
ALTEX 34(1), 2017 157

Received July 28, 2016; 
Accepted September 22, 2016; 
Epub September 26, 2016; 
https://doi.org/10.14573/altex.1607281

human-like pulmonary and extrapulmonary lesions observed 
(Basaraba, 2008; McMurray et al., 1996). Despite the utility of 
small animals in early screens, larger animal models such as 
cattle and NHPs are considered more relevant to human TB. 
NHPs are naturally susceptible to infection with Mtb, and de-
velop the most human-like disease with latency and reactivation 
(Flynn et al., 2015). BCG confers some level of protection in 
NHPs, which can be quantified through a variety of clinical and 
nonclinical parameters (Sharpe et al., 2010). In the absence of 
a surrogate marker of protection from TB disease, animal Mtb 
infection models remain an essential pre-requisite for novel 
vaccine candidates progressing to clinical trials. 

To evaluate the protective efficacy of a candidate TB vaccine, 
animals must be infected with virulent Mtb in a challenge exper-
iment following vaccination. While M. bovis challenge studies 
in cattle are classified as “mild” in severity by the UK Home 
Office due to a lack of clinical symptoms, Mtb challenge ex-
periments in mice, guinea pigs and NHPs are generally defined 
as “moderate”. Moderate severity indicates that the animals 
are likely to experience “short term moderate pain, suffering 
or distress or long-lasting mild pain, suffering or distress… or 
moderate impairment of the well-being or general condition”1. 
As TB disease progresses, animals may experience loss of body 

1  Introduction

Tuberculosis (TB) is the world’s most deadly infectious disease, 
with an estimated 9.6 million new cases and 1.5 million deaths 
annually (WHO, 2016). Incidence of infection in endemic coun-
tries remains very high despite good coverage with BCG (Ba-
cillus Calmette-Guérin) vaccine, the only currently available 
vaccine (Mahomed et al., 2006; Moyo et al., 2010). There is a 
desperate need for a more efficacious vaccine. New candidate 
TB vaccines are currently tested for safety, immunogenicity and 
efficacy using preclinical animal models such as mice, guinea 
pigs, cattle and non-human primates (NHPs). Mice are the most 
widely used species due to the potential for screening a high 
number of candidates at low cost and the availability of gene 
knockout strains to characterize the immune response (Apt and 
Kramnik, 2009). However, research in species other than mice 
is becoming more commonplace with increasing availability 
of immunological reagents (McShane and Williams, 2014). 
Guinea pigs have emerged as a useful model, replicating many 
aspects of Mtb infection in humans such as granuloma forma-
tion, dissemination and caseating necrosis (Clark et al., 2015). 
They are also considered a more stringent model in discrimi-
nating the efficacy of different vaccines due to the variety of 
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This framework, now formalized in national and international 
legislation, provides the basis of our discussion on the use of 
animals in TB vaccine research. 

2  Replacement

The National Centre for the 3Rs (NC3Rs) in the UK describes 
replacement as “methods that avoid or replace the use of animals 
defined as ‘protected’ under the Animals (Scientific Procedures) 
Act 1986, amended 2012 (ASPA) in an experiment where they 
would have otherwise been used”2. Protected animals in the UK 
refer to all living vertebrates except humans. Alternatives in-
clude using humans, in vitro/cell culture models, computational/
mathematical modelling, or less sentient animals. All of these 
have been reported in the context of TB vaccine development.

2.1  Use of humans
Given the differences between human and animal manifes-
tations of TB disease, one may argue that a more appropriate 
focus would be the target species. Controlled human challenge 
models have been successfully implemented for other patho-
gens, including those responsible for malaria and typhoid 
(Marwick, 1998; Sauerwein et al., 2011), and are a valuable tool 
for assessing vaccine efficacy. However, the safety and ethical 
barriers to challenging humans with live virulent mycobacteria 
have thus far limited the development of an in vivo challenge 
model for TB. 

