
redoing the validation part might be considered reasonably pos-
sible, but this creates the risk of an inbred development, where 
the arbitrary selection of a validation set of compounds directs 
further developments. For in silico methods such re-validation 
might be more feasible, but who should keep track of the respec-
tive status and ensure the avoidance of inbred developments?  

Much of the in silico technology now available was developed 
for pharmaceutical industry, where substances are developed for 
discrete targets, with certain physicochemical properties (allow-
ing for example bioavailability), with well-understood kinetics 
and metabolism and comparatively unlimited resources. Very 
different from this, the safety assessment of environmental 
chemicals requires identifying unknown modes of action, usu-
ally in the absence of ADME data, for many diverse chemicals 
with rather limited resources. 

Consideration 4: Once again, the problem of 
multiple testing…

The multiple test problem crops up repeatedly in toxicology: 
we test a lot and report only some results, typically the positive 

are simply too small… and (forgetting the mantra “absence 
of evidence is no evidence of absence”) conclude that there is 
no effect? How often do we cherry-pick the results where by 
chance the variations in groups where small, suggesting signifi-
cant differences, although group sizes and inherent variability 
of the model do not really allow the determination of signifi-
cant results? The third need is to apply (appropriate) biometry. 
Too many tests (even those done according to test guidelines) 
have no statistics or use inappropriate methods. Fourthly, this 
requires a formalised DAP for each test. Often this will include 
formally establishing the limit of detection. This, fifthly, means 
moving the focus from significant to relevant: A significant ef-
fect is far from equivalent to a relevant effect (though relevant 
effects may be missed just as easily if the sample size is too 
small, i.e. the test is “under-powered”).

Notably, these considerations hold true far beyond (regula-
tory) toxicology. Many areas of the life sciences could benefit 
from entering into such a discourse on appropriate biometrics 
(as well as proper documentation and other good practices). It is 
our strong belief that the spirit of quality assurance and valida-
tion, which were piloted in the field of toxicology and the vali-
dation of alternatives, will be instrumental in raising standards 
in biomedical research.

But we do not yet have all the tools we may need to support 
toxicology at our disposal. Appropriate biostatistical tools are 
pivotal for the development of prediction models and the data 
analysis of validation studies. In addition, application of sophis-
ticated biostatistical methods can reduce the number of animals 
required for regulatory tests (Hoffmann et al., 2005). 

For the mid-term the opportunity lies in moving away from 
stand-alone tests for each problem to integrated testing strate-
gies (Hartung, 2009a; Nigsch et al., 2009; Greene and Naven, 
2009). Here, in silico approaches can play a major role, not only 
as pieces of evidence used in a weight-of-evidence evaluation 
but as components and decision points in formalised strategies. 
Easy examples are prioritisations, which direct substances to-
ward a certain test method or not. In the simplest case this can 
be seen as a screening approach, which is followed by a specific 
confirmatory one. This can also extend to the combination of 
two in silico methods, which are rendered one sensitive and one 
specific (McDowell and Jaworska, 2002). First examples show 
that the combined use of in vitro and in silico data actually im-
proves predictions (Helma, 2005).

Consideration 3: Non-testing “in silico” methods 
are only emerging and are continuously being 
adjusted 

Cell culture started more than 100 years ago and provided 
relevant contributions to toxicology from the 1960s onwards. 
Formal validation of in vitro systems for regulatory use has de-
veloped to maturity over the last 20 years. In silico toxicology 

