A novel coculture system for assessing respiratory sensitizing potential by IL-4 in T cells

Main Article Content

Izuru Mizoguchi
Yasuhiro Katahira
Shinya Inoue
Eri Sakamoto
Aruma Watanabe
Yuma Furusaka
Atsushi Irie
Satoru Senju
Yasuharu Nishimura
Shusaku Mizukami
Kenji Hirayama
Sou Nakamura
Koji Eto
Hideaki Hasegawa
Takayuki Yoshimoto


Although several in vitro assays that predict the sensitizing potential of chemicals have been developed, none can distinguish between chemical respiratory and skin sensitizers. Recently, we established a new three-dimensional dendritic cell (DC) coculture system consisting of a human airway epithelial cell line, immature DCs derived from human peripheral monocytes, and a human lung fibroblast cell line. In this coculture system, compared to typical skin sensitizers, typical respiratory sensitizers showed enhanced mRNA expression in DCs of the key costimulatory molecule OX40 ligand (OX40L), which is important for T helper 2 (Th2) cell differentiation. Herein, we established a new two-step DC/T cell coculture system by adding peripheral allogeneic naive CD4+ T cells to the DCs stimulated in the DC coculture system. In this DC/T cell coculture system, typical respiratory sensitizers but not skin sensitizers enhanced mRNA expression of the predominant Th2 marker interleukin-4 (IL-4) and its transcription factor GATA-binding protein 3. To improve the versatility, in place of peripheral monocytes, monocyte-derived proliferating cells called CD14-ML were also used in the DC coculture system. Similar to peripheral monocytes, enhanced mRNA expression of OX40L was observed by typical respiratory sensitizers compared to skin sensitizers. When these cell lines were applied to the DC/T cell coculture system with peripheral allogeneic naive CD4+ T cells, typical respiratory sensitizers but not skin sensitizers enhanced the mRNA expression of IL-4. Thus, this DC/T cell coculture system might be useful for discriminating between respiratory and skin sensitizers by differential mRNA upregulation of IL-4 in T cells.

Article Details

How to Cite
Mizoguchi, I., Katahira, Y., Inoue, S., Sakamoto, E. ., Watanabe, A., Furusaka, Y., Irie, A., Senju, S., Nishimura, Y., Mizukami, S., Hirayama, K., Nakamura, S., Eto, K., Hasegawa, H. . and Yoshimoto, T. (2022) “A novel coculture system for assessing respiratory sensitizing potential by IL-4 in T cells”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2111181.

Adenuga, D., Woolhiser, M. R., Gollapudi, B. B. et al. (2012). Differential gene expression responses distinguish contact and respiratory sensitizers and nonsensitizing irritants in the local lymph node assay. Toxicol Sci 126, 413-425. doi:10.1093/toxsci/kfs071

Arts, J. (2020). How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health 225, 113469. doi:10.1016/j.ijheh.2020.113469

Arts, J. H., de Jong, W. H., van Triel, J. J. et al. (2008). The respiratory local lymph node assay as a tool to study respiratory sensitizers. Toxicol Sci 106, 423-434. doi:10.1093/toxsci/kfn199

Ashikaga, T., Yoshida, Y., Hirota, M. et al. (2006). Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro 20, 767-773. doi:10.1016/j.tiv.2005.10.012

Balharry, D., Sexton, K., BeruBe, K. A. (2008). An in vitro approach to assess the toxicity of inhaled tobacco smoke components: nicotine, cadmium, formaldehyde and urethane. Toxicology 244, 66-76. doi:10.1016/j.tox.2007.11.001

Banchereau, J., Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252. doi:10.1038/32588

Bendfeldt, H., Benary, M., Scheel, T. et al. (2012). Stable IL-2 decision making by endogenous c-Fos amounts in peripheral memory T-helper cells. J Biol Chem 287, 18386-18397. doi:10.1074/jbc.M112.358853

Chackerian, A. A., Oldham, E. R., Murphy, E. E. et al. (2007). IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol 179, 2551-2555. doi:10.4049/jimmunol.179.4.2551

Chipinda, I., Hettick, J. M., Siegel, P. D. (2011). Haptenation: chemical reactivity and protein binding. J Allergy (Cairo) 2011, 839682. doi:10.1155/2011/839682

De Jong, W. H., Arts, J. H., De Klerk, A. et al. (2009). Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure. Toxicology 261, 103-111. doi:10.1016/j.tox.2009.04.057

Dearman, R. J., Basketter, D. A., Kimber, I. (1995). Differential cytokine production following chronic exposure of mice to chemical respiratory and contact allergens. Immunology 86, 545-550.