Already licensed for use in humans, BCG represents a po-
tential surrogate for Mtb challenge, and is a safe replicating 
mycobacterium that causes a contained, short-term infection 
in immunocompetent individuals. A BCG challenge model has 
recently been described in which participants were challenged 
with intradermal (ID) BCG. Skin biopsies of the challenge site 
were taken 2 weeks later. BCG load was quantified by culture 
and quantitative polymerase chain reaction (qPCR) (Harris et 
al., 2014; Minassian et al., 2012). The model demonstrated the 
ability to detect differences in anti-mycobacterial immunity in-
duced by BCG and MVA85A (modified vaccinia Ankara 85A, a 
new-generation vaccine against tuberculosis) vaccination, with 
a significant inverse correlation between immune signatures, 
particularly IFN-γ and IL-17 pathways, and BCG load detect-
ed by qPCR (Harris et al., 2014). A dose escalation study and 
comparison of BCG SSI and BCG TICE has also been reported 
(Minhinnick et al., 2016). 

One criticism of intradermal challenge is that it does not mim-
ic the natural route of infection, and to that end a clinical trial 
evaluating the safety and feasibility of an aerosol BCG human 
challenge model is currently ongoing (NCT02709278).

2.2  In vitro assays
The development of vaccines against other pathogens has 
been greatly expedited by the identification of a biomarker 
or immune correlate of protection (Thakur et al., 2012). Such 
indicators, for example antibody titer or cytokine level, may 

weight, fever and respiratory distress and if left untreated will 
eventually die of pulmonary insufficiency (Gupta and Katoch, 
2009). As this is unethical, humane euthanasia at predefined 
clinical endpoints, which will be discussed later in this report, is 
now enforced by UK Home Office legislation.

In addition to welfare concerns, the many differences be-
tween animal models and human TB bring into question 
the predictive value of such studies. “Protection” in animal 
models, as determined by the outcome of Mtb challenge ex-
periments, is on a continuous spectrum and usually defined in 
terms of a relative improvement in a disease-related readout 
such as bacterial load, pathology score or long-term survival. 
A vaccine is considered to provide protection even if there is a 
measurable bacterial load or pathology in the organs or if some 
animals do not survive (Elias et al. 2005; McShane and Wil-
liams, 2014; Vordermeier et al., 2009). In humans, however, 
efficacy is binary and defined as the prevention of TB disease 
using clinical endpoints; any individual developing disease, 
however minimal, is not protected (McShane and Williams, 
2014). Clearly, an artificial aerosol challenge is very differ-
ent from natural transmission in humans, and the laboratory 
strains of Mtb commonly used (such as H37Rv) are genetical-
ly dissimilar to clinical isolates (Niemann and Supply, 2014), 
with much higher challenge doses employed (McShane and 
Williams, 2014). This issue has recently been addressed with 
new advances in ultra-low dose challenge, as discussed be-
low. In addition to these fundamental differences in the mod-
el itself, animals are genetically distinct from humans, with 
several discrepancies in both innate and adaptive immunity 
between mice and humans (Mestas and Hughes, 2004). The 
widely used Balb/c and C57BL/6 mouse strains do not exhibit 
caseating granuloma formation following Mtb infection (Orme 
and Basaraba, 2014) and manifest a chronic phase of disease 
unlike latent Mtb infection in humans (Rhoades et al., 1997). 
Furthermore, responses in genetically diverse humans will be 
considerably more variable than in an inbred laboratory animal 
strain. Although outbred mice give a diversified picture of TB, 
which may be more representative of human disease, larger 
group sizes are required to offset the increase in variability 
(Niazi et al., 2015).

The predictive value of animal challenge models in deter-
mining TB vaccine efficacy in humans is uncertain, and will 
remain unclear until a successful vaccine is developed. Fur-
thermore, there is evidence from studies of other diseases that 
animal models can fail to reliably predict safety in humans 
(Suntharalingam et al., 2006; McKenzie et al., 1995). Other 
difficulties include the large numbers of animals required, and 
the nature and slow growth of mycobacteria making exper-
iments long and costly with the need for highly specialized 
Category 3 animal facilities. Given the scientific and logistical 
limitations of these models as well as the ethical concerns, it is 
imperative that potential alternatives are pursued. The princi-
ples of the 3Rs (replacement, reduction and refinement) were 
first proposed by Russell and Burch in the 1950s, with the aim 
of ensuring ethical use of animals in research (Balls, 2009). 