1 The authors are aware that already around 1860 correlations of structural modifications to functional 
properties of chemicals were reported; the first structure activity relationships can be traced back to Corwin 
Hansch 1963, who connected logP with activity. A broader movement, however, started only with the 
increasing availability of computational power in the 1970s.
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(toxic) findings. If we do test for significance, we often forget 
the many tests we did to arrive there. For non-testing methods 
there are many multiple-testing traps: More than 2,500 descrip-
tors for chemicals have been reported – Todeschini and Conson-
ni (2000) alone list about 1800 descriptors. Of course, normally 
only a subset is considered for the development of a (Q)SAR, 
and there are recommendations that the number of datapoints 
should be greater than the number of descriptors evaluated. 
However, for any given data-set it is likely that we will arrive 
at a correlation when testing a substantial number of these. We 
have referred elsewhere (Hartung, 2009b) to the impressive ex-
ample of demonstrating connections between zodiac birth signs 
and certain diseases, which works if only we test enough hy-
potheses. This appears to be of limited concern until now: 70% 
of all (Q)SAR include logP (Autti Poso, University of Kuopio, 
Finland, personal communication), showing that usually rather 
simple and physiologically meaningful descriptors are used. The 
desire to use “reversible descriptors” has been stated (Eriksson 
et al., 2003), which means that the descriptor can be translated 
into understandable chemical properties. However, there are ex-
amples (Yuan et al., 2007) of bizarre descriptors, which were 
identified from a multitude of ones tested such as “mean atomic 
Sanderson electronegativity (scales on carbon atom)”, “lowest 
eigenvalue n. 1 of Burden matrix/weighted by atomic masses”, 
“path/walk 2sRandic shape index” or “Narumi harmonic topo-
logical index” to name only the first few listed. Here a mecha-
nistic interpretation appears to be most difficult.

There is also a substantial risk of using too many (Q)SAR – it 
is too easy to create a battery and run things through. It will be 
most important to require all results of (Q)SARs to be reported 
in a notification, e.g. a dossier on a substance for REACH, to 
avoid that only favourable results are included in notifications. 
This resembles somewhat the “intent to treat” requirement for 
clinical studies: once enrolled the patient is part of the study 
even if he drops out later. We need an “intent to test” attitude, 
i.e. to report the multiple modelling which took place, whatever 
the result was.

Consideration 5: Trash in, trash out? Or can  
in silico tools be better than the in vivo and in vitro 
data they are based on?

The development of in silico methods depends first of all on 
the availability and quality of usually in vivo data (Hartung and 
Daston, 2009) and other sources for modelling (Fig. 2) for the 
respective endpoint (principle “trash in – trash out” or “GIGO 
– garbage in – garbage out”). In principle, this is exactly the 
same problem as is faced in the validation of in vitro systems 
(Hartung, 2007; Hartung, 2008a). However, while for in vitro 
tests only 20 to 100 substances are required for validation, a 
much larger training set of data is necessary for in silico meth-
ods. In many cases this is not available, especially since many 
animal experiments are ill-defined and carried out in different 
variants which cannot be compared. Our own experience in one 
case might illustrate the problem: We chose acute fish toxicity, 
which is considered one of the most promising areas for QSAR 
because of the simplicity of the toxic mechanism. We used the 

probably best database available, i.e. the New Chemicals Data-
base of ECB, which contains high-quality data (obtained over 
the last 25 years according to test guidelines and under the qual-
ity regimen of Good Laboratory Practice). Of 3100 substances 
in the end only about 150 could be used for modelling purposes 
(Lessigiarska, 2004) when stringent quality criteria were used. 
Since these tests are normally only performed once, the key 
factor of their reproducibility cannot even be assessed. Most 
recently, Hrovat et al. (2009) have shown an incredible variabil-
ity of test results for exactly this area: For 44 compounds they 
found at least 10 data entries with variability exceeding several 
orders of magnitude. Of the analysed 4,654 test reports, 67% 
provided no information on fish life stage used, no information 
was provided on water temperature, hardness and pH in 20%, 
48% and 41% of the reports, respectively. It is difficult to imag-
ine how any computational approach should align this.

Data availability also requires that there is a certain homoge-
neity and absence of influential outliers as well as a span of the 
chemical domain of interest (Eriksson et al., 2003) – not easy 
to test as long as the definition of the chemical domain only be-
comes clear after the modelling or to correct if the dataset does 
not fulfil this requirement. This includes the problem of opti-
mally defining the chemical space beforehand, when the type 
and combination of descriptors to be found useful for the mod-
elling are not yet known. This problem will be smaller when 
more data spanning a larger chemical space are available.

