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constituents into food in amounts that could endanger consum-
er health and food quality. Regarding migrating substances, a 
distinction is made between those having a technological func-
tion in the manufacturing of the FCM (the intentionally added 
substances, IAS) and those originating from impurities in raw 
materials and from the reaction and degradation of substanc-
es in the intended use (the so-called non-intentionally added 
substances, NIAS). IAS are, in general, toxicologically well 
studied and can be assessed using standard risk assessment. In 
contrast, for most NIAS no toxicological data are available and 
risk assessment is therefore not straightforward. Consequently, 
there are significant uncertainties regarding the safety of NIAS, 
triggering increasing public, scientific and regulatory concern 
(Van Bossuyt et al., 2017). 

1  Introduction

Food contact materials (FCM) are materials and articles that are 
intended to come into contact with food during its production, 
processing, storage, preparation and serving, before its con-
sumption (EFSA, 2015). Amongst others, these include plastics, 
paper and board, glass, metal coatings, printing inks and adhe-
sives (Van Bossuyt et al., 2016). 

The Framework Regulation (EC) No 1935/2004 includes 
general requirements for all FCM (EC, 2004), but only few 
harmonized legislations exist for specific types of FCM, such 
as the EU Regulation 1282/2011 on plastic materials (EC, 
2011). The Framework Regulation states that FCM should be 
sufficiently chemically inert so that they do not release their 
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over single models (Amaury et al., 2007; Cassano et al., 2014; 
Kulkarni et al., 2016; Manganelli et al., 2016; Mazzatorta et al., 
2007). Recently, EFSA’s Scientific Committee has developed 
a guidance document promoting the use of the WoE in toxi-
cological assessments combining both qualitative and quanti-
tative approaches (EFSA, 2017). The EFSA guidance proposes 
a strategy for assembling, weighing and integrating different 
lines of evidence from testing and non-testing methods (NTM) 
and defines reliability, relevance and consistency in terms of 
their contribution to the overall assessment. It also provides an 
example of the use of NTM within a WoE framework, which 
proposes the integration of a number of (Q)SAR models and 
read-across for mutagenicity estimations. This example high-
lights strengths and weaknesses of both methods, which may 
vary on a case-by-case basis.

Aside from integration, automation allows quick and efficient 
analysis of chemicals for activity across a battery of in silico 
methods. This is useful for rapidly evaluating large numbers of 
chemicals. It is commonly realized with the support of pipe-
line tools, e.g., KNIME and Pipeline Pilot (Warr et al., 2012). 
Besides saving time, the automation process also offers the 
advantage of reducing the inconsistencies and errors due to the 
manual building, validation and application of in silico methods 
(Cox et al., 2013; Dixon et al., 2016; Romano, 2008; Zhang et 
al., 2006). In the case of read-across, the automation of the key 
steps (e.g., data search methods that use similarity measures and 
fragment search) allows overcoming one of the main drawbacks 
of this method, i.e., the lack of reproducibility (Benfenati, 2016; 
Gini et al., 2014). 

In this context, the present work was aimed at drawing up an 
automated strategy for integrating a number of (Q)SAR models 
for Ames mutagenicity predictions applicable to large sets of 
compounds. The dataset compiled by Price et al. (2014), con-
taining a list of substances migrating from plastic FCM isolated 
from the FACET dataset (Hearty et al., 2011) plus their muta-
genic analogues, was selected as a good candidate to develop, 
validate and test the approach. In our study, these chemicals 
were assembled and processed by using three in silico (Q)SAR 
consensus models for mutagenicity. Hence, a scheme to inte-
grate mutagenicity estimations into a single final assessment 
was defined and applied to toxicologically uncharacterized 
FCM chemicals. Finally, the overall strategy of integration will 
be automated through its implementation into a freely available 
software application.

