Predicting the transfer of contaminants in ruminants by models - potentials and challenges

Main Article Content

Fenja Klevenhusen
Karl-Heinz Südekum
Gerhard Breves
Franziska Kolrep
Manfred Kietzmann
Pietro Gerletti
Jorge Numata
Markus Spolders
Robert Pieper
Janine Kowalczyk

Abstract

Undesirable substances in feed can transfer into foods of animal origin after ingestion by livestock animals. These contaminants in food may threaten consumer health. Commonly, feeding trials are conducted with animals to assess the transfer of undesirable substances into animal tissues or milk. Such feeding trials explore the effects of the various physiological systems (e.g., ruminant and non-ruminant gastro-intestinal tracts) as well as different livestock production intensities on transfer. Using alternative methods to mimic the complex physiological processes of several organs is highly challenging. This review proposes a potential cascade of in vitro and ex vivo models to investigate the transfer of contam­inants from feed into foods of animal origin. One distinct challenge regarding the models for ruminants is the simulation of the forestomach system, with the rumen as the anaerobic fermentation chamber and its epithelial surfaces for absorption. Therefore, emphasis is placed on in vitro systems simulating the rumen with its microbial ecosystem as well as on ex vivo systems to replicate epithelial absorption. Further, the transfer from blood into milk must be evaluated by employing a suitable model. Finally, in silico approaches are introduced that can fill knowledge gaps or substitute in vitro and ex vivo models. Physiologically-based toxicokinetics combines the information gained from all alternative methods to simulate the transfer of ingested undesirable substances into foods of animal origin.

Article Details

How to Cite
Klevenhusen, F., Südekum, K.-H. ., Breves, G. ., Kolrep, F. ., Kietzmann, M. ., Gerletti, P. ., Numata, J. ., Spolders, M. ., Pieper, R. . and Kowalczyk, J. . (2021) “Predicting the transfer of contaminants in ruminants by models - potentials and challenges”, ALTEX - Alternatives to animal experimentation, 38(3), pp. 398-418. doi: 10.14573/altex.2007081.
Section
Articles
References

Aafjes, J. H. and Nijhof, J. K. (1967). A simple artificial rumen giving good production of volatile fatty acids. Brit Vet J 123, 436-446.

Abdoun, K., Stumpff, F., Rabbani, I. et al. (2010). Modulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2. Am J Physiol Gastrointest Liver Physiol 298, 190-202. doi:10.1152/ajpgi.00216.2009

Aerts, J. V., De Boever, J. L., Cottyn, B. G. et al. (1984). Comparative digestibility of feedstuffs by sheep and cows. Anim Feed Sci Technol 12, 47-56. doi:10.1016/0377-8401(84)90035-X

Ahrens, F., Gäbel, G., Garz, B. et al. (2003). Histamine-induced chloride secretion is mediated via H2-receptors in the pig proximal colon. Inflamm Res 52, 79-85. doi:10.1007/s000110300005

Aiple, K. P., Steingass, H. and Menke, K. H. (1992). Suitability of a buffered faecal suspension as the inoculum in the Hohenheim gas test. 1. Modification of the method and its ability in the prediction of organic matter digestibility and metabolizable energy content of ruminant feeds compared with rumen fluid as inoculum. J Anim Physiol Animal Nutri 67, 57-66. doi:10.1111/j.1439-0396.1992.tb00583.x

Akkaya, M. R. and Bal, M. A. (2012). Efficacy of modified yeast extract and HSCAS containing mycotoxin adsorbent on ruminal binding characteristics of various aflatoxins. Kafkas Univ Vet Fak Derg 18, 951-955. doi:10.9775/kvfd.2012.6838

Alexander, R. H. and McGowan, M. (1966). The routine determination of in vitro digestibility of organic matter in forages – An investigation of the problems associated with continuous large-scale operation. Grass Forage Sci 21, 140-147. doi:10.1111/j.1365-2494.1966.tb00462.x

Allen, D. D., Caviedes, R., Cárdenas, A. M. et al. (2005). Cell lines as in vitro models for drug screening and toxicity studies. Drug Develop Industr Pharm 31, 757-768. doi:10.1080/03639040500216246

Alvarado, A. M., Zamora-Sanabria, R. and Granados-Chinchilla, F. (2017). A focus on aflatoxins in feedstuffs: Levels of contamination, prevalence, control strategies, and impacts on animal health. In L. B. Abdulra’uf (ed.), Aflatoxin – Control, Analysis, Detection and Health Risks. INTECH Open Science. doi:10.5772/intechopen.69468

Argikar, U. A., Potter, P. M., Hutzler, J. M. et al. (2016). Challenges and opportunities with non-CYP enzymes aldehyde oxidase, carboxylesterase, and UDP-glucuronosyltransferase: Focus on reaction phenotyping and prediction of human clearance. AAPS J 18, 1391-1405. doi:10.1208/s12248-016-9962-6

Aschenbach, J. R., Zebeli, Q., Patra, A. K. et al. (2019). Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci 102, 1866-1882. doi:10.3168/jds.2018-15243

Aschenbach, J. R. and Gäbel, G. (2000). Effect and absorption of histamine in sheep rumen: Significance of acidotic epithelial damage. J Anim Sci 78, 464-470. doi:10.2527/2000.782464x

Asiegbu, F. O., Paterson, A., Morrison, I. M. et al. (1995). Effects of cell wall phenolics and fungal metabolites and methane and acetate production under in vitro rumen conditions. J Gen Appl Microbiol 41, 475-485. doi:10.2323/jgam.41.475

Asseffa, A., Smith, S. J., Nagata, K. et al. (1989). Novel exogenous heme-dependent expression of mammalian cytochrome P450 using baculovirus. Arch Biochem Biophys 274, 481-490. doi:10.1016/0003-9861(89)90461-X

Badée, J., Qiu, N., Parrott, N. et al. (2019). Optimization of experimental conditions of automated glucuronidation assays in human liver microsomes using a cocktail approach and ultra-high performance liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 47, 124-134. doi:10.1124/dmd.118.084301

Bartocci, S., Amici, A., Verna, M. et al. (1997). Solid and fluid passage rate in buffalo, cattle and sheep fed diets with different forage to concentrate ratios. Livest Prod Sci 52, 201-208. doi:10.1016/S0301-6226(97)00132-2

Beecher, M., Buckley, F., Waters, S. et al. (2014). Gastrointestinal tract size, total-tract digestibility, and rumen microflora in different dairy cow genotypes. J Dairy Sci 97, 3906-3917. doi:10.3168/jds.2013-7708

Belanche, A., Palma-Hidalgo, J.M., Nejjam, I. et al. (2019). In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum. J Sci Food Agric 99, 163-172. doi:10.1002/jsfa.9157

Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70, 567-590. doi:10.1152/physrev.1990.70.2.567

Birk, B., Stähle, A., Meier, M. et al. (2018). Investigation of ruminant xenobiotic metabolism in a modified rumen simulation system (RUSITEC). ALTEX 35, 379-389. doi:10.14573/altex.1712221

