Photomotor response data analysis approach to assess chemical neurotoxicity with the zebrafish embryo

Main Article Content

Julia Ortmann
Rolf Altenburger
Stefan Scholz
Till Luckenbach


The photomotor response (PMR) of zebrafish embryos, a light pulse-triggered undirected movement, is known to be altered by neuroactive chemicals.  Here, we developed an approach for data analysis of the distribution of PMR movement activities along the time axis; differences between treatment and respective controls are expressed by an aggregated value integrating the time-resolved density of the movement parameter as a measure for a chemically elicited PMR effect. Logistic concentration-PMR effect relationships were modeled for neuroactive test compounds with different modes of action (acetylcholinesterase inhibition, activation and inhibition of voltage-gated sodium channels); 50% effect concentrations (EC50) were in the low to medium µM range (EC50 < 10 µM for flucythrinate, esfenvalerate, azinphos-methyl, propoxur; EC50 > 10 µM for tricaine). Modulation of movement activities in different phases of the PMR (i.e., “fingerprint”) by neuroactive test compounds varied across concentrations showing that mode of action-specific PMR fingerprints are also concentration-dependent. Above 10% lethal concentrations causing 10% lethality (LC10; 48h) 3,4-dichloroaniline caused movement inhibition. This substance presumably is not neuroactive, its effect on the PMR therefore was considered as a secondary toxic effect. Quantitative morphological examinations of chemically exposed embryos showed that malformations occurred only above PMR effect concentrations, indicating that changes in the PMR were not due to such indirect effects. The PMR assay will provide useful measures in ecotoxicological risk assessment of neuroactive chemicals with zebrafish embryos and could potentially be used to infer acute fish toxicity levels from PMR effect concentrations of neurotoxic compounds.

Article Details

How to Cite
Ortmann, J., Altenburger, R., Scholz, S. and Luckenbach, T. (2021) “Photomotor response data analysis approach to assess chemical neurotoxicity with the zebrafish embryo”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2004021.

Attili, S. and Hughes, S. M. (2014). Anaesthetic tricaine acts preferentially on neural voltage-gated sodium channels and fails to block directly evoked muscle contraction. PLoS One 9, e103751. doi:10.1371/journal.pone.0103751

Basnet, R. M., Zizioli, D., Taweedet, S. et al. (2019). Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7, doi:10.3390/biomedicines7010023

Belanger, S. E., Rawlings, J. M. and Carr, G. J. (2013). Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environ Toxicol Chem 32, 1768-1783. doi:10.1002/etc.2244

Bradbury, S. P., Carlson, R. W., Henry, T. R. et al. (2008). Toxic responses of the fish nervous system. In R. T. Di Giulio and D. E. Hinton (eds.), The toxicology of fishes. CRC Press. doi:10.1201/9780203647295.ch9

Brox, S., Seiwert, B., Haase, N. et al. (2016). Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry. Comp Biochem Physiol C Toxicol Pharmacol 185-186, 20-28. doi:10.1016/j.cbpc.2016.02.007

Buckingham, S. D. and Ali, D. W. (2004). Sodium and potassium currents of larval zebrafish muscle fibres. J Exp Biol 207, 841-852. doi:10.1242/jeb.00839

Busquet, F., Strecker, R., Rawlings, J. M. et al. (2014). OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul Toxicol Pharmacol 69, 496-511. doi:10.1016/j.yrtph.2014.05.018

Copmans, D., Meinl, T., Dietz, C. et al. (2016). A KNIME-based analysis of the zebrafish photomotor response clusters the phenotypes of 14 classes of neuroactive molecules. J Biomol Screen 21, 427-436. doi:10.1177/1087057115618348

Coutts, C. A., Patten, S. A., Balt, L. N. et al. (2006). Development of ionic currents of zebrafish slow and fast skeletal muscle fibers. J Neurobiol 66, 220-235. doi:10.1002/neu.20214

d'Amora, M. and Giordani, S. (2018). The utility of zebrafish as a model for screening developmental neurotoxicity. Front Neurosci 12, 976. doi:10.3389/fnins.2018.00976

de Brujin, M. H., Labrada, L. A., Smyth, A. J. et al. (1993). A comparative study of diagnosis by the polymerase chain reaction and by current clinical methods using biopsies from colombian patients with suspected leishmaniasis. Trop Med Parasitol 44, 201-207.

Ducharme, N. A., Peterson, L. E., Benfenati, E. et al. (2013). Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies. Reprod Toxicol 41, 98-108. doi:10.1016/j.reprotox.2013.06.070

Embry, M. R., Belanger, S. E., Braunbeck, T. A. et al. (2010). The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97, 79-87. doi:10.1016/j.aquatox.2009.12.008

Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87, 245-254. doi:10.1289/ehp.9087245

Gauthier, P. T. and Vijayan, M. M. (2018). Nonlinear mixed-modelling discriminates the effect of chemicals and their mixtures on zebrafish behavior. Sci Rep 8, 1999. doi:10.1038/s41598-018-20112-x

Glaberman, S., Padilla, S. and Barron, M. G. (2017). Evaluating the zebrafish embryo toxicity test for pesticide hazard screening. Environ Toxicol Chem 36, 1221-1226. doi:10.1002/etc.3641

Gruber, S. J. and Munn, M. D. (1998). Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (ChE) inhibition in common carp (Cyprinus carpio). Arch Environ Contam Toxicol 35, 391-396. doi:10.1007/s002449900393

Hanneman, E. and Westerfield, M. (1989). Early expression of acetylcholinesterase activity in functionally distinct neurons of the zebrafish. J Comp Neurol 284, 350-361. doi:10.1002/cne.902840303

