Extending the applicability domain of the human cell line activation test (h-CLAT)

Main Article Content

Karsten R. Mewes
Ursula Engels
Birgit Eicker
Dirk Petersohn


Cosmetic ingredients must be toxicologically assessed to determine their skin sensitizing potential. The in vitro human cell line activation test (h-CLAT; OECD TG 442E) addresses the activation of dermal dendritic cells by analyzing specific protein expression after exposure of THP-1 cells to the test chemical. According to the protocol, FITC-labeled antibodies are used for protein detection. However, some chemicals show strong autofluorescence at FITC-specific wavelengths so that antibody-specific signals cannot be distinguished appropriately from autofluorescence background. This leads to inconclusive or false-negative predictions. Alternative fluorochromes can be used if their equivalence with the FITC-labeled antibodies is proven. In the current paper we describe the results of a proficiency exercise, based on the proficiency chemicals listed in the guideline, with FITC-labeled antibodies as the benchmark and APC-labeled anti­bodies as an alternative detection system. APC emits fluorescence at longer wavelengths, thus avoiding interference in the FITC spectrum. Irrespective of the employed fluorochrome, all chemicals were classified correctly, and the EC150 and 200 values were in the same order of magnitude. Hence, the equivalence in performance of FITC- and APC-labeled antibodies was demonstrated, and the respective demand of the guideline was fulfilled. In a case study, we then tested a proprietary oxidative hair dye using both fluorochromes. Using APC-labeled antibodies, the hair dye was unambiguously identified as a sensitizer, whereas no classification could be made with the FITC-labeled antibodies. With APC, fluorescence interference can be circumvented and the applicability domain of the h-CLAT extended to include autofluorescent chemicals.

Article Details

How to Cite
Mewes, K. R., Engels, U., Eicker, B. and Petersohn, D. (2021) “Extending the applicability domain of the human cell line activation test (h-CLAT)”, ALTEX - Alternatives to animal experimentation, 38(1), pp. 95-110. doi: 10.14573/altex.2001242.

Most read articles by the same author(s)