Integrated skin sensitization assessment based on OECD methods (II): Hazard and potency by combining kinetic peptide reactivity and the “2 out of 3” defined approach
Main Article Content
Abstract
Depending on regulatory requirements, the skin sensitization risk for new chemicals with potential consumer skin contact must be assessed by experimental testing by (i) binary hazard assessment to identify sensitizers, (ii) subclassification of sensitizers according to the Global Harmonized System (GHS), and (iii) derivation of a point of departure (PoD) for risk assessment. The Organisation for Economic Co-operation and Development (OECD) recently published a test guideline incorporating the “2 out of 3” defined approach (2o3 DA) for skin sensitization hazard assessment and added the kinetic direct peptide reactivity assay (kDPRA) as a stand-alone test guideline method for GHS subclassification. The 2o3 DA requires that at least two in vitro tests are conducted. The cell-based tests and the kDPRA generate, next to a binary outcome with a fixed threshold, continuous concentration-response data, which can be used in quantitative regression models to derive a PoD. The sequence of testing for the 2o3 DA is flexible. Here we compare different testing sequences and how they can be combined with kDPRA data to provide a PoD in parallel to hazard identification (hazard ID) and GHS subclassification. A set of 188 chemicals with available in vitro data was evaluated for the final PoD using these different testing sequences. The results indicate that testing can start with DPRA / kDPRA and either of the cell-based assays, and that testing can stop after two congruent tests without major impact on the final PoD for chemicals within the applicability domain of the kDPRA.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Api, A. M., Parakhia, R., O’Brien, D. et al. (2017). Fragrances categorized according to relative human skin sensitization potency. Dermatitis 28, 299-307. doi:10.1097/DER.0000000000000304
Api, A. M., Basketter, D., Bridges, J. et al. (2020). Updating exposure assessment for skin sensitization quantitative risk assessment for fragrance materials. Regul Toxicol Pharmacol 118, 104805. doi:10.1016/j.yrtph.2020.104805
Basketter, D. A., Alépée, N., Ashikaga, T. et al. (2014). Categorization of chemicals according to their relative human skin sensitizing potency. Dermatitis 25, 11-21. doi:10.1097/DER.0000000000000003
Bauch, C., Kolle, S. N., Ramirez, T. et al. (2012). Putting the parts together: Combining in vitro methods to test for skin sensitizing potentials. Regul Toxicol Pharmacol 63, 489-504. doi:10.1016/j.yrtph.2012.05.013
Bernauer, U., Bodin, L., Chaudhry, Q. et al. (2021). The SCCS Notes of Guidance for the testing of cosmetic ingredients and their safety evaluation, 11th revision, 30-31 March 2021, SCCS/1628/21. Regul Toxicol Pharmacol 127, 105052. doi:10.1016/j.yrtph.2021.105052
Del Bufalo, A., Pauloin, T., Alépée, N. et al. (2018). Alternative integrated testing for skin sensitization: Assuring consumer safety. Appl In Vitro Toxicol 4, 30-43. doi:10.1089/aivt.2017.0023
Dent, M., Amaral, R. T., Da Silva, P. A. et al. (2018). Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput Toxicol 7, 20-26. doi:10.1016/j.comtox.2018.06.001
Dumont, C., Barroso, J., Matys, I. et al. (2016). Analysis of the local lymph node assay (LLNA) variability for assessing the prediction of skin sensitisation potential and potency of chemicals with non-animal approaches. Toxicol In Vitro 34, 220-228. doi:10.1016/j.tiv.2016.04.008
Ezendam, J., Braakhuis, H. M. and Vandebriel, R. J. (2016). State of the art in non-animal approaches for skin sensitization testing: From individual test methods towards testing strategies. Arch Toxicol 90, 2861-2883. doi:10.1007/s00204-016-1842-4
Gabbert, S., Mathea, M., Kolle, S. N. et al. (2020). Accounting for precision uncertainty of toxicity testing: Methods to define borderline ranges and implications for hazard assessment of chemicals. Risk Anal 42, 224-238. doi:10.1111/risa.13648
Gilmour, N., Kern, P. S., Alépée, N. et al. (2020). Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol 116, 104721. doi:10.1016/j.yrtph.2020.104721
Hirota, M., Ashikaga, T. and Kouzuki, H. (2018). Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens and in silico structure alert parameter. J Appl Toxicol 38, 514-526. doi:10.1002/jat.3558
Hoffmann, S. (2015). LLNA variability: An essential ingredient for a comprehensive assessment of non-animal skin sensitization test methods and strategies. ALTEX 32, 379-383. doi:10.14573/altex.1505051