Herzsprung, P., Weil, L. and Niessner, R. (1992). Measurement of bimolecular rate constants k(i) of the cholinesterase inactivation reaction by 55 insecticides and of the influence of various pyridiniumoximes on k(i). Int J Environ an Ch 47, 181-200. doi:Doi 10.1080/03067319208027028

Jacob, E., Drexel, M., Schwerte, T. et al. (2002). Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae. Am J Physiol Regul Integr Comp Physiol 283, R911-917. doi:10.1152/ajpregu.00673.2001

Klüver, N., König, M., Ortmann, J. et al. (2015). Fish embryo toxicity test: Identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds. Environ Sci Technol 49, 7002-7011. doi:10.1021/acs.est.5b01910

Klüver, N., Vogs, C., Altenburger, R. et al. (2016). Development of a general baseline toxicity qsar model for the fish embryo acute toxicity test. Chemosphere 164, 164-173. doi:10.1016/j.chemosphere.2016.08.079

Knöbel, M., Busser, F. J., Rico-Rico, A. et al. (2012). Predicting adult fish acute lethality with the zebrafish embryo: Relevance of test duration, endpoints, compound properties, and exposure concentration analysis. Environ Sci Technol 46, 9690-9700. doi:10.1021/es301729q

Kokel, D., Bryan, J., Laggner, C. et al. (2010). Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6, 231-237. doi:10.1038/nchembio.307

Kokel, D., Cheung, C. Y., Mills, R. et al. (2013a). Photochemical activation of trpa1 channels in neurons and animals. Nat Chem Biol 9, 257-263. doi:10.1038/nchembio.1183

Kokel, D., Dunn, T. W., Ahrens, M. B. et al. (2013b). Identification of nonvisual photomotor response cells in the vertebrate hindbrain. J Neurosci 33, 3834-3843. doi:10.1523/JNEUROSCI.3689-12.2013

Lammer, E., Carr, G. J., Wendler, K. et al. (2009a). Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Toxicol Pharmacol 149, 196-209. doi:10.1016/j.cbpc.2008.11.006

Lammer, E., Kamp, H.G., Hisgen, V. et al. (2009b). Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Toxicol In Vitro 23(7),1436-42. doi:10.1016/j.tiv.2009.05.014

Legradi, J., el Abdellaoui, N., van Pomeren, M. et al. (2015). Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity. Environ Sci Pollut Res Int 22, 16277-16289. doi:10.1007/s11356-014-3805-8

Nagel, R. (2002). Dart: The embryo test with the zebrafish Danio rerio--a general model in ecotoxicology and toxicology. ALTEX 19 Suppl 1, 38-48.

OECD (2013). Test no. 236: Fish embryo acute toxicity (fet) test. Vol. doi:10.1787/9789264203709-en

OECD (2019). Test no. 203: Fish, acute toxicity test. Vol. doi:10.1787/9789264069961-en

Ogungbemi, A., Leuthold, D., Scholz, S. et al. (2019). Hypo- or hyperactivity of zebrafish embryos provoked by neuroactive substances: A review on how experimental parameters impact the predictability of behavior changes. Environ Sci Eur 31, doi:10.1186/s12302-019-0270-5

Reif, D. M., Truong, L., Mandrell, D. et al. (2016). High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 90, 1459-1470. doi:10.1007/s00204-015-1554-1

Rombough, P. (2002). Gills are needed for ionoregulation before they are needed for o2 uptake in developing zebrafish, Danio rerio. J Exp Biol 205, 1787-1794. doi:10.1242/jeb.205.12.1787

Russom, C. L., Bradbury, S. P., Broderius, S. J. et al. (1997). Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16, 948-967. doi:10.1002/etc.5620160514

Russom, C. L., LaLone, C. A., Villeneuve, D. L. et al. (2014). Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality. Environ Toxicol Chem 33, 2157-2169. doi:10.1002/etc.2662

Saeed, A. I., Sharov, V., White, J. et al. (2003). Tm4: A free, open-source system for microarray data management and analysis. Biotechniques 34, 374-378. doi:10.2144/03342mt01

Scholz, S., Fischer, S., Gündel, U. et al. (2008). The zebrafish embryo model in environmental risk assessment--applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15, 394-404. doi:10.1007/s11356-008-0018-z

Scholz, S., Sela, E., Blaha, L. et al. (2013). A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory toxicology and pharmacology : RTP, 67, 506-530. doi:10.1016/j.yrtph.2013.10.003

Selderslaghs, I. W., Hooyberghs, J., De Coen, W. et al. (2010). Locomotor activity in zebrafish embryos: A new method to assess developmental neurotoxicity. Neurotoxicol Teratol 32, 460-471. doi:10.1016/

Selderslaghs, I. W., Hooyberghs, J., Blust, R. et al. (2013). Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 37, 44-56. doi:10.1016/

Sobanska, M., Scholz, S., Nyman, A. M. et al. (2018). Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of registration, evaluation, authorisation, and restriction of chemicals (REACH). Environ Toxicol Chem 37, 657-670. doi:10.1002/etc.4055

Soderlund, D. M. and Bloomquist, J. R. (1989). Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 34, 77-96. doi:10.1146/annurev.en.34.010189.000453

Strähle, U., Scholz, S., Geisler, R. et al. (2012). Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33, 128-132. doi:10.1016/j.reprotox.2011.06.121

Teixido, E., Kießling, T.R., Krupp, E., Quevedo, C., Muriana, A., Scholz, S., 2019. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens. Toxicological Sciences. 167, 438–449. doi:10.1093/toxsci/kfy250

Venables, W. N. and Ripley, B. D. (2002). Modern applied statistics with S (statistics and computing). Springer-Verlag New York.

Most read articles by the same author(s)