Clean bioprinting - Fabrication of 3D organ models devoid of animal components

Main Article Content

Johanna Berg
Jens Kurreck


Bioprinting is a rapidly developing technology that enables the exact positioning of living cells embedded in bio-materials in precise spatial arrangements to fabricate engineered tissues and organs. While the ultimate goal of bio­printing approaches is to produce organs for transplantation purposes, bioprinted organ models also hold great potential for research purposes to serve as alternatives to animal experiments. By using human cells, humanized organ models can be generated that may produce more relevant results for human (patho-)physiology than animal models. However, standard bioprinting procedures currently use numerous hidden animal components. Virtually all studies published in the field to date make use of cells grown in media with fetal bovine serum (FBS). In addition, Matrigel, the extracellular matrix (ECM) harvested from Engelbreth-Holm-Swarm sarcoma grown in mice, is widely employed to cultivate stem cells and 3D organ models. Finally, most bioinks currently in use contain gelatin or comparable animal components to improve cell viability and adhesion. The present review will give an introduction to the potential of bioprinting to fabricate 3D models that may be substituted for animal experiments and will go on to describe strategies to replace animal components cur­rently included in standard procedures of bioprinting. These approaches comprise the adaptation of cells to FBS-free media, the use of bioinks composed of synthetic or plant material, and the replacement of animal ingredients by materials of human origin. We propose denoting bioprinting strategies devoid of animal components as clean bioprinting.

Article Details

How to Cite
Berg, J. and Kurreck, J. (2021) “Clean bioprinting - Fabrication of 3D organ models devoid of animal components”, ALTEX - Alternatives to animal experimentation, 38(2), pp. 269–288. doi: 10.14573/altex.2009151.

Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E. et al. (2020). Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 14, 8. doi:10.1186/s13036-020-0227-7

Aisenbrey, E. A. and Murphy, W. L. (2020). Synthetic alternatives to Matrigel. Nat Rev Mater 5, 539-551. doi:10.1038/s41578-020-0199-8

Anderson, N. L., Polanski, M., Pieper, R. et al. (2004). The human plasma proteome: A nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3, 311-326. doi:10.1074/mcp.M300127-MCP200

Axpe, E. and Oyen, M. L. (2016). Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 17, 1976. doi:10.3390/ijms17121976

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature 533, 452-454. doi:10.1038/533452a

Bejleri, D., Streeter, B. W., Nachlas, A. L. Y. et al. (2018). A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 7, e1800672. doi:10.1002/adhm.201800672

Benton, G., Arnaoutova, I., George, J. et al. (2014). Matrigel: From discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 79-80, 3-18. doi:10.1016/j.addr.2014.06.005

Berg, J., Zscheppang, K., Fatykhova, D. et al. (2017). Tyk2 as a target for immune regulation in human viral/bacterial pneumonia. Eur Respir J 50, 1601953. doi:10.1183/13993003.01953-2016

Berg, J., Hiller, T., Kissner, M. S. et al. (2018). Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Sci Rep 8, 13877. doi:10.1038/s41598-018-31880-x

Bouvier, N. M. and Lowen, A. C. (2010). Animal models for influenza virus pathogenesis and transmission. Viruses 2, 1530-1563. doi:10.3390/v20801530

Boyd-Moss, M., Fox, K., Brandt, M. et al. (2017). Bioprinting and biofabrication with peptide and protein biomaterials. Adv Exp Med Biol 1030, 95-129. doi:10.1007/978-3-319-66095-0_5

Braam, S. R., Zeinstra, L., Litjens, S. et al. (2008). Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257-2265. doi:10.1634/stemcells.2008-0291

Cakarova, L., Marsh, L. M., Wilhelm, J. et al. (2009). Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: Impact on alveolar epithelial repair. Am J Respir Crit Care Med 180, 521-532. doi:10.1164/rccm.200812-1837OC

Chen, Y., Stevens, B., Chang, J. et al. (2008). NS21: Re-defined and modified supplement B27 for neuronal cultures. J Neurosci Methods 171, 239-247. doi:10.1016/j.jneumeth.2008.03.013

Choudhury, D., Tun, H. W., Wang, T. et al. (2018). Organ-derived decellularized extracellular matrix: A game changer for bioink manufacturing? Trends Biotechnol 36, 787-805. doi:10.1016/j.tibtech.2018.03.003

Confino, C., Perez-Amodio, S., Semino, C. E. et al. (2019). Development of a self-assembled peptide/methylcellulose-base bioink for 3D bioprinting. Macromol Mater Eng 304, 1900353.