2  Material and methods

2.1  Chemical structures
For the present work, a list of 183 chemicals obtained from the 
database identified by Price et al. (2014) was used. It includes 
substances migrating from plastic FCMs from the FACET data-
set (Hearty et al., 2011) and mutagenic structural analogues. In-
deed, all compounds used in plastic food packaging go through 
a rigorous assessment by expert panels, so experimental data, 
where available, were mainly non-mutagenic. Thus, in order 

Taking into account the time constraint and the pressure to 
avoid the use of laboratory animals, the development of alterna-
tive methodologies to establish a rapid and cost-efficient level of 
safety concern of identified NIAS appears critical to ensure ade-
quate consumer protection without undue over-conservatism. In 
this context, computational toxicology methods are recognized 
as the most promising solutions and are increasingly applied by 
academic and regulatory scientists (Benfenati et al., 2009; JRC, 
2010). In silico methods have been most prominently promoted 
by the European Registration, Evaluation, Authorization and 
Restriction of Chemicals (REACH, EC 1907/2006) regulation 
on chemicals (Cassano et al., 2014). They are successfully em-
ployed for early identification of toxicological hazard in other 
regulatory frameworks, such as in the qualification of potential-
ly genotoxic impurities in drug substances (ICH, 2017; Sutter et 
al., 2013) to limit potential carcinogenic risk. 

In the food context, the most commonly applied method to 
establish the level of safety concern of chemicals in the absence 
of experimental data has been the threshold of toxicological 
concern (TTC) (Kroes et al., 2004). More recently, the use of 
computational models has been highlighted (Van Bossuyt et al., 
2017; Schilter et al., 2014). The first and common step of these 
approaches is the identification of a possible structural alert for 
genotoxicity. Definitely, the genotoxicity and, more specifically, 
the mutagenicity endpoint has a particular relevance due to the 
theoretical lack of threshold of effect that this category of chem-
icals exhibits. For IAS, genotoxicity data are always requested, 
regardless of the estimated migration level and resulting expo-
sure (EFSA, 2012). In the frame of risk assessment, the hazard 
identification step considers genotoxicity and mutagenicity via 
direct DNA reactivity as the default assumption in the absence 
of sufficient data to the contrary (Schilter et al., 2014; Jacobs 
et al., 2015). It is commonly accepted that DNA-reactive mu-
tagenic agents do not exhibit a dose below which no effect is 
anticipated. Even if it is very well known that all mutagens are 
genotoxic, however, not all genotoxic substances are mutagenic. 
The bacterial reverse mutation assay (Ames test) is considered 
a reliable predictor of genotoxic potential (Schilter et al., 2014), 
and is the most common in vitro test to detect gene mutations 
(OECD, 1997). Also, mutagenicity is one of the most modelled 
endpoints due to the quantity and quality of experimental data 
available. This is the reason why we addressed this specific 
end-point in our study. The main categories of in silico methods 
for the prediction of mutagenic potential of chemicals are (Q)
SAR models, based on numerical descriptors, rule-based expert 
systems, making use of structural alerts associated with adverse 
outcomes, and hybrid models combining both approaches (Ben-
fenati et al., 2016; Mombelli et al., 2016). 

The integration of models based on complementary algo-
rithms, i.e., statistical and structure activity relationship (SAR) 
based, is often a mandatory requirement, e.g., for the genotox-
icity qualification of pharmaceutical impurities (ICH, 2017). 
Up to now, different strategies combining a number of (Q)
SAR models for predicting Ames mutagenicity have been pro-
posed, moving towards a weight of evidence (WoE) approach. 
In general, such combinations resulted in improved predictions 
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experimental values and estimations. For example, 2-isopropyl 
thioxanthone (ITX) was classified in vitro as experimentally 
equivocal/mutagenic. Based on in vivo experimental data, ITX 
is generally considered non-genotoxic. However, non-genotox-
ic experimental data did not refer to the Ames results, but to in 
vivo tests. Indeed, EFSA states that ITX induced a borderline 
increase of revertant colonies in a bacterial reversion test and 
was inactive in adequate genotoxicity tests in liver and bone 
marrow (EFSA, 2005). 

A further search for experimental data on the other chemical 
compounds led to assignment of new activity labels. For ex-
ample, 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB) was 
classified as non-mutagenic based on expert assessment (EFSA, 
2005) reporting no evidence of genotoxicity in the standard 
Ames test for this substance. 2,2,3-trifluoro-3-(trifluoromethyl)
oxirane was reclassified as non-mutagenic, as reported in the 
ECHA CHEM database8 with reliability 1 according to the 
Klimisch score (Klimisch et al., 1997). In ECHA CHEM data-
base7 we also recovered non-mutagenic results to bacteria for 
bis(2,6-diisopropylphenyl)carbodiimide and 4-(4-methylphen-
ylthio) benzophenone. Moreover, we labeled 2,2’-bisphenol 
F as non-mutagenic based on the opinion drawn up by EFSA 
(2009) on the substance “bis(hydroxyphenyl)methane” (bisphe-
nol F), which is a mixture of the 2,2’-, 2,4’- and 4,4’-isomers. 

