In vitro models of the canine digestive tract as an alternative to in vivo assays: Advances and current challenges

Main Article Content

Charlotte Deschamps
Sylvain Denis
Delphine Humbert
Jürgen Zentek
Nathalie Priymenko
Emmanuelle Apper
Stéphanie Blanquet

Abstract


Dogs occupy a full place in the family and their well-being is of paramount importance to their owners. Digestion, a complex process involving physicochemical, mechanical, and microbial parameters, plays a central in maintaining animals healthy. As in vivo studies in dogs are more and more restricted by ethical, regulatory, societal, and cost reasons, an alternative option resides in the use of in vitro models simulating the different parts of the canine gastrointestinal tract. This review paper first introduces digestion and gut microbiota as key factors in dog nutrition and health, under both healthy and diseased conditions (obesity and inflammatory bowel disease), by highlighting when relevant similarities or differences between human and canine digestion process. Then, we provide for the first time an in-depth description of currently available models of the canine digestive tract, discuss technical and scientific challenges that need to be addressed and introduce potential applications of in vitro gut models in food and veterinary fields. Even if the development of some in vitro models remains limited by a lack of in vivo data in dogs necessary for a relevant configuration and validation, translation of long-term expertise on human in vitro gut models to dog’s ecosystem opens avenues for canine in vitro gut model development and their adaptation to specific digestive conditions associated to various ages, sizes, breeds and/or diets, under both physiological and diseased states.


Article Details

How to Cite
Deschamps, C., Denis, S., Humbert, D., Zentek, J., Priymenko, N., Apper, E. and Blanquet, S. (2022) “In vitro models of the canine digestive tract as an alternative to in vivo assays: Advances and current challenges”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2109011.
Section
Articles
References

Akimoto, M., Nagahata, N., Furuya, A. et al. (2000). Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur J Pharm Biopharm 49, 99–102. doi:10.1016/s0939-6411(99)00070-3

Alexander, C., Guard, B. C., Suchodolski, J. S. et al. (2019). Cholestyramine decreases apparent total tract macronutrient digestibility and alters fecal characteristics and metabolites of healthy adult dogs. J Anim Sci 97, 1020–1026. doi:10.1093/jas/sky437

AlShawaqfeh, M. K., Wajid, B., Minamoto, Y. et al. (2017). A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol Ecol 93. doi:10.1093/femsec/fix136

Alvaro, D., Cantafora, A., Attili, A. F. et al. (1986). Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 83, 551–554. doi:10.1016/0305-0491(86)90295-6

Andoh, A. (2016). Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion 93, 176–181. doi:10.1159/000444066

Apper, E., Privet, L., Taminiau, B. et al. (2020). Relationships Between Gut Microbiota, Metabolome, Body Weight, and Glucose Homeostasis of Obese Dogs Fed with Diets Differing in Prebiotic and Protein Content. Microorganisms 8. doi:10.3390/microorganisms8040513

Arnbjerg, J. (1992). Gastric emptying time in the dog and cat. Food and Agriculture Organization of the United Nations 28, 77–81

Aspinall, V. (2004). Anatomy and Physiology of the Dog and Cat 8. The Digestive System. Veterinary Nursing Journal 19, 94–99. doi:10.1080/17415349.2004.11013260

Axelsson, E., Ratnakumar, A., Arendt, M.-L. et al. (2013). The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495, 360–364. doi:10.1038/nature11837

Bahrami, B., Child, M. W., Macfarlane, S. et al. (2011a). Adherence and Cytokine Induction in Caco-2 Cells by Bacterial Populations from a Three-Stage Continuous-Culture Model of the Large Intestine. Appl Environ Microbiol 77, 2934–2942. doi:10.1128/AEM.02244-10

Bahrami, B., Child, M. W., Macfarlane, S. et al. (2011b). Adherence and Cytokine Induction in Caco-2 Cells by Bacterial Populations from a Three-Stage Continuous-Culture Model of the Large Intestine. Appl Environ Microbiol 77, 2934–2942. doi:10.1128/AEM.02244-10

Barko, P. C., McMichael, M. A., Swanson, K. S. et al. (2018). The Gastrointestinal Microbiome: A Review. J Vet Intern Med 32, 9–25. doi:10.1111/jvim.14875

Barroso, E., Cueva, C., Peláez, C. et al. (2015). The Computer-Controlled Multicompartmental Dynamic Model of the Gastrointestinal System SIMGI. In K. Verhoeckx, P. Cotter, I. López-Expósito, et al. (eds.), The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer. Available at: http://www.ncbi.nlm.nih.gov/books/NBK500139/ [Accessed December 15, 2020].

Bednar, G. E., Murray, S. M., Patil, A. R. et al. (2000). Selected animal and plant protein sources affect nutrient digestibility and fecal characteristics of ileally cannulated dogs. Arch Tierernahr 53, 127–140. doi:10.1080/17450390009381942

Beloshapka, A. N., Wolff, A. K. and Swanson, K. S. (2012). Effects of feeding polydextrose on faecal characteristics, microbiota and fermentative end products in healthy adult dogs. Br J Nutr 108, 638–644. doi:10.1017/S0007114511005927

Benno, Y., Nakao, H., Uchida, K. et al. (1992). Impact of the advances in age on the gastrointestinal microflora of beagle dogs. J Vet Med Sci 54, 703–706. doi:10.1292/jvms.54.703

Bermudez Sanchez, S., Pilla, R., Sarawichitr, B. et al. (2020). Fecal microbiota in client-owned obese dogs changes after weight loss with a high-fiber-high-protein diet. PeerJ 8, e9706. doi:10.7717/peerj.9706

Biagi, G., Cipollini, I. and Zaghini, G. (2008). In vitro fermentation of different sources of soluble fiber by dog faecal inoculum. Vet Res Commun 32, 335–337. doi:10.1007/s11259-008-9142-y

Bianchi, F., Lopes, N. P., Adorno, M. A. T. et al. (2019). Impact of combining acerola by-product with a probiotic strain on a gut microbiome model. Int J Food Sci Nutr 70, 182–194. doi:10.1080/09637486.2018.1498065

Bickel, M. and Kauffman, G. L. (1981). Gastric gel mucus thickness: effect of distention, 16,16-dimethyl prostaglandin e2, and carbenoxolone. Gastroenterology 80, 770–775