Crook, J. M. (ed.) (2020). 3D Bioprinting: Principles and Protocols. Totowa, NJ, USA: Humana Press.

Cui, X., Breitenkamp, K., Finn, M. G. et al. (2012). Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18, 1304-1312. doi:10.1089/ten.TEA.2011.0543

Daly, A. C., Critchley, S. E., Rencsok, E. M. et al. (2016a). A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8, 045002. doi:10.1088/1758-5090/8/4/045002

Daly, A. C., Cunniffe, G. M., Sathy, B. N. et al. (2016b). 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv Healthc Mater 5, 2353-2362. doi:10.1002/adhm.201600182

Dasgupta, Q. and Black, L. D., 3rd (2019). A FRESH SLATE for 3D bioprinting. Science 365, 446-447. doi:10.1126/science.aay0478

Davison-Kotler, E., Marshall, W. S. and Garcia-Gareta, E. (2019). Sources of collagen for biomaterials in skin wound healing. Bioengineering (Basel) 6, 56. doi:10.3390/bioengineering6030056

de Melo, B. A. G., Jodat, Y. A., Cruz, E. M. et al. (2020). Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater 117, 60-76. doi:10.1016/j.actbio.2020.09.024

Dellambra, E., Odorisio, T., D’Arcangelo, D. et al. (2019). Non-animal models in dermatological research. ALTEX 36, 177-202. doi:10.14573/altex.1808022

Derr, K., Zou, J., Luo, K. et al. (2019). Fully three-dimensional bioprinted skin equivalent constructs with validated morphology and barrier function. Tissue Eng Part C Methods 25, 334-343. doi:10.1089/ten.TEC.2018.0318

Domalik-Pyzik, P., Chłopek, J. and Pielichowska, K. (2019). Chitosan-based hydrogels: Preparation, properties, and applications. In M. Mondal (ed.), Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series (1665-1693). Cham, Switzerland: Springer. doi:10.1007/978-3-319-77830-3_55

Duan, B., Kapetanovic, E., Hockaday, L. A. et al. (2014). Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10, 1836-1846. doi:10.1016/j.actbio.2013.12.005

Eo, J. S., Soo, H. J., Jong-Ock, S. et al. (2017). Extracellular matrix and 3D printing. Curr Trends Biomedical Eng Biosci 2, 55596. doi:10.19080/ctbeb.2017.02.555596

Fan, R., Piou, M., Darling, E. et al. (2016). Bio-printing cell-laden Matrigel-agarose constructs. J Biomater Appl 31, 684-692. doi:10.1177/0885328216669238

Fan, Y., Zhang, F. and Tzanakakis, E. S. (2017). Engineering xeno-free microcarriers with recombinant vitronectin, albumin and UV irradiation for human pluripotent stem cell bioprocessing. ACS Biomater Sci Eng 3, 1510-1518. doi:10.1021/acsbiomaterials.6b00253

Fay, C. D. (2020). Computer-aided design and manufacturing (CAD/CAM) for bioprinting. Methods Mol Biol 2140, 27-41. doi:10.1007/978-1-0716-0520-2_3

Francis, G. L. (2010). Albumin and mammalian cell culture: Implications for biotechnology applications. Cytotechnology 62, 1-16. doi:10.1007/s10616-010-9263-3

Ghormade, V., Pathan, E. K. and Deshpande, M. V. (2017). Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104, 1415-1421. doi:10.1016/j.ijbiomac.2017.01.112