Without doubt there are large reservoirs of data within phar-
maceutical companies, but it is likely that they represent largely 
more or less closely defined series of compounds not covering 
broad regions of chemical space (Dearden, 2007). An analysis 
of the World Drug Index led to the famous Lipinski’s rule of 
five (van de Waterbeemd and Gifford, 2003): most (oral) drugs 
have a molecular mass below 500 daltons, a calculated octanol/
water partition coefficient <5, a number of hydrogen-bond do-
nors <5 and a number of hydrogen-bond acceptors <10. This 

Fig. 2: The model of the model of the model... in vitro models 
animals models models human volunteer data models 
population.
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gential research after-thought to the major programs develop-
ing testing methods and molecular biology”. Much progress can 
be made if datasets are systematically produced for the purpose 
of modelling and the impact of the approach comes from pro-
ducing guidance on what to test in the future. It might well be 
that the measure of “full replacement” is simply not adequate. 
“The goal of QSAR is not to produce a series of models to be 
used in place of laboratory tests, but rather to improve both the 
design and strategic use of test methods.” (Veith, 2004).

Consideration 6: The validation dilemma

Validation can be seen as the process of building up confidence 
in (test) methods for regulators based on scientific evidence. 
These in the end have to take responsibility by agreeing on regu-
latory implementation. Over the last decade it has been possible 
to convince regulators (to different extents) of the merits of in 
vitro tests. Still, they are often only accepted for the identifica-
tion of hazards, while the confirmation of negatives in animals 
is requested. Nevertheless, several alternative methods have 
made it to international acceptance over the last decade.

In case of in silico tools, especially those considered as non-
testing methods to substitute for testing, a similar process of 
trust building will be necessary. When a review on in silico 
methods (Dearden, 2007) starts quoting Aristotle: “It is the 
mark of an instructed mind to rest easy with the degree of pre-
cision which the nature of the subject permits, and not to seek 
an exactness where only an approximation of the truth is pos-
sible”, this is counterproductive: Sure, we need to stay realistic 
about the limitations of any method, but we also need to ask 
whether the method is fit for its purpose. This holds especially 
true where other methods exist or where it is better to express 
the need for new approaches than to create the illusion of giv-
ing an answer. As much as we desire in silico models to work, 
we must be careful not to push them beyond their capabilities 
by lowering standards, such as by requesting “valid” instead of 
“validated” tests in the REACH legislation. If the experts are 
not clear on the difference between these two concepts, how 
should others understand it? Already in 1971 J. H. Chessire and 
A. J. Surrey remarked: “that because of mathematical power of 
the computer, predictions of computer models tended to become 
‘imbued with a spurious accuracy transcending the assump-
tions on which they are based. Even if the modeller is aware of 
the limitations of the model and does not have a messianic faith 
in its predictions, the layman and the policymakers are usually 
incapable of challenging the computer predictions.’” (Pilkey 
and Pilkey-Jarvis, 2007, p. 186).

We are not aware of any internationally accepted in silico 
alternative in the sense of a full replacement for all testing 
of a certain hazard. Regulatory use so far has been limited 
mainly to the prioritisation of test demands or to filling data 
gaps in some specific cases, especially for low risk chemi-
cals. US EPA is responsible according to the Toxic Substances 
Control Act for assessing risks of new chemicals before they 
are marketed; initial screening is done using (Q)SAR mod-
els to find out whether more thorough assessments are needed 
(National Research Council, 2007). Notably, about 2,000 sub-

characterises the chemical space in which most drug candidates 
for which data were generated in industry lie. This can certainly 
only overlap with the world of industrial chemicals to a very 
limited degree.

Another aspect is that, obviously, standard in silico models 
have similar or even stronger limitations than in vitro methods, 
as they do not reflect metabolism of compounds and their con-
tribution to biological activity. However, exactly here specific 
in silico tools can come in to predict metabolites and subject 
these to further analysis. Such systems are desperately needed 
(Nigsch et al., 2009). 

But, in silico predictions can be better than their input – if 
we are dealing with random errors and not systematic errors. In 
principle we are averaging the input from all data-points. Oc-
casional errors will diminish with regard to their influence the 
more data is entered as input. However, any systematic error, 
such as species differences or abnormal reactions of chemical 
classes, cannot be sorted out this way. 