Blake, A. B., Guard, B. C., Honneffer, J. B. et al. (2019). Altered microbiota, fecal lactate, and fecal bile acids in dogs with gastrointestinal disease C. Staley (ed.),. PLoS ONE 14, e0224454. doi:10.1371/journal.pone.0224454

Blancquaert, L., Vervaet, C. and Derave, W. (2019). Predicting and Testing Bioavailability of Magnesium Supplements. Nutrients 11. doi:10.3390/nu11071663

Blanquet, S., Zeijdner, E., Beyssac, E. et al. (2004). A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm Res 21, 585–591. doi:10.1023/b:pham.0000022404.70478.4b

Boillat, C. S., Gaschen, F. P. and Hosgood, G. L. (2010). Assessment of the relationship between body weight and gastrointestinal transit times measured by use of a wireless motility capsule system in dogs. Am J Vet Res 71, 898–902. doi:10.2460/ajvr.71.8.898

Bondue, P., Lebrun, S., Taminiau, B. et al. (2020). A toddler SHIME® model to study microbiota of young children. FEMS Microbiol Lett 367. doi:10.1093/femsle/fnaa135

Boscan, P., Cochran, S., Monnet, E. et al. (2013). Effect of prolonged general anesthesia with sevoflurane and laparoscopic surgery on gastric and small bowel propulsive motility and pH in dogs. Vet Anaesth Analg 41, 73–81. doi:10.1111/vaa.12093

Bosch, G., Pellikaan, W. F., Rutten, P. G. P. et al. (2008). Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources. Journal of Animal Science 86, 2979–2989. doi:10.2527/jas.2007-0819

Bourreau, J., Hernot, D., Bailhache, E. et al. (2004). Gastric emptying rate is inversely related to body weight in dog breeds of different sizes. J Nutr 134, 2039S-2041S. doi:10.1093/jn/134.8.2039S

Brodkorb, A., Egger, L., Alminger, M. et al. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc 14, 991–1014. doi:10.1038/s41596-018-0119-1

Burton, E. N., O’Connor, E., Ericsson, A. C. et al. (2016). Evaluation of Fecal Microbiota Transfer as Treatment for Postweaning Diarrhea in Research-Colony Puppies. J Am Assoc Lab Anim Sci 55, 582–587

Bussolo de Souza, C., Roeselers, G., Troost, F. et al. (2014). Prebiotic effects of cassava bagasse in TNO’s in vitro model of the colon in lean versus obese microbiota. Journal of Functional Foods 11, 210–220. doi:10.1016/j.jff.2014.09.019

Carrière, F., Laugier, R., Barrowman, J. A. et al. (1993). Gastric and pancreatic lipase levels during a test meal in dogs. Scand J Gastroenterol 28, 443–454. doi:10.3109/00365529309098247

Cassmann, E., White, R., Atherly, T. et al. (2016). Alterations of the Ileal and Colonic Mucosal Microbiota in Canine Chronic Enteropathies R. E. Isaacson (ed.),. PLoS ONE 11, e0147321. doi:10.1371/journal.pone.0147321

Chaitman, J. and Gaschen, F. (2020). Fecal Microbiota Transplantation in Dogs. Vet Clin North Am Small Anim Pract 51, 219–223. doi:10.1016/j.cvsm.2020.09.012

Chaitman, J., Ziese, A.-L., Pilla, R. et al. (2020). Fecal Microbial and Metabolic Profiles in Dogs With Acute Diarrhea Receiving Either Fecal Microbiota Transplantation or Oral Metronidazole. Front Vet Sci 7, 192. doi:10.3389/fvets.2020.00192

Chassaing, B., Van de Wiele, T., De Bodt, J. et al. (2017). Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427. doi:10.1136/gutjnl-2016-313099

Chen, E. P., Mahar Doan, K. M., Portelli, S. et al. (2008). Gastric pH and gastric residence time in fasted and fed conscious cynomolgus monkeys using the Bravo pH system. Pharm Res 25, 123–134. doi:10.1007/s11095-007-9358-5

Chèvreton, P. (2018). The gut microbiota of domestic carnivorous: state of play. Faculté de médecine de Créteil. Available at: https://books.google.fr/books?id=C_FYwAEACAAJ

Chun, J. L., Ji, S. Y., Lee, S. D. et al. (2020). Difference of gut microbiota composition based on the body condition scores in dogs. J Anim Sci Technol 62, 239–246. doi:10.5187/jast.2020.62.2.239

Cinquin, C., Le Blay, G., Fliss, I. et al. (2006). New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota: Model for infant colon fermentation. FEMS Microbiology Ecology 57, 324–336. doi:10.1111/j.1574-6941.2006.00117.x

Collins, S. B., Perez-Camargo, G., Gettinby, G. et al. (2001). Development of a technique for the in vivo assessment of flatulence in dogs. Am J Vet Res 62, 1014–1019. doi:10.2460/ajvr.2001.62.1014

Cordonnier, C., Thévenot, J., Etienne-Mesmin, L. et al. (2015). Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota. Microorganisms 3, 725–745. doi:10.3390/microorganisms3040725

Cullen, J. J. and Kelly, K. A. (1996). Functional characteristics of canine pylorus in health, with pyloroplasty, and after pyloric reconstruction. Dig Dis Sci 41, 711–719. doi:10.1007/BF02213127

Cutrignelli, M. I., Bovera, F., Tudisco, R. et al. (2009). In vitro fermentation characteristics of different carbohydrate sources in two dog breeds (German shepherd and Neapolitan mastiff). J Anim Physiol Anim Nutr 93, 305–312. doi:10.1111/j.1439-0396.2009.00931.x

De Cuyper, A., Hesta, M., Tibosch, S. et al. (2018). How does dietary particle size affect carnivore gastrointestinal transit: A dog model. J Anim Physiol Anim Nutr (Berl) 102, e615–e622. doi:10.1111/jpn.12803

Déat, E., Blanquet-Diot, S., Jarrige, J.-F. et al. (2009). Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: application to the assessment of lycopene and alpha-tocopherol bioavailability from a whole food. J Agric Food Chem 57, 11314–11320. doi:10.1021/jf902392a

