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Field practice
At a recent toxicology meeting we checked 100 posters display-
ing concentration-response curves. There was good agreement 
that a curve should be fitted to the data so as to minimize the 
distances between the data and the curve. Moreover, the defi-
nition of the desired summary data was unanimously accepted 
to be the concentration at which the curve had dropped by a 
pre-defined percentage, e.g. 15% (or 50%). Concerning the 
curve fitting, a number of different approaches were used. They 
ranged from using a fixed mathematical model (e.g., linear, lo-
gistic or Weibull) to modelling large numbers of curve functions 
and optimizing for or selecting the best fit. The most commonly 
used curves were typical sigmoidal curves generated by using a 
4-parameter log-logistic function.

Initial situation 
Assume you had a good week and performed three experi-
ments testing the effect of a drug on cell viability or, perhaps, 
on transporter activity (as examples of any of thousands of cell 
functions). You found that increasing drug concentrations de-
crease your readout. To make experiments easier to compare, 
and to visualize the data in a standardized way, you normalized 
all data so that untreated controls are set to 100%. In your case, 
data at high drug concentrations are far below 100%, possibly 
even tending towards 0%. Now you want to determine certain 
summary data. These indicate, for instance, which drug concen-
tration leads to a readout decrease by 10% or 15% (or 50%), 
compared to controls (Fig. 1). This is an everyday question in 
pharmacology and toxicology labs, and it looks as if answering 
it should be a matter of routine.
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Summary
Many types of assays in cell biology, pharmacology and toxicology generate data in which a parameter is measured 
in a reference system (negative control) and then also under conditions of increasing stress or drug exposure. To make 
such data easily comparable, they are normalized, i.e., the initial value of the system (e.g., viability or transport 
function) is set to 100%, and all data are indicated relative to this value. Then, curves are fitted through the data points 
and summary data of the system behavior are determined. For this, a benchmark response (BMR) is given (e.g., a curve 
drop by 15 or 50%), and the corresponding benchmark concentration (BMC15 or BMC50) is determined. Especially 
for low BMRs, this procedure is not very robust and often results in incorrect summary data. It is often neglected that 
a second normalization (re-normalization) is necessary to make the data suitable for curve fitting. It is also frequently 
overlooked that this requires knowledge of the system behavior at very low stress conditions. Here, good in vitro 
practice guidance for the re-normalization procedure is provided so that data of higher fidelity can be generated and 
presented.
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The stumbling block
However, many of the graphs looked like Figure 2A, i.e., the 
upper asymptote of the fitted curve did not run at 100%, but 
slightly above or below. Considering the example shown, and a 
BMR of 15% (indicated by the dotted line that cuts the y-axis at 
85%), how would you determine the BMC15 (or IC15)?

Definition of the problem
Typical sigmoidal curves, as shown in Figure 1, are obtained by 
a 4-parameter fit. These 4 parameters determine the lower and 
upper asymptote, the turning point of the curve and the steep-
ness of the curve (at its turning point). Most programs allow 
these parameters to be adapted automatically (to best fit the 
data points) or to be predefined by the operator. If the parame-
ter defining the upper asymptote is adapted automatically, it is 
unlikely to be exactly at 100%. Thus, if this program setting is 
used, there is a problem in defining the BMR. There is no easy 
solution, as evidenced by some bizarre situations it can create: 
(i) Assume that the starting point for the BMR definition is the 
100% value. If the upper asymptote is, e.g., at 120%, then a 15% 

Fig. 1: Illustration of the concepts of benchmark response and 
benchmark concentrations
An exemplary normalized data set is shown, with a curve fit that 
has the upper asymptote at 100% (= negative control value). 
Two exemplary benchmark responses (BMR) are shown at 
85% (BMR15, dashed line) and at 50% (BMR50, dotted line). 
The corresponding benchmark concentrations (BMC) are the 
concentrations at which the curve reaches the BMR. In particular 
contexts, the BMC50 can be named an effective concentration 
(EC50), an inhibitory concentration (IC50) or an active 
concentration (AC50). The BMC15 can be used in some contexts 
to define the highest non-active concentration (if a change from 
baseline of up to 15% is considered to be baseline noise). However, 
each of these summary data points has an uncertainty. The 
uncertainty of the BMC15 is shown as the 95% confidence interval 
(CI). The lower boundary of this CI (BMCL) is the BMCL15. Strictly 
speaking, the BMCL, and not the BMC, is the highest definitely 
non-active concentration.