Gonzalez Hernandez, Y. and Fischer, R. W. (2007). Serum-free culturing of mammalian cells – Adaptation to and cryopreservation in fully defined media. ALTEX 24, 110-116. doi:10.14573/altex.2007.2.110

Gopinathan, J. and Noh, I. (2018). Recent trends in bioinks for 3D printing. Biomater Res 22, 11. doi:10.1186/s40824-018-0122-1

Grigoryan, B., Paulsen, S. J., Corbett, D. C. et al. (2019). Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458-464. doi:10.1126/science.aav9750

Grix, T., Ruppelt, A., Thomas, A. et al. (2018). Bioprinting perfusion-enabled liver equivalents for advanced organ-on-a-chip applications. Genes (Basel) 9, 176. doi:10.3390/genes9040176

Groll, J., Burdick, J. A., Cho, D. W. et al. (2018). A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11, 013001. doi:10.1088/1758-5090/aaec52

Gstraunthaler, G. (2003). Alternatives to the use of fetal bovine serum: Serum-free cell culture. ALTEX 20, 275-281.

Gstraunthaler, G., Lindl, T. and van der Valk, J. (2013). A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 65, 791-793. doi:10.1007/s10616-013-9633-8

Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S. et al. (2018). Bioinks for 3D bioprinting: An overview. Biomater Sci 6, 915-946. doi:10.1039/c7bm00765e

Hackethal, J., Hofer, A., Hennerbichler, S. et al. (2019). A comparison of enzymatic and non-enzymatic strategies to isolate extracellular matrix (ECM) proteins from human placenta and liposuction fat. ALTEX Proc 8, 65.

Hafezi, F., Scoutaris, N., Douroumis, D. et al. (2019). 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds. Int J Pharm 560, 406-415. doi:10.1016/j.ijpharm.2019.02.020

Han, S., Kim, S., Chen, Z. et al. (2020). 3D bioprinted vascularized tumour for drug testing. Int J Mol Sci 21, 2993. doi:10.3390/ijms21082993

Heinrich, M. A., Liu, W. J., Jimenez, A. et al. (2019). 3D bioprinting: From benches to translational applications. Small 15, e1805510. doi:10.1002/smll.201805510

Hiller, T., Berg, J., Elomaa, L. et al. (2018). Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int J Mol Sci 19, 3129. doi:10.3390/ijms19103129

Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A. et al. (2016). Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6, 34845. doi:10.1038/srep34845

Horvath, L., Umehara, Y., Jud, C. et al. (2015). Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5, 7974. doi:10.1038/srep07974

Hoshiba, T. (2017). Cultured cell-derived decellularized matrices: A review towards the next decade. J Mater Chem B 5, 4322-4331. doi:10.1039/c7tb00074j

Hospodiuk, M., Dey, M., Sosnoski, D. et al. (2017). The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv 35, 217-239. doi:10.1016/j.biotechadv.2016.12.006

Hughes, C. S., Postovit, L. M. and Lajoie, G. A. (2010). Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886-1890. doi:10.1002/pmic.200900758

Huh, D., Matthews, B. D., Mammoto, A. et al. (2010). Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668. doi:10.1126/science.1188302

Kean, T. J. and Thanou, M. (2019). Utility of chitosan for 3D printing and bioprinting. In G. Crini and E. Lichtfouse (eds.), Sustainable Agriculture Reviews 35 (271-292). Cham, Switzerland: Springer. doi:10.1007/978-3-030-16538-3_6

Kleinman, H. K. (2001). Preparation of basement membrane components from EHS tumors. Curr Protoc Cell Biol Chapter 10, Unit 10 12. doi:10.1002/0471143030.cb1002s00

Ku, J., Seonwoo, H., Park, S. et al. (2020). Cell-laden thermosensitive chitosan hydrogel bioinks for 3D bioprinting applications. Appl Sci 10, 2455. doi:10.3390/app10072455