Defois, C., Ratel, J., Garrait, G. et al. (2018). Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems. Sci Rep 8, 11006. doi:10.1038/s41598-018-29376-9

Deng, P. and Swanson, K. S. (2015). Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr 113, S6–S17. doi:10.1017/S0007114514002943

Denis, S., Sayd, T., Georges, A. et al. (2016). Digestion of cooked meat proteins is slightly affected by age as assessed using the dynamic gastrointestinal TIM model and mass spectrometry. Food Funct 7, 2682–2691. doi:10.1039/C6FO00120C

Deschamps, C., Fournier, E., Uriot, O. et al. (2020). Comparative methods for fecal sample storage to preserve gut microbial structure and function in an in vitro model of the human colon. Appl Microbiol Biotechnol 104, 10233–10247. doi:10.1007/s00253-020-10959-4

Detweiler, K. B., He, F., Mangian, H. F. et al. (2019). Effects of high inclusion of soybean hulls on apparent total tract macronutrient digestibility, fecal quality, and fecal fermentative end-product concentrations in extruded diets of adult dogs. J Anim Sci 97, 1027–1035. doi:10.1093/jas/skz015

Donadelli, R. A., Titgemeyer, E. C. and Aldrich, C. G. (2019). Organic matter disappearance and production of short- and branched-chain fatty acids from selected fiber sources used in pet foods by a canine in vitro fermentation model1. J Anim Sci 97, 4532–4539. doi:10.1093/jas/skz302

Dressman, J. B. (1986). Comparison of canine and human gastrointestinal physiology. Pharmaceutical Research 3, 123–131. doi:10.1023/A:1016353705970

Duboc, H., Rajca, S., Rainteau, D. et al. (2013). Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539. doi:10.1136/gutjnl-2012-302578

Dufourny, S., Everaert, N., Lebrun, S. et al. (2019). Baby-SPIME: A dynamic in vitro piglet model mimicking gut microbiota during the weaning process. J Microbiol Methods 167, 105735. doi:10.1016/j.mimet.2019.105735

Durand, A. (2010). Entéropathies exsudatives chez le chien : proposition d’une stratégie thérapeutique diététique et médiacale. Université Claude Bernard.

Duysburgh, C., Ossieur, W. P., De Paepe, K. et al. (2020). Development and validation of the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME)1. J Anim Sci 98. doi:10.1093/jas/skz357

Ehrlein, H.-J. and Pröve, J. (1982). Effect of viscosity of test meals on gastric emptying in dogs. Exp Physiol 67, 419–425. doi:10.1113/expphysiol.1982.sp002657

Eisenhauer, L., Vahjen, W., Dadi, T. et al. (2019). Effects of Brewer’s spent grain and carrot pomace on digestibility, fecal microbiota, and fecal and urinary metabolites in dogs fed low- or high-protein diets1. J Anim Sci 97, 4124–4133. doi:10.1093/jas/skz264

El Hage, R., Hernandez-Sanabria, E., Calatayud Arroyo, M. et al. (2019). Propionate-Producing Consortium Restores Antibiotic-Induced Dysbiosis in a Dynamic in vitro Model of the Human Intestinal Microbial Ecosystem. Front Microbiol 10, 1206. doi:10.3389/fmicb.2019.01206

Enright, E. F., Gahan, C. G. M., Joyce, S. A. et al. (2016). The Impact of the Gut Microbiota on Drug Metabolism and Clinical Outcome. Yale J Biol Med 89, 375–382

Etienne-Mesmin, L., Chassaing, B., Desvaux, M. et al. (2019). Experimental models to study intestinal microbes-mucus interactions in health and disease. FEMS Microbiol Rev 43, 457–489. doi:10.1093/femsre/fuz013

Farmer, A. D., Wegeberg, A.-M. L., Brock, B. et al. (2018). Regional gastrointestinal contractility parameters using the wireless motility capsule: inter-observer reproducibility and influence of age, gender and study country. Aliment Pharmacol Ther 47, 391–400. doi:10.1111/apt.14438

Farquhar, M. J., McCluskey, E., Staunton, R. et al. (2018). Characterisation of a canine epithelial cell line for modelling the intestinal barrier. Altern Lab Anim 46, 115–132. doi:10.1177/026119291804600304

Fehlbaum, S., Chassard, C., Haug, M. C. et al. (2015). Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon. PLoS One 10, e0142793. doi:10.1371/journal.pone.0142793

Fitzpatrick, L. R. and Jenabzadeh, P. (2020). IBD and Bile Acid Absorption: Focus on Pre-clinical and Clinical Observations. Front Physiol 11, 564. doi:10.3389/fphys.2020.00564

Fleury, M. A., Le Goff, O., Denis, S. et al. (2017). Development and validation of a new dynamic in vitro model of the piglet colon (PigutIVM): application to the study of probiotics. Appl Microbiol Biotechnol 101, 2533–2547. doi:10.1007/s00253-017-8122-y

Flickinger, E. A., Schreijen, E. M. W. C., Patil, A. R. et al. (2003). Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. Journal of Animal Science 81, 2008–2018. doi:10.2527/2003.8182008x

Forster, G. M., Stockman, J., Noyes, N. et al. (2018). A Comparative Study of Serum Biochemistry, Metabolome and Microbiome Parameters of Clinically Healthy, Normal Weight, Overweight, and Obese Companion Dogs. Top Companion Anim Med 33, 126–135. doi:10.1053/j.tcam.2018.08.003

Freiche, V. and Hernandez, J. (2010). Gastro-entérologie canine et féline : de la clinique à la thérapeutique. Elsevier Masson.

