Evaluation of 147 perfluoroalkyl substances for immunotoxic and other (patho)physiological activities through phenotypic screening of human primary cells

Main Article Content

Keith A. Houck
Katie Paul Friedman
Madison Feshuk
Grace Patlewicz
Marci Smeltz
M. Scott Clifton
Barbara A. Wetmore
Sharlene Velichko
Antal Berenyi
Ellen L. Berg

Abstract

A structurally diverse set of 147 per- and polyfluoroalkyl substances (PFAS) were screened in a panel of 12 human primary cell systems, measuring 148 biomarkers relevant to (patho)physiological pathways to inform hypotheses about potential mechanistic effects of data-poor PFAS in human model systems. This analysis focused on immunosuppressive activity, which was previously reported as an in vivo effect of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), by comparing PFAS responses to four pharmacological immunosuppressants. The PFOS response profile had little correlation with reference immunosuppressants, suggesting in vivo activity does not occur by similar mechanisms. The PFOA response profile did share features with the profile of dexamethasone although some distinct features were lacking. Other PFAS, including 2,2,3,3-tetrafluoropropyl acrylate, demonstrated more similarity to the reference immunosuppressants but with additional activities not found in the reference immunosuppressive drugs. Correlation of PFAS profiles with a database of environmental chemical responses and pharmacological probes identified potential mechanisms of bioactivity for some PFAS, including responses similar to ubiquitin ligase inhibitors, deubiquitylating enzyme (DUB) inhibitors, and thioredoxin reductase inhibitors. Approximately 21% of the 147 PFAS with confirmed sample quality were bioactive at nominal testing concentrations in the 1-60 micromolar range in these human primary cell systems. These data provide new hypotheses for mechanisms of action for a subset of PFAS and may further aid in development of a PFAS categorization strategy useful in safety assessment.

Article Details

How to Cite
Houck, K., Paul Friedman, K., Feshuk, M., Patlewicz, G., Smeltz, M., Clifton, M. S., Wetmore, B. A., Velichko, S., Berenyi, A. and Berg, E. L. (2022) “Evaluation of 147 perfluoroalkyl substances for immunotoxic and other (patho)physiological activities through phenotypic screening of human primary cells”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2203041.
Section
Articles
References

Agency, E. C. (2014). REACH, PROPOSAL FOR A RESTRICTION – Perfluorooctanoic acid (PFOA), PFOA salts and PFOA-related substances. Available at: https://echa.europa.eu/documents/10162/e9cddee6-3164-473d-b590-8fcf9caa50e7.

Agency, U. S. E. P. (2019). EPA’s Per- and Polyfluoroalkyl Substances (PFAS) Action Plan. Available at: https://www.epa.gov/pfas/epas-pfas-action-plan. Accessed 03/01/20.

Ahmed, S. A., Gogal, R. M., Jr., and Walsh, J. E. (1994). A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. Journal of immunological methods 170(2), 211-24.

Andersen, K. M., Madsen, L., Prag, S., Johnsen, A. H., Semple, C. A., Hendil, K. B., and Hartmann-Petersen, R. (2009). Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome. The Journal of biological chemistry 284(22), 15246-15254.

Armitage, J. M., Wania, F., and Arnot, J. A. (2014). Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ Sci Technol 48(16), 9770-9.

Berg, E. L. (2019). Human Cell-Based in vitro Phenotypic Profiling for Drug Safety-Related Attrition. Frontiers in Big Data 2(47)(Perspective).

Berg, E. L., Kunkel, E. J., Hytopoulos, E., and Plavec, I. (2006). Characterization of compound mechanisms and secondary activities by BioMAP analysis. Journal of Pharmacological and Toxicological Methods 53(1), 67-74.

Berg, E. L., Yang, J., and Polokoff, M. A. (2013). Building predictive models for mechanism-of-action classification from phenotypic assay data sets. J Biomol Screen 18(10), 1260-9.

Bertino, J. R. (1973). Chemical action and pharmacology of methotrexate, azathioprine and cyclophosphamide in man. Arthritis and rheumatism 16(1), 79-83.