Langer, E. M., Allen-Petersen, B. L., King, S. M. et al. (2019). Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep 26, 608-623 e606. doi:10.1016/j.celrep.2018.12.090

Lee, A., Hudson, A. R., Shiwarski, D. J. et al. (2019). 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482-487. doi:10.1126/science.aav9051

Li, X., Liu, B., Pei, B. et al. (2020). Inkjet bioprinting of biomaterials. Chem Rev 120, 10793-10833. doi:10.1021/acs.chemrev.0c00008

Liu, T., Delavaux, C. and Zhang, Y. S. (2019). 3D bioprinting for oncology applications. J 3D Print Med 3, 55-58. doi:10.2217/3dp-2019-0004

Lopez-Marcial, G. R., Zeng, A. Y., Osuna, C. et al. (2018). Agarose-based hydrogels as suitable bioprinting materials for tissue engineering. ACS Biomater Sci Eng 4, 3610-3616. doi:10.1021/acsbiomaterials.8b00903

Ma, X., Qu, X., Zhu, W. et al. (2016). Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 113, 2206-2211. doi:10.1073/pnas.1524510113

Madden, L. R., Nguyen, T. V., Garcia-Mojica, S. et al. (2018). Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions. iScience 2, 156-167. doi:10.1016/j.isci.2018.03.015

Marigliani, B., Balottin, L. B. L. and Augusto, E. F. P. (2019). Adaptation of mammalian cells to chemically defined media. Curr Protoc Toxicol 82, e88. doi:10.1002/cptx.88

Matai, I., Kaur, G., Seyedsalehi, A. et al. (2020). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536. doi:10.1016/j.biomaterials.2019.119536

Matsuoka, Y., Lamirande, E. W. and Subbarao, K. (2009). The mouse model for influenza. Curr Protoc Microbiol Chapter 15, Unit 15G 13. doi:10.1002/9780471729259.mc15g03s13

Mendes, B. B., Gomez-Florit, M., Hamilton, A. G. et al. (2019). Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication 12, 015012. doi:10.1088/1758-5090/ab33e8

Mondal, A., Gebeyehu, A., Miranda, M. et al. (2019). Characterization and printability of sodium alginate – Gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep 9, 19914. doi:10.1038/s41598-019-55034-9

Monferrer, E., Martin-Vano, S., Carretero, A. et al. (2020). A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior. Sci Rep 10, 6370. doi:10.1038/s41598-020-62986-w

Mota, C., Camarero-Espinosa, S., Baker, M. B. et al. (2020). Bioprinting: From tissue and organ development to in vitro models. Chem Rev 120, 10547-10607. doi:10.1021/acs.chemrev.9b00789

Ng, W. L., Wang, S., Yeong, W. Y. et al. (2016). Skin bioprinting: Impending reality or fantasy? Trends Biotechnol 34, 689-699. doi:10.1016/j.tibtech.2016.04.006

Nguyen, D. G., Funk, J., Robbins, J. B. et al. (2016). Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 11, e0158674. doi:10.1371/journal.pone.0158674

Nguyen, D. G. and Pentoney, S. L., Jr. (2017). Bioprinted three dimensional human tissues for toxicology and disease modeling. Drug Discov Today Technol 23, 37-44. doi:10.1016/j.ddtec.2017.03.001

Nichol, J. W., Koshy, S. T., Bae, H. et al. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536-5544. doi:10.1016/j.biomaterials.2010.03.064

Nielsen, O. B. and Hawkes, P. W. (2019). Fetal bovine serum and the slaughter of pregnant cows: Animal welfare and ethics. Bioprocess J 18. doi:10.12665/J18OA.Hawkes

Noor, N., Shapira, A., Edri, R. et al. (2019). 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci (Weinh) 6, 1900344. doi:10.1002/advs.201900344

Osidak, E. O., Kozhukhov, V. I., Osidak, M. S. et al. (2020). Collagen as bioink for bioprinting: A comprehensive review. Int J Bioprint 66, 270.