Friedman, E. S., Bittinger, K., Esipova, T. V. et al. (2018). Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci U S A 115, 4170–4175. doi:10.1073/pnas.1718635115

Garcia-Mazcorro, J. F., Dowd, S. E., Poulsen, J. et al. (2012). Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiologyopen 1, 340–347. doi:10.1002/mbo3.36

Garcia-Mazcorro, J. F., Minamoto, Y., Kawas, J. R. et al. (2020). Akkermansia and Microbial Degradation of Mucus in Cats and Dogs: Implications to the Growing Worldwide Epidemic of Pet Obesity. Vet Sci 7. doi:10.3390/vetsci7020044

Geirnaert, A., Calatayud, M., Grootaert, C. et al. (2017). Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep 7, 11450. doi:10.1038/s41598-017-11734-8

Gibson, G. R., Cummings, J. H. and Macfarlane, G. T. (1988). Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Applied and Environmental Microbiology 54, 2750–2755. doi:10.1128/AEM.54.11.2750-2755.1988

Giffard, C. J., Collins, S. B., Stoodley, N. C. et al. (2001). Administration of charcoal, Yucca schidigera, and zinc acetate to reduce malodorous flatulence in dogs. J Am Vet Med Assoc 218, 892–896. doi:10.2460/javma.2001.218.892

Grandjean, D. and Haymann, F. (2010). Encyclopédie du chien Royal Canin.

Gruber, P., Rubinstein, A., Li, V. H. K. et al. (1987). Gastric Emptying of Nondigestible Solids in the Fasted Dog. Journal of Pharmaceutical Sciences 76, 117–122. doi:10.1002/jps.2600760207

Guerra, A., Denis, S., Goff, O. le et al. (2016). Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnology and Bioengineering 113, 1325–1335. doi:10.1002/bit.25890

Guerra, A., Etienne-Mesmin, L., Livrelli, V. et al. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol 30, 591–600. doi:10.1016/j.tibtech.2012.08.001

Gupta, P. K. and Robinson, J. R. (1988). Gastric emptying of liquids in the fasted dog. International Journal of Pharmaceutics 43, 45–52. doi:10.1016/0378-5173(88)90057-9

Hamper, B. (2016). Current Topics in Canine and Feline Obesity. Vet Clin North Am Small Anim Pract 46, 785–795. doi:10.1016/j.cvsm.2016.04.003

Handl, S., German, A. J., Holden, S. L. et al. (2013). Faecal microbiota in lean and obese dogs. FEMS Microbiol Ecol 84, 332–343. doi:10.1111/1574-6941.12067

Hernot, D. C., Biourge, V. C., Martin, L. J. et al. (2005). Relationship between total transit time and faecal quality in adult dogs differing in body size. J Anim Physiol Anim Nutr 89, 189–193. doi:10.1111/j.1439-0396.2005.00544.x

Hervera, M., Baucells, M. D., Blanch, F. et al. (2007). Prediction of digestible energy content of extruded dog food by in vitro analyses. J Anim Physiol Anim Nutr (Berl) 91, 205–209. doi:10.1111/j.1439-0396.2007.00693.x

Hinder, R. A. and Kelly, K. A. (1977). Canine gastric emptying of solids and liquids. American Journal of Physiology-Endocrinology and Metabolism 233, E335. doi:10.1152/ajpendo.1977.233.4.E335

Hooda, S., Minamoto, Y., Suchodolski, J. S. et al. (2012). Current state of knowledge: the canine gastrointestinal microbiome. Animal Health Research Reviews 13, 78–88. doi:10.1017/S1466252312000059

Hornof, W. J., Koblik, P. D., Strombeck, D. R. et al. (1989). Scintigraphic evaluation of solid-phase gastric emptying in the dog. Veterinary Radiology 30, 242–248. doi:10.1111/j.1740-8261.1989.tb01794.x

Iacopetti, I., Perazzi, A., Badon, T. et al. (2017). Salivary pH, calcium, phosphorus and selected enzymes in healthy dogs: a pilot study. BMC Vet Res 13, 330. doi:10.1186/s12917-017-1256-4

Junginger, J., Lemensieck, F., Moore, P. F. et al. (2014). Canine gut dendritic cells in the steady state and in inflammatory bowel disease. Innate Immun 20, 145–160. doi:10.1177/1753425913485475

Kakimoto, T., Kanemoto, H., Fukushima, K. et al. (2017). Effect of a high-fat–high-cholesterol diet on gallbladder bile acid composition and gallbladder motility in dogs. American Journal of Veterinary Research 78, 1406–1413. doi:10.2460/ajvr.78.12.1406

Kalantzi, L., Persson, E., Polentarutti, B. et al. (2006). Canine Intestinal Contents vs. Simulated Media for the Assessment of Solubility of Two Weak Bases in the Human Small Intestinal Contents. Pharm Res 23, 1373–1381. doi:10.1007/s11095-006-0207-8

Kararli, T. T. (1995). Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16, 351–380. doi:10.1002/bdd.2510160502

Kendall, P. T., Blaza, S. E. and Smith, P. M. (1983). Influence of level of intake and dog size on apparent digestibility of dog foods. Br Vet J 139, 361–362. doi:10.1016/s0007-1935(17)30442-6

Kienzle, E. (1988). Enzyme activity in pancreatic tissue, intestinal mucosa and chyme of dogs in relation to age and diet. Journal of Animal Physiology and Animal Nutrition, 276–288.

Kim, H., Jung, A. H., Park, S. H. et al. (2021). In Vitro Protein Disappearance of Raw Chicken as Dog Foods Decreased by Thermal Processing, but Was Unaffected by Non-Thermal Processing. Animals (Basel) 11, 1256. doi:10.3390/ani11051256

Kong, F. and Singh, R. P. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci 75, E627-635. doi:10.1111/j.1750-3841.2010.01856.x

Koziolek, M., Grimm, M., Bollmann, T. et al. (2019). Characterization of the GI transit conditions in Beagle dogs with a telemetric motility capsule. Eur J Pharm Biopharm 136, 221–230. doi:10.1016/j.ejpb.2019.01.026

Kramer, N., Pratscher, B., Meneses, A. M. C. et al. (2020). Generation of Differentiating and Long-Living Intestinal Organoids Reflecting the Cellular Diversity of Canine Intestine. Cells 9. doi:10.3390/cells9040822

Kubbinga, M., Augustijns, P., García, M. A. et al. (2019). The effect of chitosan on the bioaccessibility and intestinal permeability of acyclovir. Eur J Pharm Biopharm 136, 147–155. doi:10.1016/j.ejpb.2019.01.021

Larcheveque, S. (2019). Etat des connaissances sur la mucocèle biliaire chez le chien : étude bibliographique. Faculté de médecine de Créteil.