Boase, S. and Miners, J. O. (2002). In vitro-in vivo correlations for drugs eliminated by glucuronidation: Investigations with the model substrate zidovudine. Brit J Clin Pharmacol 54, 493-503. doi:10.1046/j.1365-2125.2002.01669.x

Boguhn, J., Neumann, D., Helm, A. et al. (2010). Effects of concentrate proportion in the diet with or without Fusarium toxin-contaminated triticale on ruminal fermentation and the structural diversity of rumen microbial communities in vitro. Arch Anim Nutr 64, 467-483. doi:10.1080/1745039X.2010.511515

Boguhn, J., Zuber, T. and Rodehutscord, M. (2013). Effect of donor animals and their diet on in vitro nutrient degradation and microbial protein synthesis using grass and corn silages. J Anim Physiol Anim Nutr 97, 547-557. doi:10.1111/j.1439-0396.2012.01295.x

Bolt, H. M. and Hengstler, J. G. (2020). The rapid development of computational toxicology. Arch Toxicol 94, 1371-1372. doi:10.1007/s00204-020-02768-5

Bonate, P. L. (2011). Pharmacokinetic-Pharmacodynamic Modeling and Simulation. Springer US. doi:10.1007/978-1-4419-9485-1

Bondzio, A., Stumpff, F., Schön, J. et al. (2008). Impact of Bacillus thuringiensis toxin Cry1Ab on rumen epithelial cells (REC) – A new in vitro model for safety assessment of recombinant food compounds. Food Chem Toxicol 46, 1976-1984. doi:10.1016/j.fct.2008.01.038

Busquet, M., Calsamiglia, S., Ferret, A. et al. (2005). Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci 88, 4393-4404. doi:10.3168/jds.S0022-0302(05)73126-X

Caloni, F., Spotti, M., Auerbach, H. et al. (2000). In vitro metabolism of Fumonisin B1 by ruminal microflora. Vet Res Commun 24, 379-387. doi:10.1023/A:1006422200226

Can, A., Hummel, J., Mobashar, M. et al. (2009). Comparison of sheep ruminal fluid with sheep and horse faeces as inoculum for in vitro gas production measurements. J Appl Anim Res 35, 143-148. doi:10.1080/09712119.2009.9707004

Candrian, U., Zweifel, U., Luethy, J. et al. (1991). Transfer of orally administered [3H]-seneciphylline into cow’s milk. J Agric Food Chem 39, 930-933. doi:10.1021/jf00005a026

Chapman, N. D., Goldsworthy, P. D., Volwiler, W. et al. (1961). The isolated perfused bovine liver. J Exp Med 113, 981-995. doi:10.1084/jem.113.6.981

Cheng, W. and Ng, C. A. (2017). A permeability-limited physiologically based pharmacokinetic (PBPK) model for perfluorooctanoic acid (PFOA) in male rats. Environ Sci Technol 51, 9930-9939. doi:10.1021/acs.est.7b02602

Cho, H. J., Kim, J. E., Kim, D. D. et al. (2014). In vitro-in vivo extrapolation (IVIVE) for predicting human intestinal absorption and first-pass elimination of drugs: Principles and applications. Drug Dev Ind Pharm 40, 989-998. doi:10.3109/03639045.2013.831439

Coles, L. T., Moughan, P. J. and Darragh, A. J. (2005). In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim Feed Sci Technol 123-124, 421-444. doi:10.1016/j.anifeedsci.2005.04.021

Colucci, P. E., MacLeod, G. K., Grovum, W. L. et al. (1990). Digesta kinetics in sheep and cattle fed diets with different forage to concentrate ratios at high and low intakes. J Dairy Sci 73, 2143-2156. doi:10.3168/jds.S0022-0302(90)78895-9

Craig, A. M., Latham, C. J., Blythe, L. L. et al. (1992). Metabolism of toxic pyrrolizidine alkaloids from tansy ragwort (Senecio jacobaea) in ovine ruminal fluid under anaerobic conditions. Appl Environ Microbiol 58, 2730-2736. doi:10.1128/AEM.58.9.2730-2736.1992

Czerkawski, J. W. and Breckenridge, G. (1977). Design and development of a long-term rumen simulation technique (RUSITEC). Brit J Nutr 38, 371-384. doi:10.1079/BJN19770102

Czerkawski, J. W. and Breckenridge, G. (1979a). Experiments with the long-term rumen simulation technique (RUSITEC): Response to supplementation of the rations. Brit J Nutr 42, 217-228. doi:10.1079/BJN19790109

Czerkawski, J. W. and Breckenridge, G. (1979b). Experiments with the long-term rumen simulation technique (RUSITEC): Use of soluble food and an inert solid matrix. Brit J Nutr 42, 229-245. doi:10.1079/BJN19790110

Dacasto, M., Eeckhoutte, C., Capolongoa, F. et al. (2005). Effect of breed and gender on bovine liver cytochrome P450 3A (CYP3A) expression and inter-species comparison with other domestic ruminants. Vet Res 36, 179-190. doi:10.1051/vetres:2004066

Daniel, C. R., Labens, R., Argyle, D. et al. (2018). Extracorporeal perfusion of isolated organs of large animals – Bridging the gap between in vitro and in vivo studies. ALTEX 35, 77-98. doi:10.14573/altex.1611291

de Oliveira, A. S., de Oliveira, M. R. C., Campos, J. M. S. et al. (2010). In vitro ruminal degradation of ricin and its effect on microbial growth. Anim Feed Sci Technol 157, 4154. doi:10.1016/j.anifeedsci.2010.01.006

De Vijlder, T., Valkenborg, D., Lemière, F. et al. (2018). A tutorial in small molecule identification via electrospray ionization-mass spectrometry: The practical art of structural elucidation. Mass Spectrom Rev 37, 607-629. doi:10.1002/mas.21551

Dickinson, J., Cooke, M., King, R. et al. (1976). Milk transfer of pyrrolizidine alkoloids in cattle. J Am Vet Med Assoc 169, 1192-1196.

Döring, B. and Petzinger, E. (2014). Phase 0 and phase III transport in various organs: Combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev 46, 261-282. doi:10.3109/03602532.2014.882353

Doddareddy, M. R., Cho, Y. S., Koh, H. Y. et al. (2006). In silico renal clearance model using classical Volsurf approach. J Chem Inf Model 46, 1312-1320. doi:10.1021/ci0503309

Dondossola, D., De Falco, S., Kersik, A. et al. (2019). Procurement and ex-situ perfusion of isolated slaughterhouse-derived livers as a model of donors after circulatory death. ALTEX 37, 243-254. doi:10.14573/altex.1909131

Duringer, J. M., Buhler, D. R. and Craig, A. M. (2004). Comparison of hepatic in vitro metabolism of the pyrrolizidine alkaloid senecionine in sheep and cattle. Am J Vet Res 65, 1563-1572. doi:10.2460/ajvr.2004.65.1563

Ehinger, A. M. and Kietzmann, M. (1998). Pharmakokinetische Aspekte der Mastitistherapie (Pharmacokinetic aspects of mastitis therapy). Berl Munch Tierarztl Wochenschr 111, 337-343.