Furue, M., Furue, M. (2021). OX40L-OX40 Signaling in Atopic Dermatitis. J Clin Med 10. doi:10.3390/jcm10122578

Gerberick, G. F., Vassallo, J. D., Bailey, R. E. et al. (2004). Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81, 332-343. doi:10.1093/toxsci/kfh213

Goutet, M., Pepin, E., Langonne, I. et al. (2012). Identification of contact and respiratory sensitizers according to IL-4 receptor alpha expression and IL-2 production. Toxicol Appl Pharmacol 260, 95-104. doi:10.1016/j.taap.2012.02.009

Haruta, M., Tomita, Y., Imamura, Y. et al. (2013). Generation of a large number of functional dendritic cells from human monocytes expanded by forced expression of cMYC plus BMI1. Hum Immunol 74, 1400-1408. doi:10.1016/j.humimm.2013.05.017

Huang, S., Wiszniewski, L., Constant, S. et al. (2013). Potential of in vitro reconstituted 3D human airway epithelia (MucilAir) to assess respiratory sensitizers. Toxicol In Vitro 27, 1151-1156. doi:10.1016/j.tiv.2012.10.010

Imamura, Y., Haruta, M., Tomita, Y. et al. (2016). Generation of Large Numbers of Antigen-Expressing Human Dendritic Cells Using CD14-ML Technology. PLoS One 11, e0152384. doi:10.1371/journal.pone.0152384

Ito, T., Wang, Y. H., Duramad, O. et al. (2005). TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 202, 1213-1223. doi:10.1084/jem.20051135

Jacobs, J. P., Jones, C. M., Baille, J. P. (1970). Characteristics of a human diploid cell designated MRC-5. Nature 227, 168-170. doi:10.1038/227168a0

Kimber, I., Dearman, R. J., Scholes, E. W. et al. (1994). The local lymph node assay: developments and applications. Toxicology 93, 13-31. doi:10.1016/0300-483x(94)90193-7

Kimber, I., Poole, A., Basketter, D. A. (2018). Skin and respiratory chemical allergy: confluence and divergence in a hybrid adverse outcome pathway. Toxicol Res (Camb) 7, 586-605. doi:10.1039/c7tx00272f

Kimura, Y., Fujimura, C., Ito, Y. et al. (2015). Optimization of the IL-8 Luc assay as an in vitro test for skin sensitization. Toxicol In Vitro 29, 1816-1830. doi:10.1016/j.tiv.2015.07.006

Knight, E., Murray, B., Carnachan, R. et al. (2011). Alvetex(R): polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol 695, 323-340. doi:10.1007/978-1-60761-984-0_20

Lakkis, F. G., Lechler, R. I. (2013). Origin and biology of the allogeneic response. Cold Spring Harb Perspect Med 3. doi:10.1101/cshperspect.a014993

MacKay, C., Davies, M., Summerfield, V. et al. (2013). From pathways to people: applying the adverse outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX 30, 473-486. doi:10.14573/altex.2013.4.473

Mizoguchi, I., Ohashi, M., Chiba, Y. et al. (2017). Prediction of Chemical Respiratory and Contact Sensitizers by OX40L Expression in Dendritic Cells Using a Novel 3D Coculture System. Front Immunol 8, 929. doi:10.3389/fimmu.2017.00929

Natsch, A., Emter, R. (2016). Nrf2 activation as a key event triggered by skin sensitisers: The development of the stable KeratinoSens reporter gene assay. Altern Lab Anim 44, 443-451. doi:10.1177/026119291604400513