Oztan, Y. C., Nawafleh, N., Zhou, Y. et al. (2020). Recent advances on utilization of bioprinting for tumor modeling. Bioprinting 18, e00079. doi:10.1016/j.bprint.2020.e00079

Pons, M., Nagel, G., Zeyn, Y. et al. (2019). Human platelet lysate as validated replacement for animal serum to assess chemosensitivity. ALTEX 36, 277-288. doi:10.14573/altex.1809211

Psychogios, N., Hau, D. D., Peng, J. et al. (2011). The human serum metabolome. PLoS One 6, e16957. doi:10.1371/journal.pone.0016957

Puck, T. T., Cieciura, S. J. and Robinson, A. (1958). Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med 108, 945-956. doi:10.1084/jem.108.6.945

Radigan, K. A., Misharin, A. V., Chi, M. et al. (2015). Modeling human influenza infection in the laboratory. Infect Drug Resist 8, 311-320. doi:10.2147/IDR.S58551

Rivero, S., Garcíaa, M. A. and Pinottiab, A. (2010). Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydr Polym 82, 270. doi:10.1016/j.carbpol.2010.04.048

Sanchez-Romero, N., Schophuizen, C. M., Gimenez, I. et al. (2016). In vitro systems to study nephropharmacology: 2D versus 3D models. Eur J Pharmacol 790, 36-45. doi:10.1016/j.ejphar.2016.07.010

Scherzer, M. T., Waigel, S., Donninger, H. et al. (2015). Fibroblast-derived extracellular matrices: An alternative cell culture system that increases metastatic cellular properties. PLoS One 10, e0138065. doi:10.1371/journal.pone.0138065

Schiele, N. R., Corr, D. T., Huang, Y. et al. (2010). Laser-based direct-write techniques for cell printing. Biofabrication 2, 032001. doi:10.1088/1758-5082/2/3/032001

Schiele, N. R., Chrisey, D. B. and Corr, D. T. (2011). Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng Part C Methods 17, 289-298. doi:10.1089/ten.TEC.2010.0442

Schmidt, K., Berg, J., Roehrs, V. et al. (2020). 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep 7, 1578-1587. doi:10.1016/j.toxrep.2020.11.003

Schmidt, S. K., Schmid, R., Arkudas, A. et al. (2019). Tumor cells develop defined cellular phenotypes after 3D-bioprinting in different bioinks. Cells 8, 1295. doi:10.3390/cells8101295

Seok, J., Warren, H. S., Cuenca, A. G. et al. (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110, 3507-3512. doi:10.1073/pnas.1222878110

Siramshetty, V. B., Nickel, J., Omieczynski, C. et al. (2016). WITHDRAWN – A resource for withdrawn and discontinued drugs. Nucleic Acids Res 44, D1080-1086. doi:10.1093/nar/gkv1192

Snyder, J. E., Hamid, Q., Wang, C. et al. (2011). Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3, 034112. doi:10.1088/1758-5082/3/3/034112

Sriadibhatla, S., Yang, Z., Gebhart, C. et al. (2006). Transcriptional activation of gene expression by pluronic block copolymers in stably and transiently transfected cells. Mol Ther 13, 804-813. doi:10.1016/j.ymthe.2005.07.701

Su, K. and Wang, C. (2015). Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37, 2139-2145. doi:10.1007/s10529-015-1907-0

Sun, W., Starly, B., Daly, A. C. et al. (2020). The bioprinting roadmap. Biofabrication 12, 022002. doi:10.1088/1758-5090/ab5158

Swaminathan, S., Hamid, Q., Sun, W. et al. (2019). Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication 11, 025003. doi:10.1088/1758-5090/aafc49

Takao, K. and Miyakawa, T. (2015). Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 112, 1167-1172. doi:10.1073/pnas.1401965111

Toohey-Kurth, K., Sibley, S. D. and Goldberg, T. L. (2017). Metagenomic assessment of adventitious viruses in commercial bovine sera. Biologicals 47, 64-68. doi:10.1016/j.biologicals.2016.10.009