Assessing borderline substances in more detail, we reclassi-
fied two experimentally equivocal compounds, methyl methac-
rylate (MMA) (EFSA, 2008) and propionic acid (EFSA, 2014), 
as negative based on registration data reported in the ECHA 
CHEM database7 with reliability 1 according to the Klimisch 
score (Klimisch et al., 1997). 

Moreover, analogues were examined to have a positive 
control and to increase the number of experimental values. 
ChemIDPlus/Toolbox (OECD, 2017) database matches provid-
ed positive mutagenic values for most of the analogues and neg-
ative data for two of them; the two non-mutagenic compounds 
for which all of the Ames assays were conducted according to 
OECD TG 471 (OECD, 1997) with and without metabolic acti-
vation were included in the final list. 

Finally, mutagenicity measured values were available for 
about half of the compounds in the dataset (97 compounds). All 
details are reported in Table S29. Therefore, we used them to 
validate the predictions of the three-consensus models moving 
towards a weight of evidence approach.

2.3  Consensus models
All chemicals in the dataset were then processed using the 
following battery of models: Robust hybrid classifier (RHC), 

to validate our consensus approach, we also considered mu-
tagenic analogues of the FCM chemicals as a positive control 
in accordance with Price et al. (2014). Overall, experimental 
data referring to Ames mutagenicity were available for 97 (29 
mutagenic and 68 non-mutagenic) of the 183 chemicals. The 
remaining 86 substances were toxicologically uncharacterized 
for this endpoint and the developed approach was applied to the 
screening of potential mutagenic compounds.

In detail, chemicals’ curation was performed as follows:
− Name to structure conversion was executed using Mar-

vin View1 / JChem2 for parent FCM (if available as single 
substances), migrants and structural analogues. Parent com-
pounds existing as mixtures, oligomers and polymers were 
also identified and converted into structures (i.e., single con-
stituents, monomers), partially with the help of chemical da-
tabases such as ChemSpider3, ChemIDplus4 and PubChem5. 

− SMILES (Weininger et al., 1988) generated by these tools 
were compared against the original ones from Price et al. 
(2014). 

− An in-house software (Floris et al., 2014) was used to iden-
tify and then remove duplicates within parents, migrants and 
analogues. 

− Canonical SMILES were obtained using the istMolBase 
software6 (Kode, 2013), based on the VEGA core libraries 
and Chemistry Development Kit libraries (CDK) (Benfenati 
et al., 2015). 

The final list of 183 chemicals with names and structures, and 
the related SMILES is reported in Table S17. 

2.2  Data curation 
In the curation process, some of the experimental values were 
modified and new ones were introduced. Indeed, some gaps 
emerged from the analysis of further experimental sources and/
or from database and literature updates. The single models in 
part refer to experimental data which often do not include the 
complete set of the strains used according to official protocols. 
However, we believe that combining so many substances (thou-
sands) at the basis of each model, and also the different models 
together, will cover the data gaps for certain strains on indi-
vidual substances. Most important when combining different 
predictions is consistency in the endpoint selection (e.g., not 
mixing the genotoxicity with mutagenicity endpoints). Since 
the databases of the models used in this study were built using 
experimental data from the Ames test, we only considered data 
for mutagenicity obtained with this assay, even if other in vitro 
or in vivo tests gave different results for the substances under ex-
amination. This is necessary to allow a fair comparison between 

1  MarvinView 16.1.18.0, http://www.chemaxon.com (accessed July 2017)
2  JChem for Office 16.5.1600.806, http://www.chemaxon.com (accessed July 2017)
3  http://www.chemspider.com/ (accessed July 2017)
4  https://chem.nlm.nih.gov/chemidplus/ (accessed July 2017)
5  https://pubchem.ncbi.nlm.nih.gov/ (accessed July 2017)
6  IstMolBase v.1.0.2, https://www.kode-solutions.net/ (accessed July 2017)
7  doi:10.14573/altex.1707171s1
8  http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances (accessed July 2017)
9  doi:10.14573/altex.1707171s2
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− ISS-VEGA, which is based on a series of rules defined by 
Benigni and Bossa detecting mutagenic chemicals originally 
implemented within the Toxtree application (Benigni et al., 
2008; Benigni and Bossa, 2011);

− k-NN, which performs a k-nearest neighbors with a weighted 
integration of the experimental values of the four chemicals 
most similar to the target (Manganaro et al., 2016).