QSAR are typically based on (multiple) linear correlations of 
descriptors of chemicophysical properties of substances. Linear 
correlations, however, are extremely rare in biological test sys-
tems. Given alone the complexity of uptake, distribution, me-
tabolism and excretion of substances, it is clear that we cannot 
expect quantitative estimates (potency of toxicants) from linear 
correlations. Non-linear correlations for QSAR, however, re-
quire a much larger collection of good data. The problem would 
be less serious for mechanistically based QSAR (Netzeva et al., 
2005), but as the paper states “There are relatively few regulato-
ry endpoints for which ‘mechanistic QSAR’ have been proposed, 
due to gaps in our understanding of underlying mechanisms of 
action and the scarcity of high-quality data sets suitable for hy-
pothesis testing.”  

Another limitation on the quality of in silico tools is the need 
for structural similarities for extrapolation. The confidence in 
an in vitro system is usually based not only on correct results in 
the validation exercise but also on the fact that the pathophysiol-
ogy of the human health effect is modelled in vitro. This is not 
typically the case in silico. Therefore, it is much more important 
here that very similar substances are included in the training and 
validation of the model. This means that these substances form 
an “applicability domain” for new, similar compounds. The 
chemical universe of more than 100,000 commercial substances 
is difficult to cover. Measures for similarity of substances are 
only emerging (Nikolova and Jaworska, 2003; Netzeva et al., 
2005). 

A problem that should not be underestimated is the annota-
tion of chemicals. There are many ways to name and describe a 
chemical – the (automatic) retrieval of biological data requires 
some efforts, also called “Toxico-Cheminformatics” (Kavlok 
et al., 2008) “to integrate the disparate and largely textual in-
formation available on the toxicology and biological activity of 
chemicals”. Excellent reviews on the ongoing annotation ac-
tivities and remaining needs are given by (Richard et al., 2006 
and 2008).

However, not necessarily (Q)SAR have to model existing 
data. Gil Veith has considered this “test now – model later” per-
ception as a primary barrier for progress and belittles it as “tan-

155-166-AltexHartung.indd   160 4.10.2009   17:07:05 Uhr



Hartung and Hoffmann

Altex 26, 3/09 161

stances have to be evaluated per year, prompting the use of 
in silico tools. Some data collection schemes (such as the US 
EPA high-production volume chemical program) make use of 
non-testing in silico methods but usually not with regulatory 
consequences, i.e. in silico results are typically reported and 
accepted when they fit the expectations for the substance any-
way. REACH for the first time gives in silico methods, and es-
pecially (Q)SAR, a broad room. This can only be understood 
when one knows that some of the persons involved in draft-
ing the legislation where strong proponents of this approach. 
The subsequent political discussion of the Commission draft 
by Council and Parliament left these “technical issues” aston-
ishingly untouched. (Q)SAR largely escaped the validation 
paradigm in the legislation, only asking for “valid” but not for 
validated methods, and in contrast to the in vitro approaches, 
the legislation makes no distinction between positive and neg-
ative results. The situation that real testing is more challenged 
than mere calculation will need to be resolved. Classification 
of substances (especially for existing high-production volume 
substances with their respective market value) based only on 
computational toxicology is, however, at this stage highly un-
likely, especially since regulatory implementation is a consen-
sus process. Broad waiving of testing for REACH because of 
negative in silico results is also rather unlikely, since not even 
validated cell systems are generally accepted for this. The 
most likely use in the mid-term will be the intelligent combi-
nation of in vitro, in silico and in vivo information. 