Ehinger, A. M. and Kietzmann, M. (2000a). Tissue distribution of benzylpenicillin after intramammary administration in the isolated perfused bovine udder. J Vet Pharmacol Ther 23, 303-310. doi:10.1111/j.1365-2885.2000.00274.x

Ehinger, A. M. and Kietzmann, M. (2000b).Tissue distribution of oxacillin and ampicillin in the isolated perfused bovine udder. J Vet Med A 47, 157-168. doi:10.1046/j.1439-0442.2000.00272.x

Ehinger, A. M. and Kietzmann, M. (2001). Untersuchung der Gewebeverteilung von Antibiotika im Euter – Vergleich der In-vivo-Situation zum isoliert perfundierten Rindereuter (The tissue distribution of antibiotics in the udder-comparison of the situation in vivo with the isolated perfused bovine udder). Dtsch Tierarztl Wochenschr 108, 195-200.

Ehinger, A. M., Schmidt, H. and Kietzmann, M. (2006). Tissue distribution of cefquinome after intramammary and “systemic” administration in the isolated perfused bovine udder. Vet J 172, 147-153. doi:10.1016/j.tvjl.2005.02.029

Ehrhardt, S. and Schmicke, M. (2016). Isolation and cultivation of adult primary bovine hepatocytes from abattoir derived liver. EXCLI J 15, 858-866. doi:10.17179/excli2016-794

Endo, S., Brown, T. N. and Goss, K. U. (2013). General model for estimating partition coefficients to organisms and their tissues using the biological compositions and polyparameter linear free energy relationships. Environ Sci Technol 47, 6630-6639. doi:10.1021/es401772m

Engtrakul, J. J., Foti, R. S., Strelevitz, T. J. et al. (2005). Altered AZT (3′-azido-3′-deoxythymidine) glucuronidation kinetics in liver microsomes as an explanation for underprediction of in vivo clearance: Comparison to hepatocytes and effect of incubation environment. Drug Metab Dispos 33, 1621-1627. doi:10.1124/dmd.105.005058

Fabian, E., Gomes, C., Birk, B. et al. (2019). In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal free risk assessment approaches of potential endocrine-disrupting compounds. Arch Toxicol 93, 401-416. doi:10.1007/s00204-018-2372-z

Fashe, M. M., Juvonen, R. O., Petsalo, A. et al. (2015). Species-specific differences in the in vitro metabolism of lasiocarpine. Chem Res Toxicol 28, 2034-2044. doi:10.1021/acs.chemrestox.5b00253

Foroutan, A., Goldansaz, S. A., Lipfert, M. et al. (2019). Protocols for NMR analysis in livestock metabolomics. In S. K. Bhattacharya (ed.), Metabolomics: Methods in Molecular Biology. Vol. 1996. New York, NY, USA: Humana. doi:10.1007/978-1-4939-9488-5_23

Forsthuber, M., Kaiser, A. M., Granitzer, S. et al. (2020). Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma. Environ Int 137, 105324. doi:10.1016/j.envint.2019.105324

Francoise Domingue, B. M., Dellow, D. W., Wilson, P. R. et al. (1991). Comparative digestion in deer, goats, and sheep. NZ J Agric Res 34, 45-53. doi:10.1080/00288233.1991.10417792

Gabel, M., Pieper, B., Friedel, K. et al. (2003). Influence of nutrition level on digestibility in high yielding cows and effects on energy evaluation systems. J Dairy Sci 86, 3992-3998. doi:10.3168/jds.S0022-0302(03)74010-7

Gallo, A., Giuberti, G., Bertuzzi, T. et al. (2015). Study of the effects of PR toxin, mycophenolic acid and roquefortine C on in vitro gas production parameters and their stability in the rumen environment. J Agric Sci 153, 163-176. doi:10.1017/S0021859614000343

Gerlach, J. C., Brombacher, J., Kloppel, K. et al. (1994). Comparison of four methods for mass hepatocyte isolation from pig and human livers. Transplantation 57, 1318-1322. doi:10.1097/00007890-199405150-00005

Graham, J. (2002). Preparation of crude subcellular fractions by differential centrifugation. Sci World J 2, 1638-1642. doi:10.1100/tsw.2002.851

Graham, H., Walker, M., Jones, O. et al. (2012). Comparison of in-vivo and in-silico methods used for prediction of tissue: Plasma partition coefficients in rat. J Pharm Pharmacol 64, 383-396. doi:10.1111/j.2042-7158.2011.01429.x

Grosse-Siestrup, C., Fehrenberg, C., von Baeyer, H. et al. (2002). Multiple-organ harvesting for models of isolated hemoperfused organs of slaughtered pigs. ALTEX 19, 9-13. https://www.altex.org/index.php/altex/article/view/1113

Grosse-Siestrup, C., Unger, V., Meissler, M. et al. (2003). Hemoperfused isolated porcine slaughterhouse kidneys as a valid model for pharmacological studies. J Pharm Sci 92, 1147-1154. doi:10.1002/jps.10383

Guengerich, F. P. (1997). Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact 106, 161-182. doi:10.1016/S0009-2797(97)00068-9

Gunberg, D. L., Lyons, W. R. and Johnson, R. E. (1955). Perfusion studies of the isolated young rat liver. J Lab Clin Med 45, 130-134. doi:10.5555/uri:pii:0022214355900627

Hahn, I., Kunz-Vekiru, E., Twarużek, M. et al. (2015). Aerobic and anaerobic in vitro testing of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Addit Contam A 32, 922-933. doi:10.1080/19440049.2015.1023741

Halwachs, S., Wassermann, L., Lindner, S. et al. (2013). Fungicide prochloraz and environmental pollutant dioxin induce the ABCG2 transporter in bovine mammary epithelial cells by the arylhydrocarbon receptor signaling pathway. Toxicol Sci 131, 491-501. doi:10.1093/toxsci/kfs304

Hannah, S. M., Stern, M. D. and Ehle, F. R. (1986). Evaluation of a dual flow continous culture system for estimanting bacterial fermentation in vivo of mixed diets containing various soya bean products. Anim Feed Sci Technol 16, 51-62. doi:10.1016/0377-8401(86)90049-0

Harmeyer, J., Birck, R., Martens, H. et al. (1973). The effect of Strongyloides ransomi-infection on intestinal amino acid absorption in piglets. Parasitenk 41, 47-60. doi:10.1007/BF00329629

Hartinger, T., Gresner, N. and Südekum, K.-H. (2018). Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J Anim Sci Biotechnol 9, 33. doi:10.1186/s40104-018-0249-x

Hayes, J. R., Polan, C. E. and Campbell, T. C. (1977). Bovine liver metabolism and tissue distribution of aflatoxin B1. J Agric Food Chem 25, 1189-1193. doi:10.1021/jf60213a042

Haywood, C., Dickerson, V. C. and Collins, M. C. (1945). The secretion of dye by the fish liver. J Cell Comp Physiol 25, 145-153. doi:10.1002/jcp.1030250207