The CAESAR and SARpy VEGA models were developed 
based on 4,204 chemicals extracted from the Bursi dataset 
(Hansen et al., 2009). The k-NN VEGA model was built on a 
dataset of 5,770 chemicals from the Hansen dataset (Hansen 
et al., 2009) and from data produced within the Ames QSAR 
project organized by the National Institute of Health Scienc-
es of Japan. The training set of the ISS VEGA model was  
extracted from the Toxtree software (v 2.6), and consists of 
670 compounds.

Predictions from single VEGA models are associated with 
three possible levels of reliability, based on the definition of 
their applicability domains: low, moderate and high. The con-
sensus algorithm gives toxicity estimations based on these  
levels of reliability. It also assigns a numerical score (ranging 
from 0 to 1) to each estimation, which depends on the number of 
convergent predictions and on their reliability. If experimental 
value is provided (because the target molecule has been found in 
the training/test set of a model) at least by one model, it is kept 
as final consensus result. 

In our evaluation, we considered predictions with a consensus 
score higher than 0.3 as reliable, else we assigned low reliabil-
ity to them. Indeed, the cutoff value of 0.3 was able to discard 
consensus estimations based on the prevalence of predictions 
associated with low reliability.

We preferred the consensus to the single VEGA models to 
estimate mutagenicity since its algorithm produces a final as-
sessment influenced by the most reliable individual predictions.

T.E.S.T. consensus model
T.E.S.T.11 estimates Ames mutagenicity using four QSAR 
methods: the hierarchical method, the Food and Drug Admin-
istration (FDA) method, the nearest neighbor method and the 
consensus method. The consensus method takes an average of 
the predicted toxicities from the above QSAR methods (taking 
into account the AD of each method). The dataset of T.E.S.T. 
mutagenicity models is taken from the Hansen dataset (Hansen 
et al., 2009). T.E.S.T. provides continuous prediction values to 
be interpreted as follows:

We used this value as an indicator for predictive relevance, 
assigning the highest uncertainty to predictions equal or close 
to the 0.5 cutoffs. We considered predicted values greater than 

VEGA and T.E.S.T. consensus models, each based on the 
combination of different algorithms. Hence, predictions were 
evaluated based on information on the applicability domain and 
reliability of each model, and the related compounds used to 
build the model. A brief description of the mutagenicity models 
and of the parameters considered to assign reliabilities to their 
predictions is provided below.

Robust hybrid classifier (RHC)
The RHC model, developed by Mazzatorta et al. (2007), inte-
grates (i) the Structural Alerts model (SAm), including the list 
of improved structural alerts (SA) gathered by Kazius et al. 
(2005), and (ii) the Artificial Intelligence model (AIm), which is 
a modified k-nearest neighbor based on the LAZAR system de-
veloped by Helma (2004) (Mazzatorta et al., 2007). The training 
set of 4,337 substances used for building RHC was collected by 
Kazius et al. (2005), and the test set of 753 chemicals used for 
its validation was assembled and curated by Young et al. (2002), 
as described in detail by Mazzatorta et al. (2007).

RHC returns the Ames prediction together with a confidence 
level, which depends on the ratio between the number of mu-
tagens containing a given toxicophore and the total number 
of compounds in the test set with that moiety and takes into 
account the error associated with the prediction of each SA 
(Mazzatorta et al., 2007). If both models predict the compound 
as non-mutagenic, RHC considers it negative with a confidence 
equal to 0.85, which refers to the overall specificity of the sys-
tem; if there is a convergence regarding the mutagenicity, RHC 
considers it as mutagenic and the confidence is equal to the 
sensitivity of RHC weighted by the product of the individual 
error associated with the SAs present in the compound. In case 
of non-consensus prediction, SAm prevails, because it is based 
on well-documented experimental evidence and has a superior 
accuracy, but the confidence of the prediction is accordingly 
lowered.

Based on criteria chosen by Mazzatorta et al. (2007) to define 
different levels of confidence, 0.65 was chosen as cutoff value 
for prediction reliability; estimations with a confidence level 
greater than or equal to 0.65 were considered reliable, otherwise 
they were associated with low reliability. The model does not 
indicate if the predicted chemical is included in its training/test 
sets. 