Tylek, T., Schilling, T., Schlegelmilch, K. et al. (2019). Platelet lysate outperforms FCS and human serum for co-culture of primary human macrophages and hMSCs. Sci Rep 9, 3533. doi:10.1038/s41598-019-40190-9

Usta, S. N., Scharer, C. D., Xu, J. et al. (2014). Chemically defined serum-free and xeno-free media for multiple cell lineages. Ann Transl Med 2, 97. doi:10.3978/j.issn.2305-5839.2014.09.05

van der Valk, J. and Gstraunthaler, G. (2017). Fetal bovine serum (FBS) – A pain in the dish? Altern Lab Anim 45, 329-332. doi:10.1177/026119291704500611

van der Valk, J., Bieback, K., Buta, C. et al. (2018). Fetal bovine serum (FBS): Past – Present – Future. ALTEX 35, 99-118. doi:10.14573/altex.1705101

Van Norman, G. A. (2019). Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach? JACC Basic Transl Sci 4, 845-854. doi:10.1016/j.jacbts.2019.10.008

Vukicevic, S., Kleinman, H. K., Luyten, F. P. et al. (1992). Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202, 1-8. doi:10.1016/0014-4827(92)90397-q

Wang, T., Lew, J., Premkumar, J. et al. (2017a). Production of recombinant collagen: State of the art and challenges. Eng Biol 1, 18-23. doi:10.1049/enb.2017.0003

Wang, X., Ao, Q., Tian, X. et al. (2017b). Gelatin-based hydrogels for organ 3D bioprinting. Polymers (Basel) 9, 401. doi:10.3390/polym9090401

Wang, Y., Shi, W., Kuss, M. et al. (2018). 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng 4, 4401-4411. doi:doi/10.1021/acsbiomaterials.8b01277

Wei, Z., Liu, X., Ooka, M. et al. (2020). Two-dimensional cellular and three-dimensional bio-printed skin models to screen topical-use compounds for irritation potential. Front Bioeng Biotechnol 8, 109. doi:10.3389/fbioe.2020.00109

Weidner, C., Steinfath, M., Opitz, E. et al. (2016). Defining the optimal animal model for translational research using gene set enrichment analysis. EMBO Mol Med 8, 831-838. doi:10.15252/emmm.201506025

Weinhart, M., Hocke, A., Hippenstiel, S. et al. (2019). 3D organ model – Revolution in pharmacological research? Pharmacol Res 139, 446-451. doi:10.1016/j.phrs.2018.11.002

Wong, C. H., Siah, K. W. and Lo, A. W. (2019a). Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273-286. doi:10.1093/biostatistics/kxx069

Wong, C. W., LeGrand, C. F., Kinnear, B. F. et al. (2019b). In vitro expansion of keratinocytes on human dermal fibroblast-derived matrix retains their stem-like characteristics. Sci Rep 9, 18561. doi:10.1038/s41598-019-54793-9

Wu, W., DeConinck, A. and Lewis, J. A. (2011). Omnidirectional printing of 3D microvascular networks. Adv Mater 23, H178-183. doi:10.1002/adma.201004625

Wu, Y., Zhang, Y., Yu, Y. and Ozbolat, I. T. (2020). 3D coaxial bioprinting of vasculature. Methods Mol Biol 2140, 171-181. doi:10.1007/978-1-0716-0520-2_11

Wu, Z. J., Su, X., Xu, Y. Y. et al. (2016). Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6, 24474. doi:10.1038/srep24474

Yang, G. H., Yeo, M., Koo, Y. W. et al. (2019). 4D bioprinting: Technological advances in biofabrication. Macromol Biosci 19, e1800441. doi:10.1002/mabi.201800441

Yao, T. and Asayama, Y. (2017). Animal-cell culture media: History, characteristics, and current issues. Reprod Med Biol 16, 99-117. doi:10.1002/rmb2.12024