A novel method for combining outcomes with different severities or gene-level classifications

Main Article Content

Salomon Sand
[show affiliations]

Abstract

Chemical risk assessment is currently based on consideration of health effects individually. The present work discusses a method for combining data by characterizing the dose-related sequence of the development of lower- to higher-order toxicological effects or the range of bioactivity observed at genomic level caused by a chemical/mixture. A reference point profile (RPP) is defined as the relation between benchmark doses for considered effects (or bioactivity measures) and a standardized severity or rank score determined for these effects. For a given dose of a chemical/mixture, the probability for exceeding the RPP can be assessed. An overall toxicological response can also be derived at the same dose by integrating contributions across all effects, with a rational for severity weighing. Conversely, dose equivalents corresponding to specified responses can be estimated. The variation in RPPs across chemicals suggests that joint consideration of effects under the proposed concept differentiates the consequence of chemical exposure, both at genomic and apical levels, to a higher extent compared to using a specific effect as a basis. This may help to refine the development of points of departure or sets of such values describing a range of health concerns. Analysis and comparison of apical and genomic RPPs, as well as consideration of functional relations between gene sets within such analyses, may aid in the transition towards a new approach method-based risk assessment paradigm that to a higher degree may require methods for combination of effect data compared to relying on specific outcomes.

Article Details

How to Cite
Sand, S. (2022) “A novel method for combining outcomes with different severities or gene-level classifications”, ALTEX - Alternatives to animal experimentation, 39(3), pp. 480–497. doi: 10.14573/altex.2004212.
Section
Articles Special Issue
References

Chen, C. and Chen J. J. (2014). Benchmark dose calculation for ordered categorical responses. Risk Anal 17, 1435-1447. doi:10.1111/risa.12167

Crump, K. (1984). A new method for determining allowable daily intakes. Fundam Appl Toxicol 4, 854-871. doi:10.1093/toxsci/4.5.854

Crump, K. (1995). Calculation of benchmark doses from continuous data. Risk Anal 15, 79-89. doi:10.1111/j.1539-6924.1995.tb00095.x

Dourson, M. L., Hertzberg, R. C., Hartung, R. et al. (1985). Novel approaches for the estimation of acceptable daily intake. Toxicol Ind Health 1, 23-41. doi:10.1177/074823378500100404

Dourson, M. L., Teuschler, L. K., Durkin, P. R. et al. (1997). Categorical regression of toxicity data: A case study using aldicarb. Regul Toxicol Pharmacol 25, 121-129. doi:10.1006/rtph.1996.1079

Dunnick, J. K., Shockley, K. R., Pandiri, A. R. et al. (2018). PBDE-47 and PBDE mixture (DE-71) toxicities and liver transcriptomic changes at PND 22 after in utero/postnatal exposure in the rat. Arch Toxicol 92, 3415-3433. doi:10.1007/s00204-018-2292-y

Dunnick, J. K., Shockley, K. R., Morgan, D. L. et al. (2020). Hepatic transcriptomic patterns in the neonatal rat after pentabromodiphenyl ether (PBDE) exposure. Toxicol Pathol 48, 338-349. doi:10.1177/0192623319888433

EFSA – European Food Safety Authority (2005). Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J 3, 282. doi:10.2903/j.efsa.2005.282

EFSA (2009). Guidance of the Scientific Committee on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA J 7, 1150. doi:10.2903/j.efsa.2009.1150

EFSA (2017). Update: Use of the benchmark dose approach in risk assessment. EFSA J 15, 4658. doi:10.2903/j.efsa.2017.4658

EFSA (2020). Overview of full risk assessments by the EFSA CONTAM panel between 2017 and 2020. https://www.efsa.europa.eu/en (accessed 09.07.2020)

Guth, D. J., Carroll, R. J., Simpson, D. G. et al. (1997). Categorical regression analysis of acute exposure to tetrachloroethylene. Risk Anal 17, 321-332. doi:10.1111/j.1539-6924.1997.tb00870.x

Gwinn, W. M., Auerbach, S. S., Parham, F. et al. (2020). Evaluation of 5-day in vivo rat liver and kidney with high-throughput transcriptomics for estimating benchmark doses of apical outcomes. Tox Sci 176, 343-354. doi:10.22427/ntp-data-002-00058-0002-0000-7

Haber, L. T., Dourson, M. L., Allen, B. C. et al. (2018). Benchmark dose (BMD) modeling: Current practice, issues, and challenges. Crit Rev Toxicol 48, 387-415. doi:10.1080/10408444.2018.1430121

Hertzberg, R. C. and Miller, M. (1985). A statistical model for species extrapolation using categorical response data. Tox Ind Health 1, 43-57. doi:10.1177/074823378500100405

Hertzberg, R. C. (1989). Fitting a model to categorical response data with application to species extrapolation of toxicity. Health Phys 57, 405-409. doi:10.1097/00004032-198907001-00057

Hertzberg, R. C. and Dourson, M. L. (1993). Using categorical regression instead of a NOAEL to characterize a toxicologist’s judgment in noncancer risk assessment. In B. M. Ayyub (ed.), Proceedings, Second International Symposium on Uncertainty Modeling and Analysis, College Park, MD, USA (254-261). Los Alamitos, CA, USA: IEEE Computer Society Press. doi:10.1109/isuma.1993.366760

Lin, D. (1998). An information-theoretic definition of similarity. Proceedings of the 15th International Conference on Machine Learning, 296-304.