VEGA consensus model
The VEGA consensus model10 integrates predictions from the 
following (Q)SAR models: 
− CAESAR, which integrates a support vector machine (SVM) 

algorithm coupled with two sets of structural alerts aimed to 
reduce the false negative rate (Ferrari and Gini, 2010); 

− SARpy (SAR in python), which extracts a set of structural 
alerts related to a specific activity from data without any a 
priori knowledge (Ferrari et al., 2013);

10  VEGA v1.4. https://www.vegahub.eu/ (accessed July 2017)
11  T.E.S.T. (Toxicity Estimation Software Tool) v4.2.1, https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test  
     (accessed July 2017)
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models. All models correctly classified 75 out of 97 experimen-
tally known chemicals, 19 as mutagenic and 56 as non-muta-
genic. However, 17 out of the 19 mutagenic ones were included 
in the training/test sets of at least one model; 22 chemicals were 
not correctly predicted by at least one model. Table S29 contains 
the list of 183 chemicals with predicted values from the three 
models with their “reliability/confidence scores” and experi-
mental values. 

RHC generated nine false negatives; one was in common with 
T.E.S.T. However, these inaccurate predictions were overridden 
by the correct ones from the VEGA consensus model based on 
the presence of experimental values. T.E.S.T. produced two 
false negatives (one in common with RHC), which were over-
ridden by positive predictions of VEGA, which contains the 
experimental data.

Overall, the models gave 11 false positives: four were gener-
ated by VEGA, two by T.E.S.T., and seven were misclassified by 
RHC, all but one with high uncertainty. Three of these chemicals 
were alkyl phenyl sulfonates, suggesting that the RHC model 
may encounter problems when predicting this chemical class. 

Based on the available measured mutagenicity values, we ex-
amined the possibility to combine and validate the predictions 
of the three-consensus models moving towards a weight of ev-
idence approach. We drew up a strategy to combine predictions 
from the individual consensus models. Essentially this integra-
tion scheme first checks the presence of experimental data and 
then the prediction reliabilities for each model. 

The algorithm we developed involves the following steps:
1. If an experimental value is present in the dataset(s) of at least 

one model, it takes the place of the predicted one(s) in the 
final assessment. 

2. If there is no experimental value, processing a molecule by 
the three models gives rise to different possibilities: 
(a) All estimations are convergent (all mutagenicity posi-

tives or negatives); in this case, these become the final 
prediction, regardless of their reliability. 

(b) Two predictions are convergent (both associated with 
mutagenicity/non-mutagenicity) and one is divergent; 
the convergent estimations are used as final prediction 
if at least one of them is reliable, otherwise the divergent 
one supersedes them if it is reliable. If both convergent 
and divergent estimations are uncertain, they are discard-
ed and the model is unable to estimate the molecule. 

(c) One of the three models cannot provide any prediction. 
In this case, if the estimations from the other models are 
convergent and at least one of them is reliable, this is kept 
as final assessment; otherwise the integrated model does 
not provide any prediction. If the other two predictions 
are divergent, the one with high reliability is taken.

(d) Two models are unable to predict the molecule. In this 
case, the only available estimation is kept as final assess-
ment only if it is reliable; otherwise it is discarded. 

Table 1 lists the statistical performance of the three consensus 
models plus the combined one. We calculated statistics on cu-
rated experimental data with and without information about 
reliability of prediction. 

0.7 as mutagenic with high reliability and lower than 0.3 as 
non-mutagenic with high reliability. Prediction values between 
0.3 and 0.7 were considered uncertain. In this case, if the exper-
imental value was present in the model’s dataset, it superseded 
the predicted value in the final assessment.

We evaluated the results obtained by in silico predictions 
based on the information on the applicability domain and the 
uncertainty provided by the models.

2.4  Algorithms for evaluation 
of classification models 
The performance of the three consensus models was evaluated 
using Cooper’s parameters (Cooper et al., 1979), which include 
accuracy, sensitivity and specificity. These parameters take 
into account the number of correctly classified mutagens (true 
positive = TP) and non-mutagens (true negative = TN) and the 
number of misclassified mutagenic (false positive = FP) and 
non-mutagenic (false negative = FN) compounds. Matthew’s 
Correlation Coefficient (MCC) was also assessed.