Lavy, E., Goldberger, D., Friedman, M. et al. (2012). pH Values and Mineral Content of Saliva in Different Breeds of Dogs. Israel Journal of Veterinary Medicine 67, 244–2448

Lee, C.-M., Luner, P. E., Locke, K. et al. (2017). Application of an Artificial Stomach-Duodenum Reduced Gastric pH Dog Model for Formulation Principle Assessment and Mechanistic Performance Understanding. J Pharm Sci 106, 1987–1997. doi:10.1016/j.xphs.2017.02.015

Li, Y., Fortner, L. and Kong, F. (2019). Development of a Gastric Simulation Model (GSM) incorporating gastric geometry and peristalsis for food digestion study. Food Res Int 125, 108598. doi:10.1016/j.foodres.2019.108598

Lui, C. Y., Amidon, G. L., Berardi, R. R. et al. (1986). Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci 75, 271–274. doi:10.1002/jps.2600750313

Lyng, E., Havenaar, R., Shastri, P. et al. (2016). Increased bioavailability of celecoxib under fed versus fasted conditions is determined by postprandial bile secretion as demonstrated in a dynamic gastrointestinal model. Drug Dev Ind Pharm 42, 1334–1339. doi:10.3109/03639045.2015.1135935

Mahar, K. M., Portelli, S., Coatney, R. et al. (2012). Gastric pH and Gastric Residence Time in Fasted and Fed Conscious Beagle Dogs using the Bravo® pH System. Journal of Pharmaceutical Sciences 101, 2439–2448. doi:10.1002/jps.23159

Malewska, K., Rychlik, A., Nieradka, R. et al. (2011). Treatment of inflammatory bowel disease (IBD) in dogs and cats. Pol J Vet Sci 14, 165–171. doi:10.2478/v10181-011-0026-7

Manchester, A. C., Webb, C. B., Blake, A. B. et al. (2019). Long‐term impact of tylosin on fecal microbiota and fecal bile acids of healthy dogs. J Vet Intern Med 33, 2605–2617. doi:10.1111/jvim.15635

Martinez, M. (2002). Applying the biopharmaceutics classification system to veterinary pharmaceutical products Part II. Physiological considerations. Advanced Drug Delivery Reviews 54, 825–850. doi:10.1016/S0169-409X(02)00071-6

Marzorati, M., Vanhoecke, B., De Ryck, T. et al. (2014). The HMITM module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol 14, 133. doi:10.1186/1471-2180-14-133

Ménard, O., Picque, D. and Dupont, D. (2015). The DIDGI® System. In K. Verhoeckx, P. Cotter, I. López-Expósito, et al. (eds.), The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer. Available at: http://www.ncbi.nlm.nih.gov/books/NBK500156/ [Accessed November 19, 2020].

Mentula, S., Harmoinen, J., Heikkilä, M. et al. (2005). Comparison between cultured small-intestinal and fecal microbiotas in beagle dogs. Appl Environ Microbiol 71, 4169–4175. doi:10.1128/AEM.71.8.4169-4175.2005

Meunier, J. P., Manzanilla, E. G., Anguita, M. et al. (2008). Evaluation of a dynamic in vitro model to simulate the porcine ileal digestion of diets differing in carbohydrate composition. J Anim Sci 86, 1156–1163. doi:10.2527/jas.2007-0145

Meyer, J. H., Dressman, J., Fink, A. et al. (1985). Effect of size and density on canine gastric emptying of nondigestible solids. Gastroenterology 89, 805–813. doi:10.1016/0016-5085(85)90576-1

Meyer, J. H., Elashoff, J., Porter-Fink, V. et al. (1988). Human postprandial gastric emptying of 1-3-millimeter spheres. Gastroenterology 94, 1315–1325. doi:10.1016/0016-5085(88)90669-5

Minamoto, Y., Otoni, C. C., Steelman, S. M. et al. (2015). Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 6, 33–47. doi:10.1080/19490976.2014.997612

Minekus, M., Alminger, M., Alvito, P. et al. (2014). A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct 5, 1113–1124. doi:10.1039/c3fo60702j

Minekus, M., Marteau, P., Havenaar, R. et al. (1995). A Multicompartmental Dynamic Computer-controlled Model Simulating the Stomach and Small Intestine. Altern Lab Anim 23, 197–209. doi:10.1177/026119299502300205

Molly, K., Vande Woestyne, M. and Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39, 254–258. doi:10.1007/bf00228615

Mondo, E., Marliani, G., Accorsi, P. A. et al. (2019). Role of gut microbiota in dog and cat’s health and diseases. Open Vet J 9, 253–258. doi:10.4314/ovj.v9i3.10

Moon, C. D., Young, W., Maclean, P. H. et al. (2018). Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. MicrobiologyOpen 7, e00677. doi:10.1002/mbo3.677

Morris, J. G. and Rogers, G. R. (1989). Comparative aspects of nutrition and metabolism of dogs and cats. In Nutrition of the dog and cat (35–66). Cambridge.

Musco, N., Calabrò, S., Roberti, F. et al. (2018). In vitro evaluation of Saccharomyces cerevisiae cell wall fermentability using a dog model. J Anim Physiol Anim Nutr (Berl) 102 Suppl 1, 24–30. doi:10.1111/jpn.12864

Nagahara, T., Ohno, K., Kanemoto, H. et al. (2018). Effect of prednisolone administration on gallbladder emptying rate and gallbladder bile composition in dogs. American Journal of Veterinary Research 79, 1050–1056. doi:10.2460/ajvr.79.10.1050

Nakayama, F. (1969). Composition of gallstone and bile: species difference. J Lab Clin Med 73, 623–630

Niina, A., Kibe, R., Suzuki, R. et al. (2019). Improvement in Clinical Symptoms and Fecal Microbiome After Fecal Microbiota Transplantation in a Dog with Inflammatory Bowel Disease. Vet Med (Auckl) 10, 197–201. doi:10.2147/VMRR.S230862

Nogueira, J. P. D. S., He, F., Mangian, H. F. et al. (2019). Dietary supplementation of a fiber-prebiotic and saccharin-eugenol blend in extruded diets fed to dogs. Journal of Animal Science 97, 4519–4531. doi:10.1093/jas/skz293

Oba, P. M., Vidal, S., Wyss, R. et al. (2020). Effect of a novel animal milk oligosaccharide biosimilar on the gut microbial communities and metabolites of in vitro incubations using feline and canine fecal inocula. Journal of Animal Science 98, skaa273. doi:10.1093/jas/skaa273