Today, an impressive discrepancy exists between studies em-
ploying external evaluations, such as the Predictive Toxicology 
Challenge (PTC), and internal validation results: For the PTC a 
training set of 509 compounds from the US National Toxicol-
ogy Program (NTP) with results for carcinogenic effects was 
used (Helma and Kramer, 2003). 185 substances with data from 
US FDA were used as a test set. 14 groups submitted 111 mod-
els, but only five were better than random at a significance level 
of p=0.05, with accuracies of predictions between 25 and 79% 
(Toivonen et al., 2003). Two previous comparative exercises by 
NTP had challenged models with 44 and 30 chemicals prospec-
tively, i.e. with chemicals which were to be tested only (Benigni 
and Giuliani, 2003). The accuracy of in silico predictions in the 
first attempt was in the range of 50-65%, while the biological 
approaches attained 75%. The results in the second attempt (Be-
nigni and Zito, 2004) ranged from 25 to 64%. In remarkable 
contrast, mere internal validations can show results of 75-89% 
predictivity (Matthews et al., 2006) for carcinogenicity and 
>80% for reproductive toxicity (Matthews et al., 2007), con-
sidered one of the most difficult areas for in silico predictions 
(Julien et al., 2004; Bremer et al., 2007). 

A key question is therefore whether validation can be per-
formed using the training dataset (leaving some data out or 
permutating the portion of data left out, i.e. cross-validation) 
or whether a challenge with a new dataset (external validation) 
is necessary? A first systematic investigation showed that, in 
general, there is no relationship between internal and external 
predictivity (Kubinyi et al., 1998): high internal predictivity 
may result in low external predictivity and vice versa. This ef-
fect, now called the “Kubinyi paradox” (Kubinyi, 2004), was 

also observed in other QSAR studies (Golbraikh and Tropsha, 
2002), which show that in the commonly used leave-one-out 
cross-validation no correlation exists between the predictive 
ability in the training set and test set, especially when the 
number of descriptors considered is high relative to the number 
of compounds in the training set. In a retrospective investiga-
tion of about 40 different 3D QSAR models (Doweyko, 2004) 
similar results were obtained. Kubinyi recommends returning 
to the recommendations of Topliss and Costello as well as 
Unger and Hansch (1972 and 1973) to include only reason-
able variables, selected from small numbers of variables, and 
to generate only models that have a sound biophysical back-
ground. This is the old misunderstanding of correlation vs. 
causality: The number of storks declining in parallel with the 
number of babies is not a proof of causality. Thus, the hypoth-
esis to be tested should be rational and not empirical, which 
leads us also to the question of prior knowledge. “It is often a 
valuable exercise in defining what we know about something 
and the basis of that belief.” (McDowell and Jaworska, 2002) 
calling for a Bayesian analysis of QSAR. Topliss and Costello 
(1972) show very nicely the risk of chance correlations when 
too many variables are tried on a limited dataset. Taken to-
gether, it is becoming evident that we need to validate with an 
external dataset (Hawkins, 2004; Worth et al., 2004 a and b; 
Helma, 2005); this requirement has been incorporated into the 
Setubal principles for QSAR validation.

A probably underestimated problem is that of errors intro-
duced in computer programming: “The potential for computer 
code error is vast, and it is very difficult to evaluate.” (Pilkey 
and Pilkey-Jarvis, 2007, p.26). Similarly, errors in chemical  
annotation might be more frequent than generally assumed:  
Ann Richard, US EPA, reported (personal communication)  
a 15% error rate of SMILES strings versus CAS numbers and  
a 1-2% error rate of CAS numbers in Chemfinder, all routine 
tools for in silico approaches. In conclusion, it is most important 
to know and quality-control the database used for model devel-
opment and validation. 

To date, positive experiences (>70% correct predictions, 
notably mostly not validated with external datasets) were 
reported mainly for mutagenicity, sensitisation and aquatic 
toxicity, i.e. areas with relatively well understood mecha-
nisms (Simon-Hettich et al., 2006), not for complex/multiple 
endpoints. Hepatotoxicity, neurotoxicity and developmental 
toxicity cannot be accurately predicted with in silico models 
(Merlot, 2008). Here, the perspective lies in breaking down 
complex endpoints into different steps or pathways (Merlot, 
2008) with the common problem of how to validate these and 
put them together to make one prediction. Unfortunately, it 
is exactly these endpoints that drive animal use and costs for 
REACH (Rovida and Hartung, 2009; Hartung and Rovida, 
2009). To wait for REACH to finally deliver the data needed 
to create the QSARs (Simon-Hettich et al., 2006) sounds a bit 
like “mustard after the meal”.