2 https://www.nc3rs.org.uk/the-3rs, accessed 2016
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2.3  In silico modelling
The availability of genome sequences for Mtb and other my-
cobacterial species, mice and humans together with relatively 
recent developments in computer algorithms have facilitated the 
use of in silico bioinformatics methods for the identification of 
new TB vaccine candidates. 

Comparative analyses of mycobacterial genomes have al-
lowed the identification of 16 genomic regions of Mtb which 
are absent in one or more strains of BCG, known as regions 
of difference (RD) (Behr et al., 1999; de Jonge et al., 2005). 
RD proteins have been generated using recombinant methods 
or overlapping synthetic peptides (Mustafa, 2005) followed 
by testing in immune assays to identify those suitable for vac-
cine development. Wang et al. analyzed RD proteins in silico 
for their ability to bind to a range of HLA class I alleles and 
showed that a significant proportion were high-affinity binders, 
representing promising epitopes for inclusion in experimental 
TB vaccine candidates (Wang et al., 2010). 

In 2011, a study by Tang et al. used novel computational 
search tools to identify new Mtb antigens activating polyfunc-
tional CD8+ T cells which were then validated in human-based 
assays (Tang et al., 2011). A further study scanned multiple pub-
lished databases of Mtb gene expression to select the proteins 
most highly expressed in all phases of infection. The proteins 
were evaluated for the presence of B and T cell promiscuous 
epitopes and population coverage in terms of allele presentation. 
Sequence alignments were then used to determine identical epi-
topes on M. smegmatis, and two M. smegmatis-derived experi-
mental vaccines were tested in mice to assess humoral immuno-
genicity and cross-reactivity with Mtb (Rodriguez et al., 2011). 

More recently, Monterrubio-López et al. (2015) identified 
potential vaccine targets using NERVE (New Enhanced Re-
verse Vaccinology Environment) prediction analysis of the Mtb 
H37Rv proteome. Proteins were further down-selected based on 
VaxiJen-predicted antigenicity and amino acid sequence align-
ments, with 6 novel candidates finally selected. Bowman et al. 
described the incorporation of the machine learning approach 
support vector machine (SVM) classification, which resulted 
in superior accuracy in discriminating protective antigens from 
non-antigens (Bowman et al., 2011). In addition to the 3Rs 
benefits, reverse vaccinology offers several advantages over 
conventional methods including speed, reduced cost and ability 
to identify all the putative protective antigens rather than just 
the most abundant (Bowman et al., 2011). 

2.4  Less sentient animals
As opposed to absolute replacement of animal models with in 
vitro or inanimate systems, another 3Rs approach involves the 
replacement of more sentient vertebrates with animals thought 
to have a lower potential for pain perception. The amoeba Dic-
tyostelium discoideum and the fruit fly Drosophila melanogas-
ter, though useful in understanding host-pathogen interactions 
and innate immune responses during mycobacterial infection, 
have limited applicability for the study of vaccines due to their 
lack of adaptive immunity (Dionne et al., 2003; Hagedorn et 

be measured using an in vitro assay, allowing the use of hu-
man blood or cell samples. Frustratingly, there are currently no 
validated correlates to reliably assess the efficacy of candidate 
TB vaccines. Most TB vaccine studies to date have used quan-
tification of antigen-specific IFN-γ by ELISpot and/or intracel-
lular cytokine staining as the primary immunological read-out, 
though it remains unclear whether this measure correlates with 
protection (Elias et al., 2005; Mittrücker et al., 2007). Although 
one study of BCG vaccinated infants in South Africa found no 
difference in frequency and extended cytokine profiles of Mtb 
specific cells between protected and non-protected infants (Ka-
gina et al., 2010), a more recent trial indicated an association 
between the BCG antigen-specific IFN-γ ELISpot response and 
reduced risk of TB disease (Fletcher et al., 2016). This latter 
study also found a negative correlation between levels of Mtb 
antigen-specific IgG and risk of disease, suggesting that protec-
tive immunity may not be restricted to the T cell compartment 
(Fletcher et al., 2016). 