OECD (2018). Guidance Document on Good In Vitro Method Practices (GIVIMP). OECD. doi:10.1787/9789264304796-en

Ogué-Bon, E., Khoo, C., McCartney, A. L. et al. (2010). In vitro effects of synbiotic fermentation on the canine faecal microbiota. FEMS Microbiol Ecol 73, 587–600. doi:10.1111/j.1574-6941.2010.00915.x

Ogué-Bon, E., Khoo, C., Hoyles, L. et al. (2011). In vitro fermentation of rice bran combined with Lactobacillus acidophilus 14 150B or Bifidobacterium longum 05 by the canine faecal microbiota. FEMS Microbiol Ecol 75, 365–376. doi:10.1111/j.1574-6941.2010.01014.x

Osto, M. and Lutz, T. A. (2015). Translational value of animal models of obesity-Focus on dogs and cats. Eur J Pharmacol 759, 240–252. doi:10.1016/j.ejphar.2015.03.036

Oswald, H., Sharkey, M., Pade, D. et al. (2015). Canine gastrointestinal physiology: Breeds variations that can influence drug absorption. European Journal of Pharmaceutics and Biopharmaceutics 97, 192–203. doi:10.1016/j.ejpb.2015.09.009

Palerme, J.-S., Silverstone, A., Riedesel, E. A. et al. (2020). A pilot study on the effect of fat loading on the gastrointestinal tract of healthy dogs. J Small Anim Pract 61, 732–737. doi:10.1111/jsap.13216

Panasevich, M. R., Kerr, K. R., Serao, M. C. R. et al. (2015). Evaluation of soluble corn fiber on chemical composition and nitrogen-corrected true metabolizable energy and its effects on in vitro fermentation and in vivo responses in dogs. J Anim Sci 93, 2191–2200. doi:10.2527/jas.2014-8425

Panasevich, M. R., Rossoni Serao, M. C., de Godoy, M. R. C. et al. (2013). Potato fiber as a dietary fiber source in dog foods. J Anim Sci 91, 5344–5352. doi:10.2527/jas.2013-6842

Park, H.-J., Lee, S.-E., Kim, H.-B. et al. (2015). Association of Obesity with Serum Leptin, Adiponectin, and Serotonin and Gut Microflora in Beagle Dogs. J Vet Intern Med 29, 43–50. doi:10.1111/jvim.12455

Payne, A. N., Zihler, A., Chassard, C. et al. (2012). Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology 30, 17–25. doi:10.1016/j.tibtech.2011.06.011

Penazzi, L., Schiavone, A., Russo, N. et al. (2021). In vivo and in vitro Digestibility of an Extruded Complete Dog Food Containing Black Soldier Fly (Hermetia illucens) Larvae Meal as Protein Source. Front Vet Sci 8, 653411. doi:10.3389/fvets.2021.653411

Pereira, G. Q., Gomes, L. A., Santos, I. S. et al. (2018). Fecal microbiota transplantation in puppies with canine parvovirus infection. J Vet Intern Med 32, 707–711. doi:10.1111/jvim.15072

Phillips-Donaldson, D. (2019). Global pet food sales hit $91 billion in 2018. Petfoodindustry.com. Available at: https://www.petfoodindustry.com/articles/7899-global-pet-food-sales-hit-91-billion-in-2018

Pilla, R. and Suchodolski, J. S. (2020). The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front Vet Sci 6, 498. doi:10.3389/fvets.2019.00498

Propst, E. L., Flickinger, E. A., Bauer, L. L. et al. (2003). A dose-response experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, stool quality, and fecal protein catabolites in healthy adult dogs. J Anim Sci 81, 3057–3066. doi:10.2527/2003.81123057x

Raffan, E., Dennis, R. J., O’Donovan, C. J. et al. (2016). A Deletion in the Canine POMC Gene Is Associated with Weight and Appetite in Obesity-Prone Labrador Retriever Dogs. Cell Metab 23, 893–900. doi:10.1016/j.cmet.2016.04.012

Rahat-Rozenbloom, S., Fernandes, J., Gloor, G. B. et al. (2014). Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. International Journal of Obesity 38, 1525–1531. doi:10.1038/ijo.2014.46

Rana, S. V., Sharma, S., Malik, A. et al. (2013). Small intestinal bacterial overgrowth and orocecal transit time in patients of inflammatory bowel disease. Dig Dis Sci 58, 2594–2598. doi:10.1007/s10620-013-2694-x

Ricci, R., Perazzi, A., Badon, T. et al. (2018). Effect of storage on long-term stability of salivary α-amylase, lysozyme, lactate dehydrogenase, calcium and phosphorus in dogs. Vet J 242, 44–47. doi:10.1016/j.tvjl.2018.10.006

Ridlon, J. M., Kang, D. J., Hylemon, P. B. et al. (2014). Bile acids and the gut microbiome: Current Opinion in Gastroenterology 30, 332–338. doi:10.1097/MOG.0000000000000057

Robin, A. (2007). Les enterpathies excudatives chez le chien : actualités, diagnostiques et analyse retrospective de series de cas cliniques. Lyon: Université Claude Bernard.

Roussel, C., Cordonnier, C., Galia, W. et al. (2016). Increased EHEC survival and virulence gene expression indicate an enhanced pathogenicity upon simulated pediatric gastrointestinal conditions. Pediatr Res 80, 734–743. doi:10.1038/pr.2016.144

Roussel, C., De Paepe, K., Galia, W. et al. (2020). Spatial and temporal modulation of enterotoxigenic E. coli H10407 pathogenesis and interplay with microbiota in human gut models. BMC Biol 18, 141. doi:10.1186/s12915-020-00860-x

Russel, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique

Sagawa, K., Li, F., Liese, R. et al. (2009). Fed and fasted gastric pH and gastric residence time in conscious beagle dogs. Journal of Pharmaceutical Sciences 98, 2494–2500. doi:10.1002/jps.21602

Salas-Mani, A., Jeusette, I., Castillo, I. et al. (2018). Fecal microbiota composition changes after a BW loss diet in Beagle dogs. J Anim Sci 96, 3102–3111. doi:10.1093/jas/sky193