Validation is the prerequisite for regulatory acceptance, i.e. 
it is requested by OECD for both in vitro and in vivo methods. 
There is no reason why standards should be different for in 
silico tools, which are used in the same area with the same 
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rules of thumb based on parent structures will be accepted 
by the scientific and regulatory community, and rightly so.” 
Often overlooked, many test problems in the “real world” do 
not even deal with pure parent substances. A structure/activ-
ity relationship can only be meaningful if the biological ef-
fect is exerted by a single compound and the accompanying 
contaminations, metabolites and degradation products are not 
important. This is most difficult for areas like allergic reac-
tions (skin sensitisation), where femtogram quantities of com-
pounds can in principle produce reactions not related to the 
main compound under study. In general, limits of 90 to 95% 
purity are set for the application of (Q)SAR, but what is the 
sense in areas such as mutagenicity/carcinogenicity, where  
we do not accept threshold concentrations? Practical experi-
ence shows that even in “good” databases there are limits as 
to the applicability of in silico approaches: For example, when 
addressing aquatic toxicity in the New Chemical Database, i.e. 
compiled from the harmonised notification of chemicals in Eu-
rope after 1981, it was found in the study quoted above (Les-
sigiarska, 2004) that of 2,900 substances including data on the 
respective endpoints only about 1,400 represented substances 
suitable for QSAR, because they require purity and exclude 
mixtures, salts and metal compounds. It must be assumed that 
the relative high production volume chemicals in REACH will 
include many such substances, since new chemicals are more 
likely to be synthetic compounds such as dyes. Therefore, it will 
have to be assessed for which proportion of chemicals under 
REACH QSAR are actually suitable for in silico assessment. 
A preliminary evaluation of 200 low and 200 high production 
volume chemicals falling under REACH, which were randomly 
selected confirmed this percentage: Only 54% of the chemicals 
qualified in both tonnage classes for in silico approaches with 
regard to purity, exclusion of mixtures, salts, metals, etc. (Mar-
tin Barrat and the authors, unpublished).

consequences, i.e. regulatory decisions. Our understanding as 
to how to actually validate these tools is increasing (Jawor-
ska et al., 2003; Erriksson et al., 2003; Hartung et al., 2004; 
Worth et al. 2004 a and b; Helma 2005), especially for (Q)
SAR, where the “Setubal principles” (Jaworska et al., 2003) 
have been formulated, which state that (Q)SAR should:
1.	be associated with a defined endpoint of regulatory impor-

tance
2.	take the form of an unambiguous algorithm
3.	ideally, have a mechanistic basis
4.	be accompanied by a definition of domain of applicability
5.	be associated with a measure of goodness-of-fit
6.	be assessed in terms of their predictive power by using data 

not used in the development of the model.

Especially points (2) and (6) are problematic for some com-
mercial models, which do not necessarily share underlying 
algorithms and datasets. Similarly, (2) is difficult to meet for 
artificial neural network modelling (Devillers, 2008). Aspect (3) 
is more difficult to satisfy because few modes of action can be 
traced to molecular descriptors and same mode of action does 
not necessarily mean the same target of interference for the 
chemical in the biological system. At the same time, (4), (5) and 
(6) are technically under debate (Eriksson et al., 2003; Veith, 
2004; Netzeva et al., 2005) and will likely need individual con-
sideration for each and every (Q)SAR to be validated.

The Setubal principles led to the definition of respective OECD 
principles (http://www.oecd.org/dataoecd/33/37/37849783.pdf), 
which require:
1.	a defined endpoint
2.	an unambiguous algorithm
3.	a defined domain of applicability
4.	appropriate measures of goodness-of-fit, robustness and pre-

dictivity
5.	a mechanistic interpretation, if possible.

Noteworthy, the requirement of “regulatory importance” but 
more importantly also that of “external validation” (see above 
discussion) was abandoned. Also, the term mechanistic “basis” 
was weakened to “interpretation”.