These are calculated as follows:

Accuracy (concordance or “Q”) measures the total errors, while 
models with high sensitivity produce fewer false negatives, 
i.e., mutagenic compounds that are predicted as non-muta-
genic. Models with high specificity give fewer false positives 
(non-mutagenic chemicals incorrectly predicted as mutagens). 

The Matthews Correlation Coefficient (MCC) evaluates the 
quality of binary classifications and is generally considered a 
balanced measure, which can be used even for classes of very 
different sizes. (Matthews et al., 1975). This parameter prevails 
over any imbalance in the data classes, which may lead to unfair 
values of accuracy. It is calculated as follows:

MCC values vary between -1 and +1: +1 indicates exact classifi-
cation, -1 results from complete misclassification and 0 implies 
a random result.

3  Results

Overall, the three consensus models gave convergent predic-
tions for 144 out of 183 compounds, corresponding to 79% of 
the total dataset: 21 were mutagenic and 123 were non-muta-
genic. 

First, we compared predicted and experimental values where 
available and evaluated the statistical performance of the three 
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gle prediction taking into account the information on reliability. 
In addition, measured data available in VEGA and T.E.S.T. 
training/test sets filled the gap of experimental information from 
the RHC model within this integrated scheme. The combined 
model was unable to assess two chemicals, bis(2,6-diisopro-
pylphenyl)carbodiimide and 2,2,3-trifluoro-3-(trifluoromethyl)
oxirane, reported as negative in the ECHA CHEM database7 

All the models showed good statistical performance. The use 
of information about reliability based on the selected cutoffs led 
to enhancement of statistical parameters. Moreover, data cura-
tion allowed fixing a number of misclassifications of the used 
models. 

Besides the statistical improvement, the use of the integrated 
strategy provided higher prediction coverage compared to sin-

Tab. 1: Statistical performance of VEGA, RHC and T.E.S.T models for mutagenicity evaluated using accuracy, sensitivity, 
specificity and the Matthew’s Correlation Coefficient (MCC)  
These parameters show the number of correctly classified mutagens (true positive = TP) and non-mutagens (true negative = TN) and  
the number of misclassified mutagenic (false positive = FP) and non-mutagenic (false negative= FN) compounds. 

 VEGA  RHC T.E.S.T. VEGA RHC T.E.S.T.  Combined model 
 (all    (all  (all (reliable (reliable (reliable 
 predictions) predictions) predictions) predictions) predictions) predictions)

TP  29 20 27 28 15 21 29

TN 64 61 65 57 58 58 65

FN 0 9 2 0 7 0 0

FP 4 7 2 0 1 0 0

Total 97 97 96 85 81 80 95

Accuracy  0.96 0.84 0.96 1.00 0.90 0.99 0.99

Specificity 0.94 0.90 0.97 1.00 0.98 0.98 0.98

Sensitivity 1.00 0.69 0.93 1.00 0.68 1.00 1.00

MCC 0.93 0.60 0.90 1.00 0.74 0.97 0.98

Tab. 2: Positively predicted food contact chemicals lacking experimental information 

ID Name Structure

3  2,4-Diethyl-9H-thioxanthen-9-one  

17_p  4-Isopropylthioxanthone (4-ITX)  

123  5-Chloro-2-methyl-2H-isothiazol-3-one (CIT)  
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First, the performance of the individual predictive models 
was affected by the quality of experimental data and by the 
information on prediction uncertainty, where available. The in-
formation about prediction reliability improved all the statistical 
parameters. Moreover, a fair comparison between measured and 
estimated values is not a simple matter. Indeed, it is important 
to identify the experimental protocol used to measure or esti-
mate the endpoint that is being examined, in accordance with 
OECD principles (OECD, 2014). This example illustrates that 
the use of data curation gives a more objective estimation of 
actual predictive power of the models, often accompanied by an 
improvement of their statistical behavior. 

It is increasingly recommended to combine models based on 
complementary algorithms (ICH, 2017). This is often consid-
ered a default option to minimize the risk of producing false 
negatives and therefore to ensure optimal consumer protection. 
However, this may potentially be at the expense of generating 
numerous false positive predictions and reducing overall ac-
curacy. This could potentially result in over-conservative and 
non-discriminative predictions, preventing their most efficient 
use for decision-making. 