Sams, L., Paume, J., Giallo, J. et al. (2016). Relevant pH and lipase for in vitro models of gastric digestion. Food & Function 7, 30–45. doi:10.1039/C5FO00930H

Scarsella, E., Stefanon, B., Cintio, M. et al. (2020). Learning machine approach reveals microbial signatures of diet and sex in dog. PLoS ONE 15, e0237874. doi:10.1371/journal.pone.0237874

Schmidt, M., Unterer, S., Suchodolski, J. S. et al. (2018). The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets J. J. Loor (ed.),. PLoS ONE 13, e0201279. doi:10.1371/journal.pone.0201279

Schwizer, W., Steingötter, A., Fox, M. et al. (2002). Non-invasive measurement of gastric accommodation in humans. Gut 51 Suppl 1, i59-62. doi:10.1136/gut.51.suppl_1.i59

Shinchi, H., Takao, S., Fukura, K. et al. (1996). Gastric acid secretion and gastroduodenal pH after pancreaticogastrostomy in dogs. J Surg Res 61, 152–158. doi:10.1006/jsre.1996.0097

Simon, M. (2019). L’anxiété chez le chien, les répercussions sur le microbiote intestinal : intérêt de l’utilisation des probiotiques dans la prise en charge thérapeutique. Toulouse: Ecole Nationale Vétérinaire de Toulouse. Available at: https://oatao.univ-toulouse.fr/25833/

Simpson, K. W., Dogan, B., Rishniw, M. et al. (2006). Adherent and invasive Escherichia coli is associated with granulomatous colitis in boxer dogs. Infect Immun 74, 4778–4792. doi:10.1128/IAI.00067-06

Sjögren, E., Abrahamsson, B., Augustijns, P. et al. (2014). In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 57, 99–151. doi:10.1016/j.ejps.2014.02.010

Smeets-Peeters, M. (2000). Feeding FIDO: development, validation and application of a dynamic, in vitro model of the gastrointestinal tract of the dog. Wageningen University. Dissertation. https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-3635343534

Smeets-Peeters, M. J., Minekus, M., Havenaar, R. et al. (1999). Description of a dynamic in vitro model of the dog gastrointestinal tract and an evaluation of various transit times for protein and calcium. Altern Lab Anim 27, 935–949. doi:10.1177/026119299902700608

Smeets-Peeters, M., Watson, T., Minekus, M. et al. (1998). A review of the physiology of the canine digestive tract related to the development of in vitro systems. Nutrition Research Reviews 11, 45–69. doi:10.1079/NRR19980005

Smith, H. W. (1965). Observations on the flora of the alimentary tract of animals and factors affecting its composition. J Pathol 89, 95–122. doi:10.1002/path.1700890112

Souliman, S., Blanquet, S., Beyssac, E. et al. (2006). A level A in vitro/in vivo correlation in fasted and fed states using different methods: applied to solid immediate release oral dosage form. Eur J Pharm Sci 27, 72–79. doi:10.1016/j.ejps.2005.08.006

Suchodolski, J. S. (2011). Companion animals symposium: microbes and gastrointestinal health of dogs and cats. J Anim Sci 89, 1520–1530. doi:10.2527/jas.2010-3377

Suchodolski, J. S., Camacho, J. and Steiner, J. M. (2008). Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol Ecol 66, 567–578. doi:10.1111/j.1574-6941.2008.00521.x

Suchodolski, J. S., Dowd, S. E., Westermarck, E. et al. (2009). The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol 9, 210. doi:10.1186/1471-2180-9-210

Suchodolski, J. S., Dowd, S. E., Wilke, V. et al. (2012a). 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS ONE 7, e39333. doi:10.1371/journal.pone.0039333

Suchodolski, J. S., Markel, M. E., Garcia-Mazcorro, J. F. et al. (2012b). The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS ONE 7, e51907. doi:10.1371/journal.pone.0051907

Suchodolski, J. S., Xenoulis, P. G., Paddock, C. G. et al. (2010). Molecular analysis of the bacterial microbiota in duodenal biopsies from dogs with idiopathic inflammatory bowel disease. Vet Microbiol 142, 394–400. doi:10.1016/j.vetmic.2009.11.002

Sunvold, G. D., Fahey, G. C., Merchen, N. R. et al. (1995). In vitro fermentation of selected fibrous substrates by dog and cat fecal inoculum: influence of diet composition on substrate organic matter disappearance and short-chain fatty acid production. J Anim Sci 73, 1110-1122. doi:10.2527/1995.7341110x

Sunvold, G. D., Fahey, G. C., Merchen, N. R. et al. (1995). Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J Anim Sci 73, 1099–1109. doi:10.2527/1995.7341099x

Sunvold, G. D., Hussein, H. S., Fahey, G. C. et al. (1995). In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle. J Anim Sci 73, 3639–3648. doi:10.2527/1995.73123639x

Swanson, K. S., Dowd, S. E., Suchodolski, J. S. et al. (2011). Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J 5, 639–649. doi:10.1038/ismej.2010.162

Tanner, S. A., Zihler Berner, A., Rigozzi, E. et al. (2014). In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLoS One 9, e94123. doi:10.1371/journal.pone.0094123

Thakare, R., Alamoudi, J. A., Gautam, N. et al. (2018a). Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol 38, 1323–1335. doi:10.1002/jat.3644

Thakare, R., Alamoudi, J. A., Gautam, N. et al. (2018b). Species differences in bile acids II. Bile acid metabolism. J Appl Toxicol 38, 1336–1352. doi:10.1002/jat.3645

Theodorakis, M. C. (1980). External scintigraphy in measuring rate of gastric emptying in beagles. Am J Physiol 239, G39-43. doi:10.1152/ajpgi.1980.239.1.G39

Thuenemann, E. C., Mandalari, G., Rich, G. T. et al. (2015). Dynamic Gastric Model (DGM). In K. Verhoeckx, P. Cotter, I. López-Expósito, et al. (eds.), The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer. Available at: http://www.ncbi.nlm.nih.gov/books/NBK500144/ [Accessed November 19, 2020].