Interestingly, beside this approach to validation, which very 
strongly follows that for in vitro methods, (Q)SAR can also 
be seen as a specific form of environmental computer models 
(National Research Council, 2007), where somewhat divergent 
concepts as to evaluation and validation have emerged, espe-
cially from US EPA (Fig. 3). 

Consideration 7: Applicability of QSAR

Gil Veith (2004) pointed out clearly that “we must embrace 
the facts that chemical structure is complex, the metabolites 
associated with a chemical represent a complex array of ad-
ditional agents that can vary with species and target cells, and 
that toxicity pathways from molecular interactions to the ad-
verse outcomes used in risk assessment are also complex. It 
is inconceivable that a QSAR based on simple equations and 

Fig. 3: Model development and peer-review steps suggested 
by the US National Academy of Sciences (National Research 
Council 2007)

155-166-AltexHartung.indd   162 4.10.2009   17:07:07 Uhr



Hartung and Hoffmann

Altex 26, 3/09 163

this, the full integration of modellers into project teams might 
already take us further, as lack of communication was identi-
fied as a major obstacle for the effective use of in silico pre-
dictions in practice (Merlot, 2008).  

Consideration 8: In silico tools are in many  
respects a forerunner for the development of  
new toxicological tools

With the imprinting of some years spent in a validation body, 
the authors tend to look for the problems of any methodology. 
But we should also clearly state that the in silico technolo-
gies come with a much more open view as to their limitations 
than any other technology. Okay, some exaggerated promises 
are made here too, but selling is part of the business. Some 
aspects deserve specific appraisal:
- 	The concept of an applicability domain – we can use a model 

only for the test substances for which it is adequate. Sounds 
simple, but just because we can inject something into an 
animal or pipet it into a cell culture does not mean that it is 
applicable. We owe the area of in silico methodologies the 
concept of a rigorous definition of the applicability domain, 
which we introduced into ECVAM’s modular approach to 
validation only in 2004 (Hartung et al., 2004).   

- 	The continuous update of databases – the concept that mod-
els need to continuously accommodate new findings is not 
at all shared by in vivo and in vitro tools: public availability 
would already be a big step forward, but who will use the 
emerging information to refine the model itself?

- 	Central repositories of methods and guidance – the work 
done both at the former European Chemical Bureau and 
OECD to make toolboxes for QSAR available is unique in 
toxicology.

- 	Defined DAP – recall? DAP is a data analysis procedure. 
This makes the difference between a model and a test. Only 
with a standardised procedure to interpret data and deduce 
a result do we have a defined test. In silico tools do not ex-
ist without it, but the number of in vivo and in vitro models 
where “significant” effects (= something happened) are re-
ported without interpreting their relevance is tremendous.  

- 	Public domain character of many tools – the in silico field 
has many open source and public domain offers. This is a 
double-edged sword since it impairs business opportunities 
in this field, which can be a driving force (Bottini and Har-
tung, 2009). However, in general, this ease of availability 
and transparency helps implementation. 

In conclusion, a new spirit is entering toxicology with the 
emerging in silico opportunities. Our science will benefit from it.

Final considerations

The in silico / QSAR field is facing more resistance in tradi-
tional toxicology than it deserves, though some is appropri-
ate and necessary: “As much as scepticism over QSAR comes 
from inappropriate use of QSAR for chemicals that elicit dif-

A most interesting question is whether in vitro (high-
through-put systems, HTS) models can deliver the database 
required for (Q)SAR development. Lombardo et al. (2003) 
and Dearden (2007) have argued that HTS data are generally 
not accurate enough for modelling purposes. This is not at 
all our own experience with robotised testing at ECVAM in 
collaboration with Maurice Wheelan and his Molecular Imag-
ing group in our sister unit, where the variability of in vitro 
tests (here the Balb 3T3 cytotoxicity test) was considerably 
reduced compared to several laboratories performing it manu-
ally. The reason for this difference in perception is likely that 
Lombardo et al. and Dearden refer to HTS as it is conducted 
in pharmaceutical industry – to find the needle in the hay-
stack: hundreds of thousands of substances, often not pure, 
partially decomposed, not controlled for solubility, are tested 
at one concentration only and without replicates – in compari-
son HTS for in vitro toxicology is typically done with concen-
tration response curves, replicates as appropriate and quality 
control of the chemicals. This can indeed form the basis for 
modelling, and we might go as far as saying that the more 
simple in vitro systems with such large homogenous datasets 
qualify much better for in silico modelling than any in vivo 
data. To model a (validated) in vitro test might thus lead to 
“second generation in silico alternatives”.