An alternative to measuring predefined individual parameters 
is the use of mycobacterial growth inhibition assays (MGIAs), 
which take into account a range of immune mechanisms and 
their additive effects and interactions. These systems measure 
the ability of human or animal cells to inhibit growth of my-
cobacteria following in vitro infection. Using samples taken 
pre- and post-vaccination, functional efficacy may be assessed 
without the requirement for in vivo Mtb challenge or natural 
infection in animals. Several such MGIAs have successfully 
discriminated BCG vaccinated from non-vaccinated human 
volunteers using both whole blood or peripheral blood mono-
nuclear cells (PBMC) (Cheng et al., 1988; Cheon et al., 2002; 
Fletcher et al., 2013; Hoft et al., 2002; Kampmann et al., 2004; 
Worku and Hoft, 2000). 

Animal models provide an opportunity to test novel vaccine 
candidates, and an in vitro assay using blood or cells from vac-
cinated animals offers a potential surrogate of protective effica-
cy that may negate the need for in vivo challenge during early 
selection of vaccine candidates. MGIAs have been described 
using cells from mice (Cowley and Elkins, 2003; Kolibab et 
al., 2009; Marsay et al., 2013; Parra et al., 2009; Sada-Ovalle et 
al., 2008), cattle (Carpenter et al., 1997; Denis et al., 2004) and 
NHPs (Tanner et al., submitted). Importantly, both Parra et al. 
(2009) and Marsay et al. (2013) showed that differences in my-
cobacterial growth inhibition between groups were consistent 
with different levels of protection in experimentally-matched 
mice challenged in vivo, thus demonstrating the utility of animal 
MGIAs for biological validation. Preliminary work applying a 
whole blood MGIA in cynomolgus macaques has demonstrated 
a correlation between mycobacterial growth inhibition follow-
ing vaccination and protection from BCG challenge as mea-
sured by lymph node CFU (own unpublished data). 

MGIAs also allow efficacy against different strains (including 
hypervirulent strains) to be tested in parallel in cells from the 
same animal, rather than limiting to one laboratory strain, which 
may be unrepresentative of clinical strains affecting humans, as 
for in vivo challenge. 
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tories as the BioMedicine Journal of Negative Results4 and a 
recent PLOS ONE collection of negative, null and inconclusive 
results. Furthermore, BMC Research Notes was produced with 
the specific objective of publishing repeat studies and negative 
results5. 

3.2  Experimental design
The NC3Rs state that “appropriate experimental design and 
statistical analysis techniques are key means of minimising the 
use of animals in research”1. One critical consideration is sam-
ple size, which should not be so large as to use an unnecessary 
number of animals. However, under-powering an experiment 
with too few animals to provide a biologically meaningful re-
sult is equally wasteful (Festing and Altman, 2002). Rigorous 
statistical calculation such as power analysis should be per-
formed to identify an appropriate sample size; methods for this 
have been described by Dell et al. (2002). However, Williams 
et al. (2009) highlighted the issues involved in powering TB 
challenge experiments based on survival using guinea pigs and 
larger animals. The authors note that while survival studies can 
be extremely informative in establishing that a new candidate 
vaccine can confer equivalent protection to BCG and that this 
protection is sustained, demonstrating significant improvement 
over BCG is more challenging. Due to the binomial nature of 
survival data, statistical power is extremely low, and a simu-
lation exercise revealed that for a substantial increase in mean 
survival time (from 150 to 250 days), a prohibitively large 
group size of 74 would be required to reach a significant p-value 
of 0.05 (Williams et al., 2009). This provides further support for 
the use of predefined fixed endpoints, as alternative measures 
such as bacterial load in target organs offer superior statistical 
and discriminative power (Williams et al., 2009). 

Minimizing variation (for example by controlling for con-
founding variables such as age, weight and genetics) also im-
proves power, allowing the same effect to be detectable with a 
smaller number of animals (Festing and Altman, 2002). Experi-
ments should be unbiased with random allocation of animals to 
treatment groups and blinding of researchers, and it is encourag-
ing that many of these factors are now taken into consideration 
when granting ethical permission to conduct animal trials. Fur-
thermore, multiple questions may be answered, and therefore 
numbers of experiments and animals reduced, by applying ade-
quately powered factorial designs (Festing and Altman, 2002). 
The NC3Rs recently launched an online Experimental Design 
Assistant (EDA) to guide researchers in the design of experi-
ments and ensure the minimum number of animals is used to 
achieve the scientific objectives1.