Tompkins, T. A., Mainville, I. and Arcand, Y. (2011). The impact of meals on a probiotic during transit through a model of the human upper gastrointestinal tract. Benef Microbes 2, 295–303. doi:10.3920/BM2011.0022

Traughber, Z. T., He, F., Hoke, J. M. et al. (2020). Chemical composition and in vitro fermentation characteristics of legumes using canine fecal inoculum. Transl Anim Sci 4, txaa200. doi:10.1093/tas/txaa200

Tvarijonaviciute, A., Ceron, J. J., Holden, S. L. et al. (2012). Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome. BMC Vet Res 8, 147. doi:10.1186/1746-6148-8-147

Tzortzis, G., Goulas, A. K., Baillon, M.-L. A. et al. (2004). In vitro evaluation of the fermentation properties of galactooligosaccharides synthesised by alpha-galactosidase from Lactobacillus reuteri. Appl Microbiol Biotechnol 64, 106–111. doi:10.1007/s00253-003-1427-z

Van de Wiele, T., Van den Abbeele, P., Ossieur, W. et al. (2015). The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). In K. Verhoeckx, P. Cotter, I. López-Expósito, et al. (eds.), The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer. Available at: http://www.ncbi.nlm.nih.gov/books/NBK500150/ [Accessed July 1, 2020].

Van den Abbeele, P., Grootaert, C., Possemiers, S. et al. (2009). In vitro model to study the modulation of the mucin-adhered bacterial community. Applied Microbiology and Biotechnology 83, 349–359. doi:10.1007/s00253-009-1947-2

Van den Abbeele, P., Moens, F., Pignataro, G. et al. (2020a). Yeast-Derived Formulations Are Differentially Fermented by the Canine and Feline Microbiome As Assessed in a Novel In Vitro Colonic Fermentation Model. J Agric Food Chem, acs.jafc.9b05085. doi:10.1021/acs.jafc.9b05085

Van den Abbeele, P., Duysburgh, C., Rakebrandt, M. et al. (2020b). Dried yeast cell walls high in beta-glucan and mannan-oligosaccharides positively affect microbial composition and activity in the canine gastrointestinal tract in vitro. J Anim Sci 98. doi:10.1093/jas/skaa173

Van den Abbeele, P., Taminiau, B., Pinheiro, I. et al. (2018). Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells. J Agric Food Chem 66, 1121–1130. doi:10.1021/acs.jafc.7b04611

van Zelst, M., Hesta, M., Alexander, L. G. et al. (2015). In vitro selenium accessibility in pet foods is affected by diet composition and type. Br J Nutr 113, 1888–1894. doi:10.1017/S0007114515001324

Verdier, C., Denis, S., Gasc, C. et al. (2021). An Oral FMT Capsule as Efficient as an Enema for Microbiota Reconstruction Following Disruption by Antibiotics, as Assessed in an In Vitro Human Gut Model. Microorganisms 9, 358. doi:10.3390/microorganisms9020358

Verstrepen, L., Van den Abbeele, P., Pignataro, G. et al. (2021). Inclusion of small intestinal absorption and simulated mucosal surfaces further improve the Mucosal Simulator of the Canine Intestinal Microbial Ecosystem (M-SCIMETM). Res Vet Sci 140, 100–108. doi:10.1016/j.rvsc.2021.08.011

Vierbaum, L., Eisenhauer, L., Vahjen, W. et al. (2019). In vitro evaluation of the effects of Yucca schidigera and inulin on the fermentation potential of the faecal microbiota of dogs fed diets with low or high protein concentrations. Arch Anim Nutr 73, 399–413. doi:10.1080/1745039X.2019.1616498

Wang, W.-X., Yan, G.-Z., Sun, F. et al. (2005). A non-invasive method for gastrointestinal parameter monitoring. World J Gastroenterol 11, 521–524. doi:10.3748/wjg.v11.i4.521

Warrit, K., Boscan, P., Ferguson, L. E. et al. (2017). Minimally invasive wireless motility capsule to study canine gastrointestinal motility and pH. The Veterinary Journal 227, 36–41. doi:10.1016/j.tvjl.2017.08.005

Washizu, T., Ishida, T., Washizu, M. et al. (1994). Changes in bile acid composition of serum and gallbladder bile in bile duct ligated dogs. J Vet Med Sci 56, 299–303. doi:10.1292/jvms.56.299

Weber, M. (2006). Influence of size on the dog’s digestive function. Bul de l’Ac Vét de France, 327. doi:10.4267/2042/47851

Weber, M. P., Biourge, V. C. and Nguyen, P. G. (2017). Digestive sensitivity varies according to size of dogs: a review. J Anim Physiol Anim Nutr (Berl) 101, 1–9. doi:10.1111/jpn.12507

Williams, B. A., Bosch, M. W., Boer, H. et al. (2005). An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Animal Feed Science and Technology 123–124, 445–462. doi:10.1016/j.anifeedsci.2005.04.031

Xenoulis, P. G., Palculict, B., Allenspach, K. et al. (2008). Molecular-phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiol Ecol 66, 579–589. doi:10.1111/j.1574-6941.2008.00556.x

Xu, J., Verbrugghe, A., Lourenço, M. et al. (2016). Does canine inflammatory bowel disease influence gut microbial profile and host metabolism? BMC Vet Res 12. doi:10.1186/s12917-016-0736-2

Xu, J., Verbrugghe, A., Lourenço, M. et al. (2017). The response of canine faecal microbiota to increased dietary protein is influenced by body condition. BMC Vet Res 13, 374. doi:10.1186/s12917-017-1276-0

You, I. and Kim, M. J. (2021). Comparison of Gut Microbiota of 96 Healthy Dogs by Individual Traits: Breed, Age, and Body Condition Score. Animals 11, 2432. doi:10.3390/ani11082432

Zeng, R., Zhang, Y. and Du, P. (2014). The SNPs of Melanocortin 4 Receptor (MC4R) Associated with Body Weight in Beagle Dogs. Exp Anim 63, 73–78. doi:10.1538/expanim.63.73

Zentek, J. and Meyer, H. (1995). Normal handling of diets--are all dogs created equal? J Small Anim Pract 36, 354–359. doi:10.1111/j.1748-5827.1995.tb02949.x

Zhang, Y., Jeon, M., Rich, L. J. et al. (2014). Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9, 631–638. doi:10.1038/nnano.2014.130