North, C. M., Ezendam, J., Hotchkiss, J. A. et al. (2016). Developing a framework for assessing chemical respiratory sensitization: A workshop report. Regul Toxicol Pharmacol 80, 295-309. doi:10.1016/j.yrtph.2016.06.006

Pandey, A., Ozaki, K., Baumann, H. et al. (2000). Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 1, 59-64. doi:10.1038/76923

Parkinson, E., Aleksic, M., Cubberley, R. et al. (2018). Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci 162, 429-438. doi:10.1093/toxsci/kfx265

Paul, W. E. (2015). History of interleukin-4. Cytokine 75, 3-7. doi:10.1016/j.cyto.2015.01.038

Reddel, R. R., Ke, Y., Gerwin, B. I. et al. (1988). Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res 48, 1904-1909.

Richter, A., Schmucker, S. S., Esser, P. R. et al. (2013). Human T cell priming assay (hTCPA) for the identification of contact allergens based on naive T cells and DC--IFN-gamma and TNF-alpha readout. Toxicol In Vitro 27, 1180-1185. doi:10.1016/j.tiv.2012.08.007

Rickel, E. A., Siegel, L. A., Yoon, B. R. et al. (2008). Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol 181, 4299-4310. doi:10.4049/jimmunol.181.6.4299

Roan, F., Obata-Ninomiya, K., Ziegler, S. F. (2019). Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest 129, 1441-1451. doi:10.1172/JCI124606

Roggen, E. L. (2014). In vitro approaches for detection of chemical sensitization. Basic Clin Pharmacol Toxicol 115, 32-40. doi:10.1111/bcpt.12202

Sherman, L. A., Chattopadhyay, S. (1993). The molecular basis of allorecognition. Annu Rev Immunol 11, 385-402. doi:10.1146/annurev.iy.11.040193.002125

Sullivan, K. M., Enoch, S. J., Ezendam, J. et al. (2017). An Adverse Outcome Pathway for Sensitization of the Respiratory Tract by Low-Molecular-Weight Chemicals: Building Evidence to Support the Utility of In Vitro and In Silico Methods in a Regulatory Context. Appl Vitro Toxicol, 3. doi:org/10.1089/aivt.2017.0010

Szabo, S. J., Kim, S. T., Costa, G. L. et al. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669. doi:10.1016/s0092-8674(00)80702-3

Tarlo, S. M., Lemiere, C. (2014). Occupational asthma. N Engl J Med 370, 640-649. doi:10.1056/NEJMra1301758

van Vliet, E., Kuhnl, J., Goebel, C. et al. (2018). State-of-the-art and new options to assess T cell activation by skin sensitizers: Cosmetics Europe Workshop. ALTEX 35, 179-192. doi:10.14573/altex.1709011

Vandebriel, R. J., De Jong, W. H., Spiekstra, S. W. et al. (2000). Assessment of preferential T-helper 1 or T-helper 2 induction by low molecular weight compounds using the local lymph node assay in conjunction with RT-PCR and ELISA for interferon-gamma and interleukin-4. Toxicol Appl Pharmacol 162, 77-85. doi:10.1006/taap.1999.8841

Vocanson, M., Achachi, A., Mutez, V. et al. (2014). Human T cell priming assay: depletion of peripheral blood lymphocytes in CD25(+) cells improves the in vitro detection of weak allergen-specific T cells. Exp Suppl 104, 89-100. doi:10.1007/978-3-0348-0726-5_7

Weninger, W., von Andrian, U. H. (2003). Chemokine regulation of naive T cell traffic in health and disease. Semin Immunol 15, 257-270. doi:10.1016/j.smim.2003.08.007

Zhou, M., Ouyang, W. (2003). The function role of GATA-3 in Th1 and Th2 differentiation. Immunol Res 28, 25-37. doi:10.1385/IR:28:1:25

Zhu, J. (2015). T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 75, 14-24. doi:10.1016/j.cyto.2015.05.010

Ziegler, S. F., Roan, F., Bell, B. D. et al. (2013). The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol 66, 129-155. doi:10.1016/B978-0-12-404717-4.00004-4