Potential of concentration-response data to broaden regulatory application of in vitro test guidelines

Main Article Content

Miriam N. Jacobs
Janine Ezendam
Betty Hakkert
Michael Oelgeschlaeger

Abstract

International chemical regulatory activities are moving towards new approach methodology and away from traditional animal-based models, shifting and expanding from one single in vivo assay towards combined use of different in vitro assays within integrated approaches for testing and assessment and defined approaches to serve hazard identification, classification and selection of points of departure for risk assessment. Whilst many in vitro test guidelines were developed against specific hazard cut-off values, quantitative information is needed in data interpretation procedures for potency assessment purposes or to define points of departure so that assays can fulfill evolving regulatory needs. Utilizing four examples from skin sensitization, phototoxicity, endocrine activity, and non-genotoxic carcinogenicity, we illustrate why a shift in data generation and data interpretation procedures is needed to facilitate the full exploitation of the data that is generated using these assays. This requires the development of a practical approach that uses or expands upon existing guidance. Experience gained with such an approach can then provide a basis for an overarching strategy in test guideline development that should better facilitate combinations of in vitro test guidelines for specific endpoints that will be more transparent, robust, and adaptable for specific regulatory purposes.

Article Details

How to Cite
Jacobs, M. N., Ezendam, J., Hakkert, B. and Oelgeschlaeger , M. (2021) “Potential of concentration-response data to broaden regulatory application of in vitro test guidelines”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2107091.
Section
Letter
References

Bernasconi, C., Pelkonen, O., Andersson, T. B. et al. (2019). Validation of in vitro methods for human cytochrome P450 enzyme induction: Outcome of a multi-laboratory study. Toxicol In Vitro 60, 212-228. doi:10.1016/j.tiv.2019.05.019

ESAC (2020). Opinion on the Scientific Validity of the AR-CALUX® Test Method. EUR 30272 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-76-19931-1, doi:10.2760/885798

Gabbert, S., Mathea, M., Kolle, S. N., & Landsiedel, R. (2020). Accounting for Precision Uncertainty of Toxicity Testing: Methods to Define Borderline Ranges and Implications for Hazard Assessment of Chemicals. Risk Anal. Advance online publication. doi:10.1111/risa.13648

Gilmour, N., Kern, P., Alépée, N. et al. (2020). Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Phamacol 116, 104721. doi:10.1016/j.yrtph.2020.104721

Gradin, R., Johansson, A., Forreryd, A. et al. (2020). The GARD potency assay for potency-associated subclassification of chemical skin sensitizers-rationale, method development, and ring trial results of predictive performance and reproducibility. Toxicol Sci 176, 423-432. doi:10.1093/toxsci/kfaa068

Harrill, J. A., Viant, M. R., Yauk, C. L. et al. (2021). Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regul Toxicol Pharmacol 125, 105020. doi:10.1016/j.yrtph.2021.105020 Epub ahead of print.

Jacobs, M. N., Colacci, A., Corvi, R. et al. (2020). Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch Toxicol 94, 2899-2923. doi:10.1007/s00204-020-02784-5.

Kleinstreuer, N. C., Hoffmann, S., Alépée, N. et al. (2018). Non-animal methods to predict skin sensitization (II): an assessment of defined approaches. Crit Rev Toxicol 48, 359-374. doi:10.1080/10408444.2018.1429386

Kolanczyk, R. C., Schmieder, P., Jones, W. J. et al. (2012). MetaPath: an electronic knowledge base for collating, exchanging and analysing case studies of xenobiotic metabolism. Regul Toxicol Pharmacol 63, 84-96. doi:10.1016/j.yrtph.2012.02.013

Kolle, S. N., Natsch, A., Gerberick, G. F., Landsiedel, R. (2019). A review of substances found positive in 1 of 3 in vitro tests for skin sensitization. Regul Toxicol Pharmacol 106, 352-368. doi:10.1016/j.yrtph.2019.05.016

Kolle, S. N., Mathea, M., Natsch, A., Landsiedel, R. (2021). Assessing Experimental Uncertainty in Defined Approaches: Borderline Ranges for In Chemico and In Vitro Skin Sensitization Methods Determined from Ring Trial Data. Applied In Vitro Toxicology. Sep 2021, 102-111. doi:10.1089/aivt.2021.0003