He, Y.-Q., Yang, L., Liu, H.-X. et al. (2010). Glucuronidation, a new metabolic pathway for pyrrolizidine alkaloids. Chem Res Toxicol 23, 591-599. doi:10.1021/tx900328f

Henderson, G., Cox, F., Ganesh, S. et al. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5, 14567. doi:10.1038/srep14567

Hermens, J. L. M., de Bruijn, J. H. M. and Brooke, D. N. (2013). The octanol-water partition coefficient: Strengths and limitations. Environ Toxicol Chem 32, 732-733. doi:10.1002/etc.2141

Herrmann, J., Hermes, R. and Breves, G. (2011). Transepithelial transport and intraepithelial metabolism of short-chain fatty acids (SCFA) in the porcine proximal colon are influenced by SCFA concentration and luminal pH. Comp Biochem Physiol A Mol Integr Physiol 158, 169-176. doi:10.1016/j.cbpa.2010.10.018

Hindrichsen, I. K. Wettstein, H.-R., Machmüller, A. et al. (2004). Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can J Anim Sci 84, 265-276. doi:10.4141/A03-095

Höber, R. and Titajew, A. (1930). Über die Sekretionsarbeit der Leber vom Frosch. Pflügers Arch 223, 180-194. doi:10.1007/BF01794080

Hoogenboom, L. A., Mulder, P. P., Zeilmaker, M. J. et al. (2011). Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28, 359-372. doi:10.1080/19440049.2010.547521

Hoover, W. H., Crooker, B. A. and Sniffen, C. J. (1976). Effects of differential solid-liquid removal rates on protozoa numbers in continuous cultures of rumen contents. J Anim Sci 43, 528-534. doi:10.2527/jas1976.432528x

Huan, J.-Y., Miranda, C. L., Buhler, D. R. et al. (1998). Species differences in the hepatic microsomal enzyme metabolism of the pyrrolizidine alkaloids. Toxicol Lett 99, 127-137. doi:10.1016/S0378-4274(98)00152-0

Huang, W. and Isoherranen, N. (2018). Development of a dynamic physiologically based mechanistic kidney model to predict renal vlearance. CPT Pharmacometrics Syst Pharmacol 7, 593-602. doi:10.1002/psp4.12321

Hubbard, S. A., Brooks, T. M., Gonzalez, L. P. et al. (1985). Preparation and characterisation of S9 fractions. In J. M. Parry and C. F. Arlett (eds.), Comparative Genetic Toxicology: The Second UKEMS Collaborative Study. London, UK: Palgrave Macmillan. doi:10.1007/978-1-349-07901-8_50

Huws, S. A., Creevey, C. J., Oyama, L. B. et al. (2018). Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Front Microbiol 9, 2161. doi:10.3389/fmicb.2018.02161

James, A. T., Peeters, G. and Lauryssens, M. (1956). The metabolism of propionic acid. Biochem J 64, 726-730. doi:10.1042/bj0640726

Janků, I. (1993). Physiological modelling of renal drug clearance. Eur J Clin Pharmacol 44, 513-519. doi:10.1007/BF02440850

Jeong, J. S., Lee, J. H., Simizu, Y. et al. (2010). Effects of the Fusarium mycotoxin deoxynivalenol on in vitro rumen fermentation. Anim Feed Sci Technol 162, 144-148. doi:10.1016/j.anifeedsci.2010.09.009

Jia, L. and Liu, X. (2007). The conduct of drug metabolism studies considered good practice (II): In vitro experiments. Curr Drug Metab 8, 822-829. doi:10.2174/138920007782798207

Johnson, A. E. (1976). Changes in calves and rats consuming milk from cows fed chronic lethal doses of Senecio jacobaea (tansy ragwort). Am J Vet Res 37, 107-110.

Jones, H. M. and Houston, J. B. (2004). Substrate depletion approach for determining in vitro metabolic clearance: Time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos 32, 973-982. doi:10.1124/dmd.104.000125

Kedderis, G. L. (2018). Toxicokinetics: Biotransformation of toxicants. In C. A. McQueen (ed.), Comprehensive Toxicology. 3rd edition. Oxford, UK: Elsevier.

Kent-Dennis, C., Aschenbach, J. R., Griebel, P. J. et al. (2020). Effects of lipopolysaccharide exposure in primary bovine ruminal epithelial cells. J Dairy Sci 103, 9587-9603. doi:10.3168/jds.2020-18652

Khiaosa-Ard, R., Bryner, S. F., Scheeder, M. R. L. et al. (2009). Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J Dairy Sci 92, 177-188. doi:10.3168/jds.2008-1117

Kiessling, K. H., Pettersson, H., Sandholm, K. et al. (1984). Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl Environ Microbiol 47, 1070-1073.

Kietzmann, M., Löscher, W., Arens, D. et al. (1993). The isolated perfused bovine udder as an in vitro model of percutaneous drug absorption. Skin viability and percutaneous absorption of dexamethasone, benzoyl peroxide, and etofenamate. J Pharmacol Toxicol Methods 30, 75-84. doi:10.1016/1056-8719(93)90010-C

Kietzmann, M., Braun, M., Schneider, M. et al. (2008). Tissue distribution of marbofloxacin after ‘systemic’ administration into the isolated perfused bovine udder. Vet J 178, 115-118. doi:10.1016/j.tvjl.2007.06.020

Klevenhusen, F., Petri, R. M., Kleefisch, M.-T. et al. (2017). Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality and concentrate amount. FEMS Microbiol Ecol 93, fix100. doi:10.1093/femsec/fix100

Knights, K. M., Sykes, M. J. and Miners, J. O. (2007). Amino acid conjugation: Contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Expert Opin Drug Metab Toxicol 3, 159-168. doi:10.1517/17425255.3.2.159

Knights, K. M., Stresser, D. M., Miners, J. O. et al. (2016). In vitro drug metabolism using liver microsomes. Curr Protoc Pharmacol 74, 7.8.1-7.8.24. doi:10.1002/cpph.9

Koch, M., Strobel, E., Tebbe, C. C. et al. (2006). Transgenic maize in the presence of ampicillin modifies the metabolic profile and microbial population structure of bovine rumen fluid in vitro. Brit J Nutr 96, 820-829. doi:10.1017/BJN20061889

Kolrep, F., Numata, J., Kneuer, C. et al. (2018). In vitro biotransformation of pyrrolizidine alkaloids in different species. Part I: Microsomal degradation. Arch Toxicol 92, 1089-1097. doi:10.1007/s00204-017-2114-7

Kost, T. A., Condreay, J. P. and Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23, 567-575. doi:10.1038/nbt1095

Kowalczyk, J., Riede, S., Schafft, H. et al. (2015). Can perfluoroalkyl acids biodegrade in the rumen simulation technique (RUSITEC)? Environ Sci Eur 27, 30. doi:10.1186/s12302-015-0063-4

Krehbiel, C. R. (2014). Invited review: Applied nutrition of ruminants: Fermentation and digestive physiology. Prof Anim Sci 30, 129-139. doi:10.15232/S1080-7446(15)30100-5