Milton, B., Farrell, P. J., Birkett, N. et al. (2017a). Modeling u-shaped exposure-response relationships for agents that demonstrate toxicity due to both excess and deficiency. Risk Anal 37, 265-279. doi:10.1111/risa.12603

Milton, B., Krewski, D., Mattison, D. R. et al. (2017b). Modeling U-shaped dose-response curves for manganese using categorical regression. Neurotoxicology 58, 217-225. doi:10.1016/j.neuro.2016.10.001

NRC – National Research Council (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC, USA: National Academy of Sciences.

NTP – National Toxicology Program (2006a). NTP technical report on the toxicology and carcinogenesis studies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (CAS No 1746-01-6) in female Harlan Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser 521. https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr521.pdf

NTP (2006b). NTP technical report on the toxicology and carcinogenesis studies of 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (CAS No. 57117-31-4) in female Harlan Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser 525. https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr525.pdf

NTP (2006c). NTP technical report on the toxicology and carcinogenesis studies of 3,3´,4,4´,5-pentachlorobiphenyl (PCB126) (CAS No. 57465-28-8) in female Harlan Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser 520. https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr520.pdf

NTP (2006d). NTP technical report on the toxicology and carcinogenesis studies of a binary mixture of 3,3´,4,4´,5-pentachlorobiphenyl (PCB126) (CAS No. 57465-28-8) and 2,3´,4,4´,5-pentachlorobiphenyl (PCB118) (CAS No. 31508-00-6) in female Harlan Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser 531. https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr531.pdf

NTP (2006e). NTP technical report on the toxicology and carcinogenesis studies of a mixture of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (CAS No 1746-01-6) 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (CAS No. 57117-31-4) and 3,3´,4,4´,5- pentachlorobiphenyl (PCB126) (CAS No. 57465-28-8) in female Harlan Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser 526. https://ntp.niehs.nih.gov/go/tr526

NTP (2010). NTP technical report on the toxicology and carcinogenesis studies of 2,3´,4,4´,5-pentachlorobiphenyl (PCB118) (CAS No. 31508-00-6) in female Harlan Sprague-Dawley rats (Gavage Studies). Natl Toxicol Program Tech Rep Ser 559. doi:10.22427/ntp-tox-77

NTP (2016). NTP technical report on the toxicology studies of a pentabromodiphenyl ether mixture [DE-71 (technical grade)] (CAS No. 32534-81-9) in F344/N rats and B6C3F1/N mice and toxicology and carcinogenesis studies of a pentabromodiphenyl ether mixture [DE-71 (technical grade)] in Wistar Han [Crl: WI(Han)]] rats and B6C3F1/N mice. Natl Toxicol Program Tech Rep Ser 589. doi:10.22427/ntp-tr-589

NTP (2018). NTP research report on National Toxicology Program approach to genomic dose-response modeling. Research Report 5. doi:10.22427/ntp-rr-5

NTP (2020). Overview of NTP technical report between 2010 and 2020. https://ntp.niehs.nih.gov (accessed 10.07.2020).

NTP (2021). BMD results from 5-day toxicogenomic studies in rodents for triphenyl phosphate (TPHP), 4-methylcyclohexanemethanol (MCHM), and propylene glycol phenyl ether (PPH). Available at: https://cebs.niehs.nih.gov/tgxbenchmarkdoseresponse/ (accessed Jan. 2021).

Sand, S., von Rosen, D. and Filipsson, A. (2003). Benchmark calculations in risk assessment using continuous dose-response information: The influence of variance and the determination of a cut-off value. Risk Anal 23, 1059-1068. doi:10.1111/1539-6924.00381

Sand, S., von Rosen, D., Victorin, K. et al. (2006). Identification of a critical dose level for risk assessment: Developments in benchmark dose analysis of continuous endpoints. Toxicol Sci 90, 241-251. doi:10.1093/toxsci/kfj057

Sand, S., Ringblom, J., Håkansson, H. et al. (2012). The point of transition on the dose-effect curve as a reference point in the evaluation of in vitro toxicity data. J Appl Toxicol 32, 843-849. doi:10.1002/jat.2757

Sand, S., Lindqvist, R., von Rosen, D. et al. (2018). Dose-related severity sequence, and risk-based integration, of chemically induced health effect. Toxicol Sci 165, 74-89. doi:10.1093/toxsci/kfy124

Teuschler, L. K., Dourson, M. L., Stiteler, W. M. et al. (1999). Health risk above the reference dose for multiple chemicals. Regul Toxicol Pharmacol 30, S19-S26. doi:10.1006/rtph.1999.1321

Thomas, R. S., Wesselkamper, S. C., Wang, N. C. Y. et al. (2013). Temporal concordance between apical and transcriptional points of departure for chemical risk assessment. Toxicol Sci 134, 180-194. doi:10.1093/toxsci/kft094

Thomas, R. S., Paules, R. S., Simeonov, A. et al. (2018.) The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX 35, 163-168. doi:10.14573/altex.1803011

US EPA – U.S. Environmental Protection Agency (2002). A review of the reference dose and reference concentration processes. Risk Assessment Forum. EPA/630/P-02/002F. Washington, DC.

US EPA (2005). Guidelines for carcinogen risk assessment. Final report. EPA/630/P-03/001F. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, DC.

US EPA (2012). Benchmark dose technical guidance. Risk Assessment Forum. EPA/100/R-12/001. Washington, DC.

Verschaffelt, P., Van Den Bossche, T., Gabriel, W. et al. (2021). MegaGO: A fast yet powerful approach to assess functional gene ontology similarity across meta-omics data sets. J Proteome Res 20, 2083-2088. doi:10.1021/acs.jproteome.0c00926

Whelan, M. and Andersen, M. (2013). Toxicity Pathways – From concepts to application in chemical safety assessment. EUR 26389. Luxembourg (Luxembourg): Publications Office of the European Union; 2013. JRC86467.

Most read articles by the same author(s)