In the present study, enhanced (Q)SAR model performance 
was observed by applying a new algorithm for model integra-
tion, taking into account the different reliabilities of orthogonal 
methods. A possible drawback of using a highly accurate model 
may be a loss of chemical structure coverage. The use of the 
combination approach developed in this study together with 
the use of the available information on applicability domain/
reliability provided a higher prediction coverage compared to 
single model estimations. Indeed, the aim of the paper was to 
study the strengths of a new consensus model based on easy 
rules, taking into account the convergence and the reliability of 
predictions. In this way, our strategy relates more strongly to the 
strength of the more reliable models. It shows that most Ames 
mutagenicity (Q)SAR models already perform quite well (the 
error of the models is very close to the experimental one) and 
the benefit of our approach is mainly represented in the increase 
of the applicability domain. As a first application, the consensus 
model was applied to a limited number of chemicals. In the near 
future we are planning to test it on bigger datasets and to include 
other kinds of applications.

Finally, the integrated strategy was applied to 86 chemicals. 
All of them could be predicted. Three were considered geno-
toxic (reported in Tab. 2) and were analyzed more deeply. The 
results obtained allow further assessment of the safety of these 
toxicologically untested molecules through the application of 
the TTC approach (Kroes et al., 2004) and/or the conceptual 
scheme developed by Schilter et al. (2014). 

5  Conclusions

In the framework of understanding and managing risks for con-
sumer health posed by untested food contact chemicals such as 
NIAS, the present study provides an algorithm combining ex-
isting models for a time- and cost-efficient evaluation of Ames 

with reliability 1 according to the Klimisch score (Klimisch et 
al., 1997). In the framework of developing a strategy of toxicity 
assessment for food contact chemicals, experimental data super-
sedes predicted data.

The high level of accuracy of the integrated strategy provided 
a rationale to apply it to evaluate the remaining 86 experimen-
tally untested compounds in our dataset to identify mutagenic 
chemicals. The new integrated model gave 83 non-mutagenic 
and three mutagenic predictions. Nine out of the 83 substances 
predicted as non-mutagenic were part of the training/test sets of 
the model(s). The chemicals predicted positive were not includ-
ed in the models’ databases (training and/or test sets) and were 
among the possible migrating substances. These three positively 
classified food contact chemicals lacking experimental informa-
tion are shown in Table 2. All of them contain structural alerts, 
which have been associated with mutagenic activity based on 
mechanism of toxicity (Benigni, 2008) or on statistical evidence 
(Benfenati et al., 2015). In particular, these include thioxan-
tones, which are present in 2,4-diethyl-9H-thioxanthen-9-one 
and 4-isopropylthioxanthone (4-ITX), and an α,β unsaturated 
carbonyl moiety, which occurs in 5-chloro-2-methyl-2H-isothi-
azol-3-one (CIT). 

Both 4-ITX and 2,4-diethyl-9H-thioxanthen-9-one are 2-ITX 
structural analogues (contained in our dataset). Consequently, 
the reasoning on mutagenicity for 2-ITX can be extended to 
these chemicals through a read-across approach, because of 
the high structural similarity and the presence of the thioxan-
tone ring as structural alert shared by the three molecules. As 
in the case of 2-ITX, the two related chemicals might exhibit 
their mutagenic potential in vitro but not in vivo (as explained 
in Section 2.2).

CIT is a component of a biocide with CAS number 55965-84-
9, mixture 3:1 with 2-methyl-2H-isothiazol-3-one (MIT). Ac-
cording to EFSA Scientific Opinion (EFSA, 2010), the biocide 
gave positive results in genotoxicity tests in vitro in bacteria, 
while no significant genotoxicity was observed in vivo. The oth-
er component of the mixture, MIT, was predicted as non-muta-
genic by the combined model. Based on these estimations, CIT 
might be considered as responsible for positive in vitro results 
of the CIT/MIT mixture.

4  Discussion

In this study, an integrated strategy for mutagenicity prediction 
was developed and validated on about a hundred experimentally 
known chemicals, including mostly non-mutagenic migrating 
substances from FCM plus their positive analogues. Even if 
our aim is to integrate QSAR and read-across in the frame of 
the WoE approach, in the present study, we focus only on the 
integration of QSAR models because read-across is quite diffi-
cult to automate. Comparing the results obtained by the QSAR 
consensus model and read-across approach can surely increase 
the accuracy of the final prediction. Such a procedure is strong-
ly recommended for compounds predicted with low reliability. 
This study highlighted some other key aspects to take into ac-
count in the evaluation of predictions from in silico models. 



Manganelli et al.