A key problem will be to move risk assessment away from 
a (pretended) black/white situation, where good and bad com-
pounds are identified for any endpoint: In silico (like in vit-
ro) methods will leave uncertainties (“grey areas”) (Merlot, 
2008). This is not really different from in vivo methods, but 
it was always too comfortable to neglect this there (Bottini 
and Hartung, 2009). The inherent biometrical analysis and 
unavoidable validation of the new tools will move us to ac-
knowledge uncertainty. In the end, we will have to move to 
something like a “probabilistic risk assessment”, where only 
a probability for a substance to exert a certain health hazard is 
given. This will change the way we perform risk assessments: 
Sorry, but we will not be able to close the books after a risk 
assessment is completed any longer. Instead, we will need to 
keep an eye on the true toxicological effects of the substances 
in use. For the moment, it is already some progress to intro-
duce a grey zone, i.e. “we are not sure” – notably again: not 
only for in silico methods.

We should be clear: (Q)SAR and other in silico approaches 
are already used for regulatory purposes (Walker et al., 2002; 
Cronin et al., 2003; Gerner et al., 2004), rarely yet as a full 
replacement of testing requirements, but more commonly to 
identify testing needs and to prioritise. Their use is only going 
to expand, just as our expertise and computational power and 
databases are expanding.

An interesting consideration (Huynh et al., 2009) is that for 
the real application of in silico tools the “in silico specialist” 
must be groomed, someone who needs to take on the legal 
risks and responsibilities of a risk assessor. “For this purpose, 
in silico technology should be subject to the same evaluation 
as clinical biology: standardization, reproducibility, preci-
sion, accuracy, detection limit, and so on.” However, before 
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ferent mechanisms as comes from the intentional and uninten-
tional over-selling of the predicitive capabilities of QSAR.” 
(Veith, 2004). 
1.	QSAR represent most promising complementary methods 

to achieve intelligent testing strategies; their use as stand-
alone methods for regulatory purposes with broad applica-
tion on a short term is unlikely. 

2.	Repeat-dose toxicities (chronic toxicity, reproductive tox-
icity, cancer) represent the largest challenge. Here, no in 
silico approaches are evident yet.

3.	The fast development of QSAR requires the “sparring part-
ner” of validation to coach developments.

4.	The relative contribution of QSAR to the toxicological 
toolbox and especially REACH will depend on the (non)-
availability of high-quality in vivo data, applicability to the 
substances (no mixtures, sufficient purity, no salts, no metal 
compounds, sufficient similar structure in the training set), 
successful validation, confidence of regulators and speed of 
regulatory implementation.

5.	We can learn a lot from in silico methods in other areas of 
toxicology, especially a more rigorous biometric and self-
critical approach to toxicological tool development.
So, where do we stand? In silico tools have a bright future 

in toxicology. They add the objectivity and the tools to ap-
praise our toolbox. They help to combine various approaches 
in more intelligent ways than a battery of tests. They cannot 
be better than the science they are based on, “no model can 
overcome a series of bad assumptions.” (Pilkey and Pilkey-
Jarvis, 2007, p. 29). For any model (in vivo, in vitro or in 
silico), it is luck if a large part of the real world is reflected, 
and we will only know so after laborious validation. George 
Box is known for his statement “All models are wrong, some 
models are useful” (Box, 1979). We agree that it ultimately 
boils down to usefulness, as elegantly expressed by Gil Veith: 
“The bottom line in the business world for scientific products 
is their usefulness, perhaps the most rigorous test that can be 
given to any research product.” We can help to improve their 
usefulness by integrating them into the toolbox of toxicology, 
estimating their usefulness by validation and demonstrating 
this usefulness finally by showing in comparison the limita-
tions of current approaches. 
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