Krishnamoorthy, U., Rymer, C. and Robinson, P. H. (2005). The in vitro gas production technique: Limitations and opportunities. Anim Feed Sci Technol 123-124, 1-7. doi:10.1016/j.anifeedsci.2005.04.015

Kröger, S., Pieper, R., Schwelberger, H. G. et al. (2013). Diets high in heat-treated soybean meal reduce the histamine-induced epithelial response in the colon of weaned piglets and increase epithelial catabolism of histamine. PLoS One 8, e80612. doi:10.1371/journal.pone.0080612

Kröger, S., Pieper, R., Aschenbach, J. R. et al. (2015). Effects of high levels of dietary zinc oxide on ex vivo epithelial histamine response and investigations on histamine receptor action in the proximal colon of weaned piglets. J Anim Sci 93, 5265-5272. doi:10.2527/jas.2015-9095

Kudo, H., Cheng, K.-J., Majak, W. et al. (1984). Degradation of mimosine in rumen fluid from cattle and sheep in Canada. Can J Anim Sci 64, 937-942. doi:10.4141/cjas84-105

Kuilman, M. E. M., Maas, R. F. M. and Fink-Gremmels, J. (2000). Cytochrome P450-mediated metabolism and cytotoxicity of aflatoxin B1 in bovine hepatocytes. Toxicol In Vitro 14, 321-327. doi:10.1016/S0887-2333(00)00025-4

Kuroda, K., Kiyono, T., Isogai, E. et al. (2015). Immortalization of fetal bovine colon epithelial cells by expression of human cyclin D1, mutant cyclin dependent kinase 4, and telomerase reverse transcriptase: An in vitro model for bacterial infection. PLoS One 10, e0143473. doi:10.1371/journal.pone.0143473

Larsson, P., Busk, L. and Tjälve, H. (1994). Hepatic and extrahepatic bioactivation and GSH conjugation of aflatoxin B1 in sheep. Carcinogenesis 15, 947-955. doi:10.1093/carcin/15.5.947

Laveé, T. and Funk, C. (2007). 5.03 – In vivo absorption, distribution, metabolism, and excretion studies in discovery and development. In J. B. Taylor and D. J. Triggle (eds.), Comprehensive Medicinal Chemistry II (31-50). Elsevier. doi:10.1016/B0-08-045044-X/00118-8

Leavens, T. L., Tell, L. A., Clothier, K. A. et al. (2012). Development of a physiologically based pharmacokinetic model to predict tulathromycin distribution in goats. J Vet Pharmacol Ther 35, 121-131. doi:10.1111/j.1365-2885.2011.01304.x

Lengowski, M. B., Zuber, K. H. R., Witzig, M. et al. (2016). Changes in rumen microbial community composition during adaption to an in vitro system and the impact of different forages. PLoS One 11, e0150115. doi:10.1371/journal.pone.0150115

Lescoat, P., Sauvant, D. and Danfaer, A. (1996). Quantitative aspects of blood and amino acid flows in cattle. Reprod Nutr Dev 36, 137-174. doi:10.1051/rnd:19960202

Lewis, K. A., Tzilivakis, J., Green, A. et al. (2013). Review of substances/agents that have direct beneficial effect on the environment: Mode of action and assessment of efficacy. EFSA Supporting Publication 10, 440E. doi:10.2903/sp.efsa.2013.EN-440

Li, S., Teng, L., Liu, W. et al. (2017a). Interspecies metabolic diversity of harmaline and harmine in in vitro 11 mammalian liver microsomes. Drug Test Anal 9, 754-768. doi:10.1002/dta.2028

Li, M., Gehring, R., Riviere, J. E. et al. (2017b). Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment. Food Chem Toxicol 107, 74-87. doi:10.1016/j.fct.2017.06.023

Li, M., Gehring, R., Riviere, J. E. et al. (2018). Probabilistic physiologically based pharmacokinetic model for penicillin G in milk from dairy cows following intramammary or intramuscular administrations. Toxicol Sci 164, 85-100. doi:10.1093/toxsci/kfy067

Lin, Z., Gehring, R., Mochel, J. P. et al. (2016). Mathematical modeling and simulation in animal health – Part II: Principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 39, 421-438. doi:10.1111/jvp.12311

Lin, L. and Wong, H. (2017). Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models. Pharmaceutics 9, 41. doi:10.3390/pharmaceutics9040041

Lin, L., Li, M., Wang, Y.-S. et al. (2020). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J Vet Pharmacol Ther 43, 385-420. doi:10.1111/jvp.12861

Lindner, S., Halwachs, S. and Wassermann, L. (2013). Expression and subcellular localization of efflux transporter ABCG2/BCRP in important tissue barriers of lactating dairy cows, sheep and goats. J Vet Pharmacol Ther 36, 562-570. doi:10.1111/jvp.12045

Liu, X., Huang, J., Sun, Y. et al. (2013). Identification of multiple binding sites for substrate transport in bovine organic anion transporting polypeptide 1a2. Drug Metab Dispos 41, 602-607. doi:10.1124/dmd.112.047910

Loccisano, A. E., Longnecker, M. P., Campbell Jr., J. L. et al. (2013). Development of PBPK models for PFOA and PFOs for human pregnancy and lactation life stages. J Toxicol Environ Health A 76, 25-57. doi:10.1080/15287394.2012.722523

Loebell, C. E. (1849). De conditionibus quibus secretiones in glandulis perficiuntur. Dissertatio Inauguralis Marburg.

MacLachlan, D. J. (2009). Influence of physiological status on residues of lipophilic xenobiotics in livestock. Food Addit Contam A 26, 692-712. doi:10.1080/02652030802669170

MacManus-Spencer, L. A., Tse, M. L., Hebert, P. C. et al. (2010). Binding of perfluorocarboxylates to serum albumin: A comparison of analytical methods. Anal Chem 82, 974-981. doi:10.1021/ac902238u

Mahnke, H., Ballent, M., Baumann, S. et al. (2016). The ABCG2 efflux transporter in the mammary gland mediates veterinary drug secretion across the blood-milk barrier into milk of dairy cows. Drug Metab Dispos 44, 700-708. doi:10.1124/dmd.115.068940

Majak, W. and Cheng, K.-J. (1987). Hydrolysis of the cyanogenic glycosides amygdalin, prunasin and linamarin by ruminal microorganisms. Can J Anim Sci 67, 1133-1137. doi:10.4141/cjas87-120

Mansfield, H. R., Endres, I. E. and Stern, M. D. (1995). Comparison of microbial fermentation in the rumen of dairy cows and dual flow continuous culture. Anim Feed Sci Technol 55, 47-66. doi:10.1016/0377-8401(95)98202-8

Marin, J. J. G. (2012). Plasma membrane transporters in modern liver pharmacology. Scientifica 2012, 428139. doi:10.6064/2012/428139

Martínez, M. E., Ranilla, M. J., Tejido, M. L. et al. (2010a). Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth. J Dairy Sci 93, 3684-3698. doi:10.3168/jds.2009-2933

Martínez, M. E., Ranilla, M. J., Tejido, M. L. et al. (2010b). Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities. J Dairy Sci 93, 3699-3712. doi:10.3168/jds.2009-2934

Martinez, M. N., Court, M. H., Fink-Gremmels, J. et al. (2018). Population variability in animal health: Influence on dose-exposure-response relationships: Part I: Drug metabolism and transporter systems. J Vet Pharmacol Ther 41, E57-E67. doi:10.1111/jvp.12670

Mattocks, A. (1986). Chemistry and Toxicology of Pyrrolizidine Alkaloids. London, UK: Academic Press.