Hoffmann, S., Kleinstreuer, N., Alépée, N. et al. (2018). Non-animal methods to predict skin sensitization (I): The cosmetics Europe database. Crit Rev Toxicol 48, 344-358. doi:10.1080/10408444.2018.1429385
Jaworska, J. S., Natsch, A., Ryan, C. et al. (2015). Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: A decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol 89, 2355-2383. doi:10.1007/s00204-015-1634-2
Kleinstreuer, N. C., Hoffmann, S., Alépée, N. et al. (2018). Non-animal methods to predict skin sensitization (II): An assessment of defined approaches*. Crit Rev Toxicol 48, 359-374. doi:10.1080/10408444.2018.1429386
Kolle, S. N., Landsiedel, R. and Natsch, A. (2020). Replacing the refinement for skin sensitization testing: Considerations to the implementation of adverse outcome pathway (AOP)-based defined approaches (DA) in OECD guidelines. Regul Toxicol Pharmacol 115, 104713. doi:10.1016/j.yrtph.2020.104713
Leontaridou, M., Urbisch, D., Kolle, S. N. et al. (2017). The borderline range of toxicological methods: Quantification and implications for evaluating precision. ALTEX 34, 525-538. doi:10.14573/altex.1606271
Macmillan, D. S. and Chilton, M. L. (2019). A defined approach for predicting skin sensitisation hazard and potency based on the guided integration of in silico, in chemico and in vitro data using exclusion criteria. Regul Toxicol Pharmacol 101, 35-47. doi:10.1016/j.yrtph.2018.11.001
Natsch, A., Emter, R., Gfeller, H. et al. (2015). Predicting skin sensitizer potency based on in vitro data from KeratinoSens and kinetic peptide binding: Global versus domain-based assessment. Toxicol Sci 143, 319-332. doi:10.1093/toxsci/kfu229
Natsch, A., Emter, R., Haupt, T. et al. (2018). Deriving a no expected sensitization induction level for fragrance ingredients without animal testing: An integrated approach applied to specific case studies. Toxicol Sci 165, 170-185. doi:10.1093/toxsci/kfy135
Natsch, A., Haupt, T., Wareing, B. et al. (2020). Predictivity of the kinetic direct peptide reactivity assay (kDPRA) for sensitizer potency assessment and GHS subclassification. ALTEX 37, 652-664. doi:10.14573/altex.2004292
Natsch, A., Landsiedel, R. and Kolle, S. N. (2021). A triangular approach for the validation of new approach methods for skin sensitization. ALTEX 38, 669-677. doi:10.14573/altex.2105111
Natsch, A. and Gerberick, G. F. (2022). Integrated skin sensitization assessment based on OECD methods (I): Deriving a point of departure for risk assessment. ALTEX 39, 636-646. doi:10.14573/altex.2201141
OECD (2014). The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins. OECD Series on Testing and Assessment, No. 168. OECD Publishing, Paris. doi:10.1787/9789264221444-en
OECD (2018a). Test No. 442D: In Vitro Skin Sensitisation: ARE-Nrf2 Luciferase Test Method. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1787/9789264229822-en
OECD (2018b). Test No. 442E: In Vitro Skin Sensitisation: In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation. OECD Testing Guidelines. doi:10.1787/9789264264359-en
OECD (2021a). Guideline No. 497: Defined Approaches on Skin Sensitisation. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi:10.1177/026119290703500311
OECD (2021b). Test No. 442C: In Chemico Skin Sensitisation Assays addressing the Adverse Outcome Pathway, key event on covalent binding to proteins. OECD Testing Guidelines. doi:10.1787/9789264229709-en
OECD (2021c). Series on Testing and Assessment No. 336: Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation – Annex 2. OECD Publishing, Paris. https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
OECD (2021d). Series on Testing and Assessment No. 336: Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation – Annex 3. OECD, Paris. https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
OECD (2021e). Series on Testing and Assessment No. 336: Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation – Annex 4. OECD, Paris. https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
Strickland, J., Zang, Q., Paris, M. et al. (2017). Multivariate models for prediction of human skin sensitization hazard. J Appl Toxicol 37, 347-360. doi:10.1002/jat.3366
Takenouchi, O., Fukui, S., Okamoto, K. et al. (2015). Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J Appl Toxicol 35, 1318-1332. doi:10.1002/jat.3127
Urbisch, D., Mehling, A., Guth, K. et al. (2015). Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 71, 337-51. doi:10.1016/j.yrtph.2014.12.008
Wareing, B., Kolle, S. N., Birk, B. et al. (2020). The kinetic direct peptide reactivity assay (kDPRA): Intra- and inter-laboratory reproducibility in a seven-laboratory ring trial. ALTEX 37, 639-651. doi:10.14573/altex.2004291