3.3  In vivo imaging
In vivo imaging techniques enable longitudinal studies of the 
same animals through the course of infection, reducing the 
number of groups required for assessment at sequential time-
points and therefore variation. As opposed to CFU quantifica-

al., 2007, 2009). Zebrafish, however, have an immune system 
similar to that of humans with a fully developed adaptive arm 
in adults, and represent a popular model organism for various 
pathogens (Meijer and Spaink, 2011). It has been suggested that 
the course of mycobacterial infection in zebrafish has some par-
allels to that of human TB, with high-dose infection leading to 
progressive disease resembling acute TB, and low-dose infec-
tion leading to spontaneous latency with reactivation following 
immunosuppression (Parikka et al., 2012; Swaim et al., 2006). 
Importantly, many virulence factors, host genes and immune 
cell types involved in human Mtb pathogenesis have conserved 
functions in the zebrafish-M. marinum model (Cronan and To-
bin, 2014). Zebrafish have already proven useful in elucidating 
the early events of a mycobacterial infection, the role of the in-
nate immune system in resistance and understanding the mech-
anisms of granuloma formation and its role in controlling infec-
tion, with the limitation that zebrafish do not have lungs (Clay et 
al., 2007; Cronan and Tobin, 2014; Swaim et al., 2006). It is also 
a potentially promising model for aiding the development of TB 
therapeutics and vaccines for preventing reactivation of latent 
TB. In a study by Oksanen et al., both BCG and a DNA-based 
vaccine protected fish from mycobacterial infection, reducing 
mortality and bacterial burden following infection with a lethal 
dose (Oksanen et al., 2013). 

3  Reduction

Reduction is defined as “methods that minimise the number 
of animals used per experiment or study, either by enabling 
researchers to obtain comparable levels of information from 
fewer animals, or to obtain more information from the same 
number of animals, thereby avoiding further animal use”1. Ex-
amples include reducing replication by increased data sharing, 
improved experimental design and technologies enabling longi-
tudinal studies in the same animals. 

3.1  Reducing replication
Publication bias arises when negative or non-confirmatory find-
ings are suppressed, either by researchers themselves choosing 
not to submit for publication or lack of journal acceptance (Song 
et al., 2013). Emphasis is frequently placed on impact rather 
than quality of research or reproducibility, leading to what has 
been described as a “crisis of false positives” in biomedical re-
search where many published results are false or exaggerated, 
with an estimated 85% of resources wasted (Macleod et al., 
2014). Importantly, failure to share negative findings results in 
needless repetition of animal experiments. One potential solu-
tion is the prospective registration of preclinical studies similar 
to that of clinical human trials such as the BMJ AllTrials cam-
paign, aiming for “all trials registered, all results reported”3. In 
recent years, some measures have been taken to encourage the 
publication of negative findings by provision of such reposi-

3 http://www.alltrials.net/
4 http://jnrbm.biomedcentral.com/
4 http://bmcresnotes.biomedcentral.com/
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As described above, a BCG challenge model for use in hu-
mans has recently been developed (Harris et al., 2014; Minas-
sian et al., 2012; Minhinnick et al., 2016). BCG challenge in 
animal models similarly represents an alternative to the use 
of virulent Mtb, reducing the severity of pathology; with the 
caveat that reduced pathology makes for a less realistic and 
perhaps less sensitive model. The impact on lifetime experi-
ence that could be achieved through the use of a BCG (rather 
than Mtb) challenge model in macaques was evaluated through 
comparison of the CWAS during the post-challenge phase, 
which was shown to be considerably greater (i.e., improved 
welfare) at 2 weeks post-BCG challenge compared with 16, 
26 or 52 weeks post-Mtb challenge (Wolfensohn et al., 2015). 
Using a BCG challenge model in cynomolgus macaques, sig-
nificantly lower levels of BCG were detected in the axillary 
lymph nodes draining the site of challenge in BCG-vaccinated 
compared with naïve animals. Furthermore, higher ex vivo 
PPD-specific IFN-γ ELISpot responses and enhanced in vitro 
mycobacterial growth inhibition were associated with lower 
CFU counts in the draining lymph node, suggesting utili-
ty of this model in identifying correlates of immunity (own 
unpublished data). A similar model was employed in cattle, 
demonstrating that BCG vaccinated animals had lower BCG 
CFU counts than naïve animals following intranodal challenge 
with BCG (Villarreal-Ramos et al., 2014). It has been shown 
that BCG-vaccinated mice later challenged with intradermal 
BCG had reduced mycobacterial growth, and this protection 
was predictive of BCG efficacy against aerosol Mtb challenge 
(Minassian et al., 2011).