Fig. 2: Normalization and curve fitting through a set of 
example data
A set of example data was chosen for a typical cytotoxicity effect 
of a toxicant active in the µM range. Data were normalized to the 
control value. (A) A 4-parameter log-logistic regression curve 
choosing the upper asymptote automatically was fitted through the 
data. The values of about 84% for the lowest data points suggest 
that viability may be reduced by about 15% in the nM range. Note 
the relatively large error bar of the control, suggesting that there 
may be a problem with this value. (B) The same data as in A were 
used for curve fitting forcing the upper asymptote through 100%. 
The BMC and BMCL values (in log(M)) are indicated in the insert 
for three different benchmark responses. (C) The control value was 
taken out of the data set. All data were renormalized to the upper 
asymptote in A (84 was set to 100%), and a new regression curve 
was fitted to the data. The insert shows the BMC and BMCL values 
for this curve fit after re-normalization. 
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(i.e., the noise level of no effect data points) is 10% (relative to the 
average of the data). If one assumes that the data are normally dis-
tributed, the likelihood of the negative control means being out-
side this noise band is large, i.e., there will be many cases in which 
the negative control mean value clearly differs from the asymptote 
modelled through the no effect data points. In practice, the num-
ber of data sets with controls largely displaced from the upper 
asymptote may be high also for other, non-statistical reasons: the 
controls are often placed at the edge of assay plates (the plate edge 
often shows different behavior from the center), and they may be 
pipetted/diluted differently from the other samples. A qualitative 
review of the literature indeed suggests a disproportionally high 
number of cases in which the negative control is clearly different 
from the no-effect drug concentrations1.

Solutions to the problem
If it is clear that something is wrong with the control value, 
then the solution is relatively straightforward. One can assume 
the lowest test concentration (in the no effect range) to behave 
like a negative control and re-normalize all data to this value. 
A more robust approach would be to take the lowest 2-3 data 
points (assuming that they are in the no-effect range) and to 
renormalize to their average. In such cases, the original controls 
are typically eliminated from the display. A more generalized 
extension of the re-normalization approach is the following 
sequence of steps: 
(1)	 Decide (by visual inspection), whether or not controls are 

to be removed from the data set2. 
(2)	 Fit a curve to the data, with the upper asymptote setting to 

“automatic best fit” (i.e., not forced to 100%). 
(3)	 Use the value of the upper asymptote (e.g., 84 in Fig. 2A) 

to re-normalize all data points. 
(4)	 Now fit a curve through the new data set, with asymptote 

forced through 100. An exemplary result is shown in Figure 
2C.

Reduction of data uncertainty by re-normalization
The data uncertainty can be quantified by giving the lower 
95% confidence interval of, e.g., the BMC10 (BMCL10) or 
the BMC50 (BMCL50). In the example data set, we assume 
the correct BMC10 to be 10-6.5 and the BMC50 to be 10-5.7. 
If a curve is forced to 100% without data normalization, the 
BMC10 is off by a factor of 6.3, while the BMC50 is only off by 
a factor of 2 (showing that the problem is more pronounced for 
low BMRs). The uncertainty can be quantified by calculating 
the ratio of BMC and BMCL. This value is 100 for a BMR of 10 
and non-normalized data, but it is dramatically reduced to 1.6 
for normalized data! For a BMR of 50, the issue is much less 
pronounced, and the values are less than 2-fold in both cases 
(Fig. 2).

drop would be to 105%, meaning that the beginning of cytotox-
icity or functional failure would be predicted for fully viable 
and functional cells; (ii) Assume again that the starting point for 
the BMR definition is the 100% value. If the upper asymptote 
is, e.g., at 80%, then a BMR of 15 would be above the curve, 
meaning that cells would need to increase viability in order to 
die. (iii) Assume that the starting point for the BMR definition is 
the upper asymptote of the curve, i.e., 84. A BMR of 50 would 
then be at 42%. This means that the half-maximal effect con-
centration is found where only 42% of the cells are viable/func-
tioning. Although mathematically correct, this is biologically 
counter-intuitive. These examples illustrate that many problems 
arise if the upper asymptote is not forced through 100%.

There is also a reverse problem
An apparently simple solution to the above problem is to force 
the upper asymptote through 100% (Fig. 2B). Here, the issue is 
that then the curve may not really follow the data points, i.e., 
the curve fit would not correspond to the biological response it 
is intended to model and thus summary data derived from the 
curve would not be correct.