Maul, R., Warth, B., Kant, J. S. et al. (2012). Investigation of the hepatic glucuronidation pattern of the fusarium mycotoxin deoxynivalenol in various species. Chem Res Toxicol 25, 2715-2717. doi:10.1021/tx300348x

McAllister, T. A., Bae, H. D., Jones, G. A. et al. (1994). Microbial attachment and feed digestion in the rumen. J Anim Sci 72, 3004-3018. doi:10.2527/1994.72113004x

McDougall, E. J. (1948). Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem J 43, 99-109.

Miettinen, H. and Setälä, J. (1989). Design and development of a continuous culture system for studying rumen fermentation. J Agric Sci Finland 61, 463-473. doi:10.23986/afsci.72366

Miyazawa, K., Hondo, T., Kanaya, T. et al. (2010). Characterization of newly established bovine intestinal epithelial cell line. Histochem Cell Biol 133, 125-134. doi:10.1007/s00418-009-0648-3

Mobashar, M., Blank, R. Hummel, J. et al. (2012). Ruminal ochratoxin A degradation – Contribution of the different microbial populations and influence of diet. Anim Feed Sci Technol 171, 85-97. doi:10.1016/j.anifeedsci.2011.10.002

Mojtahedi, M., Danesh Mesgaran, M., Vakili, S. A. et al. (2013). Effect of aflatoxin B1 on in vitro rumen microbial fermentation responses using batch culture. Annu Rev Res Biol 3, 686-693. http://www.journalarrb.com/index.php/ARRB/article/view/24848

Moraïs, S. and Mizrahi, I. (2019). Islands in the stream: From individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev 43, 362-379. doi:10.1093/femsre/fuz007

Morgavi, D., Boudra, H., Jouany, J.-P. et al. (2003). Prevention of patulin toxicity on rumen microbial fermentation by SH-containing reducing agents. J Agric Food Chem 51, 6906-6910. doi:10.1021/jf034505v

Morgavi, D., Boudra, H., Jouany, J.-P. et al. (2004). Effect and stability of gliotoxin, an Aspergillus fumigatus toxin, on in vitro rumen fermentation. Food Addit Contam 21, 871-878. doi:10.1080/0265-2030400002188

Morgavi, D., Forano, E., Martin, C. et al. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal 4, 1024-1036. doi:10.1017/S1751731110000546

Morgavi, D., Martin, C. and Boudra, H. (2013). Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo. J Anim Sci 91, 848-860. doi:10.2527/jas.2012-5665

Moumen, A., Yáñez-Ruiz, D. R., Carro, M. D. et al. (2009). Protozoa evolution in single-flow continuous culture and Rusitec fermenters fed high-forage diets. In T. G. Papachristou, Z. M. Parissi, H. Ben Salem and P. Morand-Fehr (eds.), Nutritional and Foraging Ecology of Sheep and Goats (303-308). Zaragoza: CIHEAM/FAO/NAGREF. Options Méditerranéennes: Série A. Séminaires Méditerranéens 85. http://om.ciheam.org/article.php?IDPDF=801022

Müller, M. and Jansen, P. L. (1997). Molecular aspects of hepatobiliary transport. Am J Physiol 272, G1285-G1303. doi:10.1152/ajpgi.1997.272.6.G1285

Muluneh, F., Häkkinen, M. R., El-Dairi, R. et al. (2018). New glutathione conjugate of pyrrolizidine alkaloids produced by human cytosolic enzyme-dependent reactions in vitro. Rapid Commun Mass Spectrom 32, 1344-1352. doi:10.1002/rcm.8173

Muscher-Banse, A. S. and Breves, G. (2019). Mechanisms and regulation of epithelial phosphate transport in ruminants: approaches in comparative physiology. Pflügers Arch 471, 185-191. doi:10.1007/s00424-018-2181-5

Nicken, P., Schröder, B., von Keutz, A. et al. (2013). The colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is actively secreted in the distal colon of the rat: An integrated view on the role of PhIP transport and metabolism in PhIP-induced colon carcinogenesis. Arch Toxicol 87, 895-904. doi:10.1007/s00204-012-1006-0

Nizet, A. (1975). The isolated perfused kidney: Possibilities, limitations and results. Kidney Int 7, 1-11. doi:10.1038/ki.1975.1

NRC – National Research Council (1988). Designing Foods: Animal Product Options in the Marketplace. National Research Council (US) Committee on Technological Options to Improve the Nutritional Attributes of Animal Products. Washington, DC, USA: National Academies Press. doi:10.17226/1036

Numata, J., Kowalczyk, J., Adolphs, J. et al. (2014). Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. J Agric Food Chem 62, 6861-6870. doi:10.1021/jf405827u

Nurdin, E. and Susanty, H. (2015). Effect of Curcuma zedoaria, Curcuma mangga and Cuminum cyminum on rumen ecology and Pb profile in the rumen of mastitis dairy cows (in vitro). Pakistan J Biol Sci 18, 146-148. doi:10.3923/pjbs.2015.146.148

OECD (2007a). Test No. 503: Metabolism in Livestock. OECD Guidelines for the Testing of Chemicals, Section 5. OECD Publishing, Paris. doi:10.1787/9789264061873-en

OECD (2007b). Test No. 505: Residues in Livestock. OECD Guidelines for the Testing of Chemicals, Section 5. OECD Publishing, Paris. doi:10.1787/9789264061903-en

OECD (2018). Guidance Document on Good In Vitro Method Practices (GIVIMP). OECD Series on Testing and Assessment, No. 286. OECD Publishing, Paris. doi:10.1787/9789264304796-en

Paini, A., J. A., Joossens, L. E., Bessems, J. G. M. et al. (2019). Next generation physiologically based kinetic (NG-PBK) models in support of regulatory decision making. Comput Toxicol 9, 61-72. doi:10.1016/j.comtox.2018.11.002

Peeters, G. and Massart, L. (1952). Fat synthesis in the perfused lactating cow’s udder. Arch Int Pharmacodyn Ther 91, 389-398.