4.2  Ultra-low-dose challenge
High doses of Mtb are typically required to induce meaningful 
changes in clinical parameters and pathology that permit the 
measurement of vaccine efficacy. However, a lower challenge 
dose would not only more closely resemble natural infection, 
but also reduce disease burden and therefore symptoms. 
Whereas NHP challenge models typically use inoculum sizes 
of between 50 and 3000 CFU of Mtb (Langermans et al., 2001; 
Lewinsohn et al., 2006; Lin et al., 2012; Verreck et al., 2009), 
an ultra-low dose challenge recently described by Sharpe et al. 
(2016) exposed macaques to less than 10 CFU. Macaques did 
not exhibit abnormal behaviors or marked clinical signs, unlike 
with normal high dose challenge. Furthermore, comparison of 
the CWAS score for unvaccinated animals during the first 16 
weeks after challenge with high and low dose Mtb shows that 
there was a beneficial effect on welfare of using a reduced dose 
(Wolfensohn et al., 2015). However, such a model does require 
more sensitive approaches to evaluate disease burden such as 
FHG PET-CT in vivo imaging, though these offer the added 
advantage of serial assessment as described above. Using these 
methods, the authors were able to discriminate between rhesus 
and cynomolgus macaques in terms of disease burden and pro-
gression, reflecting previously described differences in disease 

tion in the lungs, which necessitates euthanasia, bioluminescent 
or fluorescently-tagged mycobacteria can be tracked in live 
animals for real-time assessment of vaccine efficacy (Zelmer 
et al., 2012). Such non-invasive techniques also fall into the 
“refinement” category. 

Zhang et al. used an autoluminescent strain of Mtb as a surro-
gate marker to replace CFU counts. Relative light units (RLU) 
in vivo paralleled CFU counts in vitro during the active phase 
of bacterial growth, and the ability of a recombinant BCG vac-
cine to limit bacterial growth was demonstrated. Although the 
modest sensitivity of the system necessitates a greater bacterial 
burden, leading to more widespread dissemination of infection, 
the authors suggest methods by which the degree of lumines-
cence may be improved (Zhang et al., 2012). 

In vivo imaging may also be used to visualize clinical symp-
toms of TB disease, again reducing the need for endpoint mea-
sures such as CFU. Lewinsohn et al. (2006) described the use 
of computed tomography (CT) scanning in macaques, demon-
strating a strong correlation with pathohistologic findings at 
necropsy. 

CT and MRI scanning have since been applied in a number of 
NHP TB drug and vaccine studies to determine number, struc-
ture and distribution of pulmonary lesions across the lung nodes 
following Mtb challenge (Lin et al., 2013; Rayner et al., 2013; 
Sharpe et al., 2016). Importantly, whereas routine readouts such 
as bacterial burden and gross pathology necessitate the use of 
high doses of Mtb, sensitive imaging techniques permit much 
lower challenge doses of Mtb, as discussed in the following 
section (Rayner et al., 2013; Sharpe et al., 2016).

4  Refinement

Refinement refers to “methods that minimise the pain, suffer-
ing, distress or lasting harm that may be experienced by the 
animals”1. This applies to all aspects of animal use, including 
housing and husbandry. Wolfensohn et al. (2015) recently de-
scribed a quantitative system for assessment of lifetime expe-
rience, assigning a combined welfare score (CWAS) to various 
permutations of the macaque model of TB. This system scored 
four parameters (physical, psychological, environmental and 
procedural [experimental and/or clinical]), which contributed to 
a level of combined severity. This measure will be discussed 
in the context of TB challenge models; improvements in more 
general areas such as importation and living conditions are be-
yond the scope of this review.

4.1  BCG challenge 
Replacing virulent Mtb with attenuated BCG would not only 
reduce the severity of animal challenge experiments, but also 
offer the opportunity to conduct challenge experiments in hu-
mans as a tool for assessing and prioritizing candidate vaccines 
at an early stage of development as described.
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categorized at the highest severity level, meaning that animals 
were allowed to die spontaneously or reach a moribund state 
(Franco et al., 2012). 