Leontaridou, M., Gabbert, S., and Landsiedel, R. (2019). The impact of precision uncertainty on predictive accuracy metrics of non-animal testing methods. ALTEX 36, 435–446. doi:10.14573/altex.1810111

Mascolo, M. G., Perdichizzi, S., Vaccari, M. et al. (2018). The transformics assay: first steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis 39, 955-967. doi:10.1093/carcin/bgy037

Milcamps, A., Liska, R., Langezaal, L. et al. (2020). Validation Study Report: Performance assessment of the AR-CALUX® in vitro method, EUR 30044 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-15036-7, doi:10.2760/89293

NRC – National Research Council (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: The National Academies Press. doi:10.17226/11970

OECD (2016a). Guidance Document for the use of Adverse Outcome Pathways in developing Integrated Approaches to Testing and Assessment Series on Testing and Assessment No. 260, OECD, Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)67&doclanguage=en

OECD (2016b). Guidance document on the reporting of defined approaches to be used within integrated approaches to testing and assessment. Series on Testing and Assessment No. 255 ENV/JM/MONO (2016). http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)67&doclanguage=en.

OECD. (2016c). Guidance Document 256. Guidance Document on the Reporting of Defined Approaches and Individual Information Sources to be Used within Integrated Approaches to Testing and Assessment (IATA) for Skin Sensitisation; Annex 1; Annex 2 ENV/JM/MONO(2016)29 3 OECD Environment, Health and Safety Publications Series on Testing & Assessment No. 256

OECD (2018). Guidance Document on Good In Vitro Method Practices (GIVIMP), OECD Series on Testing and Assessment, No. 286, OECD Publishing, Paris, doi:10.1787/9789264304796-en.

OECD (2019a).Test No. 432: In Vitro 3T3 NRU Phototoxicity Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, doi:10.1787/9789264071162-en.

OECD (2019b). Guiding principles on good practices for the availability/distribution of protected elements in OECD test guidelines. Series on Testing and Assessment No.298 https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2019)14%20&doclanguage=en

OECD (2020). Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals, OECD Guidelines for the Testing of Chemicals, Section 4. OECD. doi:10.1787/9789264264366-en

OECD (2021a). Guideline No. 497: Defined Approaches on Skin Sensitisation, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, doi:10.1787/b92879a4-en.

OECD (2021b). Test No. 442C: In Chemico Skin Sensitisation: Assays addressing the Adverse Outcome Pathway key event on covalent binding to proteins, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, doi:10.1787/9789264229709-en

Paparella, M., Colacci, A., Jacobs, M. N. (2017). Uncertainties of testing methods: What do we (want to) know about carcinogenicity? ALTEX 34, 235-252. doi:10.14573/altex.1608281

Park, Y., Jung, D. W., Milcamps, A. et al. (2021). Characterisation and validation of an in vitro transactivation assay based on the 22Rv1/MMTV_GR-KO cell line to detect human androgen receptor agonists and antagonists. Food Chem Toxicol 152, 112206. doi:10.1016/j.fct.2021.112206

Peters, B., Holzhütter, H. G. (2002). In vitro phototoxicity testing: development and validation of a new concentration response analysis software and biostatistical analyses related to the use of various prediction models. Altern Lab Anim 30, 415-32. doi:10.1177/026119290203000405

Reynolds, J., MacKay, C., Gilmour, N. et al. (2019). Probabilistic prediction of human skin sensitiser potency for use in next generation risk assessment, Computational Toxicology, Volume 9, 2019, 36-49, ISSN 2468-1113. doi:10.1016/j.comtox.2018.10.004

Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique, free digital edition, Johns Hopkins Center for Alternatives to Animal Testing (CAAT) https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique

Takenouchi, O., Fukui, S., Okamoto, K. et al. (2015). Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J Appl Toxicol 35, 1318-32. doi:10.1002/jat.3127

Thomas, R. S., Clewell, H. J. 3rd, Allen, B. C. et al. (2012). Integrating pathway-based transcriptomic data into quantitative chemical risk assessment: a five chemical case study. Mutat Res 746, 135-43. doi:10.1016/j.mrgentox.2012.01.007

Most read articles by the same author(s)

1 2 > >>