Extent of the problem for various BMR
An important question is how relevant the problem is in prac-
tice. The extent of the problem differs greatly depending on the 
chosen BMR. If the BMR is 50 (classical EC50 values), a small 
shift of the asymptote above or below 100 plays only a minor 
role, especially if the slope of the curve is high. However, if the 
BMR is 10, i.e., if the beginning of the curve is considered, then 
an offset of the asymptote can play a large role or even lead to 
unsolvable situations. As the IC50 has been used more com-
monly in publications than IC10, there is still little awareness of 
the problem for the latter cases.

Why is there a problem with the asymptote?
Since the data are normalized to (untreated) controls, and the 
controls are set to 100%, one should think that the upper asymp-
tote should run approximately through 100%. To understand de-
viations, the conditions determining the asymptote need closer 
examination. It is important to realize that each data set that is 
used for such curve fitting must contain at least 2-3 data points 
from concentrations at which there is no effect. Without such 
data points, the acceptable conditions for curve fitting are not 
fulfilled. 

In simple terms, the asymptote runs along the average of these 
(no effect) data points. For instance, there may be the control plus 
2 no-effect concentration data points (one data point being consid-
ered the mean of its technical replicates). The exemplary 3 points 
(control plus two very low, no effect test concentrations) will have 
an average and a standard error. Assume that the standard error 

1 For future work, it would be interesting to simulate this situation and its impact, and also to mine the literature for a  
    quantitative overview
2 A purely mathematical approach to this issue is difficult. However, simulation studies may provide a basis for a decision algorithm  
   that provides an unbiased basis for semi-automatic data handling or user-guide immersive analytics.
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Outlook and next levels of complexity
Data re-normalization of one data set is a straightforward pro-
cedure, given that the underlying data set is suited for this. In 
practice, one usually does not deal with one single data set but 
rather with multiple data sets, corresponding to biological (in-
dependent) replicates of a given experiment. These may have 
been produced on different days and they therefore have their 
own controls. Thus, the question arises, whether data should be 
re-normalized independently and then averaged, or the other 
way around. The theoretically more appealing approach is to 
normalize each experiment first. In our experience, the more 
robust approach is to first average the normalization anchor 
(i.e., the no-effect data used for re-normalization, or the upper 
asymptotes of the different curves), then to normalize all data to 
this common anchor point, and then to average the data points 
of the different biological replicates. Simply put: “First average 
the anchor and then normalize.” This approach provides a better 
buffer for errors and random variation in the anchor data. 

Another feature that can increase complexity is non-mono-
tonic curve behavior close to the highest non-cytotoxic concen-
trations. This is often manifest as an upward bump in the curve, 
possibly a last-resort stress response counter-regulation of cells. 
There are no universally accepted approaches to deal with this 
phenomenon, but it is highly recommended to control (by re-
peating the experiment, possibly using an alternative readout) 
whether the effect is biologically real.
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Alternative explanations
One easy way to avoid the data normalization problem is to 
ignore it or to deny statistical variation as its cause. The most 
common approach to this is the assumption that the difference 
between the negative control and the asymptote of the low 
concentration data is due to a real biological effect. This prac-
tice is encountered relatively frequently although it requires 
researchers to postulate low concentration effects of low plau-
sibility. Moreover, a discontinuous (step-wise) and sometimes 
even non-monotonic concentration-response behavior has to 
be assumed. There are examples for which this is indeed the 
case. Nevertheless, these postulates lack scientific rigor for two 
reasons: (1) the postulation of a complex and little plausible 
system response without good reasons and evidence violates the 
principle of Occam’s razor, according to which the answer that 
makes the fewest assumptions is most likely to be correct; (2) 
the assumption of concentration-response relationships without 
support by data sets in which the response is fully diluted out 
violates the good principles of curve fitting in pharmacology 
and toxicology.

Caveats and trouble shooting
Good science means that we can use data to support hypotheses 
instead of relying on beliefs. There is an easy and straightfor-
ward method to determine, whether an “off” control is a tech-
nical artefact or an indication of a strange low-concentration 
behavior: The experiment needs to be repeated with inclusion 
of lower concentrations until a clear no-effect concentration is 
reached. The data obtained for these concentrations should be 
identical to negative controls; then the curve provided by the 
whole data set will indicate at which concentration a real effect 
starts. There is no exception to the rule that any effect, even the 
strangest low-concentration response, has to dilute out at some 
point and approach negative control values.

The same approach can also be used to increase the robust-
ness of re-normalizations. The weakness and the danger of 
re-normalization is that the data assumed to be no-effect data 
are not robust or there are too few data points to yield reliable 
estimates. Inclusion of more low-concentration data points 
makes the asymptote more reliable, and therefore the whole 
re-normalization procedure becomes more exact.