In addition to the welfare concern, survival may not neces-
sarily be the most controlled or statistically powerful measure, 
as described above. In a TB vaccine study of long-term survival 
in rhesus macaques, lung lesion burden using MR imaging and 
stereology, but not survival time, was able to distinguish naïve 
and vaccinated NHPs (Sharpe et al., 2010). Such “in-life” im-
aging may represent a more humane readout of vaccine efficacy 
than survival. 

In most TB candidate vaccine studies reported in recent years, 
animals were euthanized at a fixed time-point following Mtb 
challenge and alternative measures of disease severity such as 
CFU counts in lungs and spleen were assessed (Gillis et al., 2014; 
Stylianou et al., 2015). Various measures have been described as 
a cut-off parameter for euthanasia including non-transient hypo-
thermia and, more commonly, change in body weight. However, 
although weight itself is quantitative and objective, this measure 
is confounded by natural fluctuations and the definition of the 

outcome (Sharpe et al., 2016). Concerns that ultra-low doses 
would lead to increased variability or fail to reliably infect all 
of the challenged animals did not appear to be founded (Sharpe 
et al., 2016). 

4.3  Humane end-points
The NC3Rs defines humane end-points as “clear, predictable 
and irreversible criteria which substitute for more severe ex-
perimental outcomes such as advanced pathology or death”1. 
Unfortunately, such criteria often remain poorly defined, and 
the long duration typical of animal experiments involving TB 
and other chronic progressive infections provides greater po-
tential for ambiguity. If no measures are taken to treat Mtb-in-
fected mice, they will succumb to infection and die before their 
average life-span (Medina and North, 1998), and in a system-
atic review of endpoints implemented in 80 murine TB studies 
published in 2009, 47% of the studies were classified as “le-
thal” (not terminated before animals reached advanced stages 
of disease, which would rapidly progress towards spontaneous 
death if no other endpoints were applied). 66% of these were 

Tab. 1: Summary of 3Rs approaches to tuberculosis vaccine research

3Rs area

Replacement 
 
 
 
 
 
 

Reduction 
 
 
 
 
 

Refinement

Method

Human challenge 

In vitro assays 
 
 
 

In silico modelling 
 

Less sentient animals

Reducing replication

Experimental design 
 
 

In vivo imaging 
 
 

BCG challenge 
 

Ultra-low-dose challenge

Humane end-points

Examples

BCG challenge as a surrogate for Mtb (Harris et al., 2014;  
Minassian et al., 2012; Minhinnick et al., 2016)

IFN-γ ELISpot and IgG ELISA as correlates of risk  
(Fletcher et al., 2016) 
Mycobacterial growth inhibition assays (Cheng et al., 1988;  
Cheon et al., 2002; Fletcher et al., 2013; Hoft et al., 2002;  
Kampmann et al., 2004; Worku and Hoft, 2000)

Identification and selection of epitopes for inclusion in novel  
TB vaccine candidates (Monterrubio-López et al., 2015; Mustafa, 2005; 
Rodriguez et al., 2011; Tang et al., 2011; Wang et al., 2010)

Zebrafish (Clay et al., 2007; Oksanen et al., 2013)

Improved sharing of negative results/trial registering

Sample size and power (Dell et al., 2002; Festing and Altman, 2002; 
Williams et al., 2009) 
Controlling variation, factorial design, blinding  
(Festing and Altman, 2002)

Fluorescently-tagged mycobacteria (Zelmer et al., 2012;  
Zhang et al., 2012) 
Visualising clinical symptoms (Lewinsohn et al., 2006; Lin et al., 2013; 
Rayner et al., 2013; Sharpe et al., 2016)

BCG challenge in non-human primates and cattle  
(Minassian et al., 2011; Wolfensohn et al., 2015;  
Villarreal-Ramos et al., 2014)

Non-human primates (Wolfensohn et al., 2015; Sharpe et al., 2016)

Fixed endpoints (Gillis et al., 2014; Wolfensohn et al., 2015;  
Stylianou et al., 2015) 
Prevention of infection as an endpoint (McShane and Williams, 2014)
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