Pelkonen, O., Mäeenpäeä, J., Taavitsainen, P. et al. (1998). Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 28, 1203-1253. doi:10.1080/004982598238886

Petri, R. M., Schwaiger, T., Penner, G. B. et al. (2013). Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol 79, 3744-3755. doi:10.1128/AEM.03983-12

Petri, R. M., Mickdam, E., Klevenhusen, F. et al. (2019). Effects of the supplementation of plant-based formulations on microbial fermentation and predicted metabolic function in vitro. Anaerobe 57, 19e27. doi:10.1016/j.anaerobe.2019.03.001

Pilari, S. and Huisinga, W. (2010). Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models. J Pharmacokinet Pharmacodyn 37, 365-405. doi:10.1007/s10928-010-9165-1

Plattner, F. (1924). Zur Frage der Ausscheidung sauerer Farbstoffe durch die Leber. Pflügers Arch 206, 91-100. doi:10.1007/BF01722753

Poppi, D. P., Minson, D. J. and Ternouth, J. H. (1980). Studies of cattle and sheep eating leaf and stem fractions of grasses. 1. The voluntary intake, digestibility and retention time in the reticulo-rumen. Austr J Agric Res 32, 99-108. doi:10.1071/AR9810099

Potter, E. L. and Dehority, B. A. (1973). Effects of changes in feed level, starvation, and level of feed after starvation upon the concentration of rumen protozoa in the ovine. Appl Microbiol 3, 692-698.

Poulin, P. and Theil, F. P. (2000). A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89, 16-35. doi:10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E

Riaz, M. Q., Südekum, K.-H., Clauss, M. et al. (2014). Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis study. Livest Sci 162, 76-85. doi:10.1016/j.livsci.2014.01.009

Richardson, S. J., Bai, A., Kulkarni, A. A. et al. (2016). Efficiency in drug discovery: Liver S9 fraction assay as a screen for metabolic stability. Drug Metab Lett 10, 83-90. doi:10.2174/1872312810666160223121836

Riede, S., Toboldt, A., Breves, G. et al. (2016). Investigations on the possible impact of a glyphosate-containing herbicide on ruminal metabolism and bacteria in vitro by means of the ‘Rumen Simulation Technique’. J Appl Microbiol 121, 644-656. doi:10.1111/jam.13190

Roeder, E. (2000). Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 55, 711-726.

Rosa, B. (2020). Equine drug transporters: A mini-review and veterinary perspective. Pharmaceutics 12, 1064. doi:10.3390/pharmaceutics12111064

Rozehnal, V., Nakai, D., Hoepner, U. et al. (2012). Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs. Eur J Pharm Sci 46, 367-373. doi:10.1016/j.ejps.2012.02.025

Russel, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. University Federation for Animal Welfare UFAW, Potters Bar, England.

Rymer, C., Huntington, J. A., Williams, B. A. et al. (2005). In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim Feed Sci Technol 123-124, 9-30. doi:10.1016/j.anifeedsci.2005.04.055

Sanchez, R. I. and Kauffman, F. C. (2010). Regulation of xenobiotic metabolism in the liver. In C. A. McQueen (ed.), Comprehensive Toxicology. 2nd edition. Oxford, UK: Elsevier. doi:10.1016/B978-0-08-046884-6.01005-8

Savvateeva, D., Numata, J., Pieper, R. et al. (2020). Physiologically based toxicokinetic models and in silico predicted partition coefficients to estimate tetrachlorodibenzo-p-dioxin transfer from feed into growing pigs. Arch Toxicol 94, 187-196. doi:10.1007/s00204-019-02617-0

Schmitt, W. (2008). General approach for the calculation of tissue to plasma partition coefficients. Toxicol In Vitro 22, 457-467. doi:10.1016/j.tiv.2007.09.010

Schröder, B., Wilkens, M. R., Ricken, G. E. et al. (2015). Calcium transport in bovine rumen epithelium as affected by luminal Ca concentrations and Ca sources. Physiol Rep 3, e12615. doi:10.14814/phy2.12615

Seeling, K., Boguhn, J., Strobel, E. et al. (2006). On the effects of Fusarium toxin contaminated wheat and wheat chaff on nutrient utilisation and turnover of deoxynivalenol and zearalenone in vitro (Rusitec). Toxicol In Vitro 20, 703-711. doi:10.1016/j.tiv.2005.10.006

Sehested, K., Diernaes, L., Laverty, G. et al. (1995). Methodological and functional aspects of the isolated bovine rumen epithelium in Ussing chamber flux studies. Acta Agricult Scand A Anim Sci 46, 76-86. doi:10.1080/09064709609415855

Shen-Tov, M., Ziv, G., Glickman, A. et al. (1997). Pharmacokinetics and penetration of marbofloxacin from blood into the milk of cows and ewes. J Vet Med A 44, 511-519. doi:10.1111/j.1439-0442.1997.tb01137.x

Sjöberg, Å., Lutz, M., Tannergren, C. et al. (2013). Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci 48, 166-180. doi:10.1016/j.ejps.2012.10.007

Slyter, L. L., Nelson, W. O. and Wolin, M. J. (1964). Modifications of a device for maintenance of the rumen microbial population in continuous culture. Appl Microbiol 12, 374-377.

Smith, D. J. and Shelver, W. L. (2002). Tissue residues of ractopamine and urinary excretion of ractopamine and metabolites in animals treated for 7 days with dietary ractopamine. J Anim Sci 80, 1240-1249. doi:10.2527/2002.8051240x

Soliva, C. R., Meile, L., Cieślak, A. et al. (2004). Rumen simulation technique study on the interactions on of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br J Nutr 92, 689-700. doi:10.1079/BJN20041250

Starling, E. H. and Verney, E. B. (1925). The secretion of urine as studied on the isolated kidney. Proc R Soc Lond B 97, 321-363. doi:10.1098/rspb.1925.0004

Strikwold, M., Spenkelink, B., de Haan, L. H. J. et al. (2017). Integrating in vitro data and physiologically based kinetic (PBK) modelling to assess the in vivo potential developmental toxicity of a series of phenols. Arch Toxicol 91, 2119-2133. doi:10.1007/s00204-016-1881-x

Strobel, E., Seeling, K. and Tebbe, C. C. (2008). Diversity responses of rumen microbial communities to Fusarium-contaminated feed, evaluated with rumen simulating technology. Environ Microbiol 10, 483-496. doi:10.1111/j.1462-2920.2007.01469.x

Stumpff, F., Martens, H., Bilk, S. et al. (2009). Cultured ruminal epithelial cells express a large-conductance channel permeable to chloride, bicarbonate, and acetate. Pflugers Arch – Eur J Physiol 457, 1003-1022. doi:10.1007/s00424-008-0566-6

Stumpff, F., Georgi, M. I., Mundhenk, L. et al. (2011). Sheep rumen and omasum primary cultures and source epithelia: Barrier function aligns with expression of tight junction proteins. J Exp Biol 214, 2871-2882. doi:10.1242/jeb.055582

Terry, S. A., Ramos, A. F. O., Holman, D. B. M. et al. (2018). Humic substances alter ammonia production and the microbial populations within a RUSITEC fed a mixed hay-concentrate diet. Front Microbiol 9, 1410. doi:10.3389/fmicb.2018.01410

Thiel, A., Rümbeli, R., Mair, P. et al. (2019). 3-NOP: ADME studies in rats and ruminating animals. Food Chem Toxicol 125, 528-539. doi:10.1016/j.fct.2019.02.002