ALTEX 35(2), 2018       176

Cox, R., Green, D. V. S., Luscombe, C. N. et al. (2013). QSAR 
workbench: Automating QSAR modeling to drive compound 
design. J Comput Aided Mol Des 27, 321-336. doi:10.1007/
s10822-013-9648-4  

Dixon, S. L., Duan, J., Smith, E. et al. (2016). AutoQSAR: An 
automated machine learning tool for best-practice QSAR 
modeling. Future Med Chem 8, 1825-1839. doi:10.4155/fmc-
2016-0093 

EC – European Commission (2004). Regulation (EC) No 
1935/2004 of the European Parliament and of the Council 
of 27 October 2004 on materials and articles intended to 
come into contact with food and repealing Directives 80/590/
EEC and 89/109/EEC. http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2004:338:0004:0017:en:PDF 

EC (2011). Regulation (EC) No 10/2011 of the European 
Parliament and of the Council of 14 January 2011 on 
plastic materials and articles intended to come into contact 
with food. http://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32011R0010&from=DE 

EFSA – European Food Safety Authority (2005). Opinion of the 
Scientific Panel on Food Additives, Flavourings, Processing 
Aids and Materials in Contact with Food on a request from 
the Commission related to 2-Isopropyl thioxanthone (ITX) 
and 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB) in 
food contact materials. EFSA J 3, 293 (1-15). doi:10.2903/j.
efsa.2005.293 

EFSA (2008). Flavouring Group Evaluation 5, Revision 1 
(FGE.05Rev1): Esters of branched- and straight-chain ali-
phatic saturated primary alcohols and of one secondary alco-
hol, and branched- and straight-chain unsaturated carboxylic 
acids from chemical groups 1, 2, and 5 (Commission Regu-
lation (EC) No 1565/2000 of 18 July 2000). EFSA J 6, 643 
(1-81). doi:10.2903/j.efsa.2008.643  

EFSA (2009). Scientific Opinion of the Panel on food contact 
materials, enzymes, flavourings and processing aids (CEF) on 
24th list of substances for food contact materials. EFSA J 7, 
1157-1163. doi:10.2903/j.efsa.2009.1157  

EFSA (2010). Scientific Opinion on the safety evaluation of the 
substance, 5-chloro-2-methyl-2H-isothiazol-3-one, mixture 
with 2-methyl-2H-isothiazol-3-one (3:1), CAS No. 55965-
84-9, as a biocide for processing coatings and paper and 
boards. EFSA J 8, 1541. doi:10.2903/j.efsa.2010.1541 

EFSA (2012). Food contact materials, flavouring substanc-
es and smoke flavourings. EFSA J 10, Spec Issue, s1007. 
doi:10.2903/j.efsa.2012.s1007

EFSA (2014). Scientific Opinion on the re-evaluation of propi-
onic acid (E 280), sodium propionate (E 281), calcium propi-
onate (E 282) and potassium propionate (E 283) as food addi-
tives. EFSA J 12, 3779 (1-45). doi:10.2903/j.efsa.2014.3779  

EFSA (2015). Food Contact Materials. http://www.efsa.europa.
eu/en/topics/topic/foodcontactmaterials

EFSA (2017). Guidance on The Use of the Weight of 
Evidence Approach in Scientific Assessments. EFSA J 
15, 4971. https://www.efsa.europa.eu/sites/default/files/
consultation/170306-0.pdf  

mutagenicity. The integration scheme resulted in an increased 
domain of applicability. Moreover, we are planning to test the 
model in the near future on a bigger number of chemicals and 
including other kinds of applications (not only food contact 
chemicals). These results will improve the implementation of 
a tool, such as VEGA, to integrate predictions from different 
models. Indeed, we believe that such a strategy may be applied 
as the first step of a more complex screening strategy aiming 
to establish the level of safety concern of experimentally un-
tested substances according to the broadly accepted TTC con-
cept (Kroes et al., 2004) and/or other more recently developed 
non-testing approaches (Schilter et al., 2014) aiming at identi-
fying a dose to be compared with estimated level of exposure 
within a Margin of Exposure (MoE) approach. Each step of 
the overall scheme will be sequentially automated through im-
plementation in the publicly available VEGA platform in the 
near future. This will not only provide time-saving, but also 
the advantage of minimizing inconsistencies and errors due 
to the manual building, validation and application of in silico 
methods. 
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