Tolonen, A. and Pelkonen, O. (2015). Analytical challenges for conducting rapid metabolism characterization for QIVIVE. Toxicology 332, 20-29. doi:10.1016/j.tox.2013.08.010

Udén, P., Robinson, P. H., Mateos, G. G. et al. (2012). Use of replicates in statistical analyses in papers submitted for publication in animal feed science and technology. Anim Feed Sci Technol 171, 1-5. doi:10.1016/j.anifeedsci.2011.10.008

Uppal, S. K., Wolf, K. and Martens, H. (2003). The effect of short chain fatty acids on calcium flux rates across isolated rumen epithelium of hay‐fed and concentrate‐fed sheep. J Anim Physiol Nutr 87, 12-20. doi:10.1046/j.1439-0396.2003.00401.x

Ussing, H. H. (1949). The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol Scand 17, 1-37. doi:10.1111/j.1748-1716.1949.tb00550.x

Ussing, H. H. and Zerahn, K. (1951). Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23, 110-127. doi:10.1111/j.1748-1716.1951.tb00800.x

Váradyová, Z., Mihaliková, K., Kišidayová, S. et al. (2006). Fermentation pattern of the rumen and hindgut inocula of sheep grazing in an area polluted from the non-ferrous metal industry. Czech J Anim Sci 51, 66-72. doi:10.17221/3911-CJAS

Verbeke, R., Åqvist, S. and Peeters, G. (1957). Acetate and propionate as precursors of amino-acids in milk proteins of the perfused cow’s udder. Arch Int Physiol Biochim 65, 433-438. doi:10.3109/13813455709069427

Virkel, G., Bellent, M., Lanusse, C. et al. (2019). Role of ABC transporters in veterinary medicine: Pharmaco-toxicological implications. Curr Med Chem 26, 1251-1269. doi:10.2174/0929867325666180201094730

Viviani, P., Lifschitz, A. L., García, J. P. et al. (2017). Assessment of liver slices for research on metabolic drug-drug interactions in cattle. Xenobiotica 47, 933-942. doi:10.1080/00498254.2016.1246782

von Jagow, R., Kampffmeyer, H. and Kinese, M. (1965). The preparation of microsomes. Naunyn Schmiedebergs Arch 251, 73-87. doi:10.1007/BF00245731

Wallace, R. J. and Newbold, C. J. (1991). Effects of bentonite on fermentation in the rumen simulation technique (Rusitec) and on rumen ciliate protozoa. J Agric Sci 116, 163-168. doi:10.1017/S0021859600076279

Watanabe, R., Ohashi, R., Esaki, T. et al. (2019). Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Sci Rep 9, 18782. doi:10.1038/s41598-019-55325-1

Wen, B. and Zhu, M. (2015). Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metab Rev 47, 71-87. doi:10.3109/03602532.2014.1001029

Westlake, K., Mackie, R. I. and Dutton, M. F. (1989). In vitro metabolism of mycotoxins by bacterial, protozoal and ovine ruminal fluid preparations. Anim Feed Sci Technol 25, 169-178. doi:10.1016/0377-8401(89)90117-X

Wetzels, S. U., Mann, E., Metzler-Zebeli, B. U. et al. (2016). Epimural indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle. Front Microbiol 7, 274. doi:10.3389/fmicb.2016.00274

Wetzels, S. U., Eger, M., Burmester, M. et al. (2018). The application of rumen simulation technique (RUSITEC) for studying dynamics of the bacterial community and metabolome in rumen fluid and the effects of a challenge with Clostridium perfringens. PLoS One 13, e0192256. doi:10.1371/journal.pone.019225

Wiedenfeld, H. and Edgar, J. (2011). Toxicity of pyrrolizidine alkaloids to humans and ruminants. Phytochem Rev 10, 137-151. doi:10.1007/s11101-010-9174-0

Wilkens, M. R., Richter, J., Fraser, D. R. et al. (2012). In contrast to sheep, goats adapt to dietary calcium restriction by increasing intestinal absorption of calcium. Comp Biochem Physiol A Mol Integr Physiol 163, 396-406. doi:10.1016/j.cbpa.2012.06.011

Witte, S., Brockelmann, Y., Haeger, J. D. et al. (2019). Establishing a model of primary bovine hepatocytes with responsive growth hormone receptor expression. J Dairy Sci 102, 7522-7535. doi:10.3168/jds.2018-15873

Witzig, M., Boguhn, J., Zeder, M. et al. (2015). Effect of donor animal species and their feeding on the composition of the microbial community establishing in a rumen simulation. J Appl Microbiol 119, 33-46. doi:10.1111/jam.12829

Xiao, Y., Deng, J., Liu, X. et al. (2014). Different binding sites of bovine organic anion-transporting polypeptide1a2 are involved in the transport of different fluoroquinolones. Drug Metab Dispos 42, 1261-1267. doi:10.1124/dmd.114.057448

Yáñez-Ruiz, D. R., Bannink, A., Dijkstra, J. et al. (2016). Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants – A review. Anim Feed Sci Technol 216, 1-18. doi:10.1016/j.anifeedsci.2016.03.016

Yoshioka, M., Takenouchi, T., Kitani, H. et al. (2016). Establishment of SV40 large T antigen-immortalized bovine liver sinusoidal cell lines and their immunological responses to deoxynivalenol and lipopolysaccharide. Cell Biol Int 40, 1372-1379. doi:10.1002/cbin.10682

Zhan, K., Gong, X. X., Chen, Y. Y. et al. (2019). Short-chain fatty acids regulate the immune responses via G protein-coupled receptor 41 in bovine rumen epithelial cells. Front Immunol 10, 2042. doi:10.3389/fimmu.2019.02042

Zhang, M., van Ravenzwaay, B., Fabian, E. et al. (2018). Towards a generic physiologically based kinetic model to predict in vivo uterotrophic responses in rats by reverse dosimetry of in vitro estrogenicity data. Arch Toxicol 92, 1075-1088. doi:10.1007/s00204-017-2140-5

Zhang, K., Kurita, K. L., Venkatramani, C. et al. (2019). Seeking universal detectors for analytical characterizations. J Pharm Biomed Anal 162, 192-204. doi:10.1016/j.jpba.2018.09.029

Zhang, M., van Ravenzwaay, B. and Rietjens, I. M. C. M. (2020). Development of a generic physiologically based kinetic model to predict in vivo uterotrophic responses induced by estrogenic chemicals in rats based on in vitro bioassays. Toxicol Sci 173, 19-31. doi:10.1093/toxsci/kfz216

Ziemer, C. J., Sharp, R., Stern, M. D. et al. (2000). Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes. Environ Microbiol 2, 632-643. doi:10.1046/j.1462-2920.2000.00146.x

Ziv, G. and Rasmussen, F. (1975). Distribution of labeled antibiotics in different components of milk following intramammary and intramuscular administrations. J Dairy Sci 58, 938-946. doi:10.3168/jds.S0022-0302(75)84660-1