Betts, B. C., Bastian, D., Iamsawat, S., Nguyen, H., Heinrichs, J. L., Wu, Y., Daenthanasanmak, A., Veerapathran, A., O'Mahony, A., Walton, K., et al. (2018). Targeting JAK2 reduces GVHD and xenograft rejection through regulation of T cell differentiation. Proc Natl Acad Sci U S A 115(7), 1582-1587.

Bjork, J. A., Lau, C., Chang, S. C., Butenhoff, J. L., and Wallace, K. B. (2008). Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology 251(1), 8-20.

Bjork, J. A., and Wallace, K. B. (2009). Structure-Activity Relationships and Human Relevance for Perfluoroalkyl Acid–Induced Transcriptional Activation of Peroxisome Proliferation in Liver Cell Cultures. Toxicological Sciences 111(1), 89-99.

Bonvini, P., Zorzi, E., Basso, G., and Rosolen, A. (2007). Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia 21(4), 838-842.

CDC (2019). Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables, January 2019, Volume One. In (C. f. D. C. a. P. U. S. D. o. H. a. H. Services, Ed.).

Christofides, A., Konstantinidou, E., Jani, C., and Boussiotis, V. A. (2021). The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 114, 154338.

Convention, S. (2017). United Nations Environment Program's Stockholm Convention on Persistent Organic Pollutants. In (U. Nations, Ed.), Vol. Annex A and B.

Cooperation, O. f. E. D. a. (2015). Risk Reduction Approaches for PFASs--A Cross-Country Analysis, ParisSerties Risk Reduction Approaches for PFASs--A Cross-Country Analysis.

Corsini, E., Luebke, R. W., Germolec, D. R., and DeWitt, J. C. (2014). Perfluorinated compounds: emerging POPs with potential immunotoxicity. Toxicol Lett 230(2), 263-70.

Corton, J. C., Peters, J. M., and Klaunig, J. E. (2018). The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Arch Toxicol 92(1), 83-119.

Cousins, I. T., Ng, C. A., Wang, Z., and Scheringer, M. (2019). Why is high persistence alone a major cause of concern? Environmental Science: Processes & Impacts 21(5), 781-792 (10.1039/C8EM00515J).

De Filippis, B., Agamennone, M., Ammazzalorso, A., Bruno, I., D'Angelo, A., Di Matteo, M., Fantacuzzi, M., Giampietro, L., Giancristofaro, A., Maccallini, C., et al. (2015). PPARα agonists based on stilbene and its bioisosteres: biological evaluation and docking studies. MedChemComm 6(8), 1513-1517 (10.1039/C5MD00151J).

EFSA (2020). Risk to human health related to the presence of perfluoroalkyl substances in food. In (E. P. o. C. i. t. F. Chain, Ed.), Vol. 18. EFSA Journal.

EPA, U. S. (2017). Long-Chain Perfluoroalkyl Carboxylate and Perfluoroalkyl Sulfonate Chemical Substances; Significant New Use Rule. Retreived from: https://www.reginfo.gov/public/do/eAgendaViewRule?pubId=201710&RIN=2070-AJ99.

EPA, U. S. (2021). National PFAS Testing Strategy: Identification of Candidate Per- and Poly-fluoroalkyl Substances (PFAS) for Testing. In (Washington, DC.

EPA, U. S. (2000). Perfluorooctyl Sulfonates; Proposed Significant New Use Rule. . Retrieved from https://www.gpo.gov/fdsys/pkg/FR-2000-10-18/pdf/00-26751.pdf.

Facciotti, F., Larghi, P., Bosotti, R., Vasco, C., Gagliani, N., Cordiglieri, C., Mazzara, S., Ranzani, V., Rottoli, E., Curti, S., et al. (2020). Evidence for a pathogenic role of extrafollicular, IL-10-producing CCR6(+)B helper T cells in systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America 117(13), 7305-7316.

Filer, D. L., Kothiya, P., Setzer, R. W., Judson, R. S., and Martin, M. T. (2017). tcpl: the ToxCast pipeline for high-throughput screening data. Bioinformatics 33(4), 618-620.

Fink, E. E., Mannava, S., Bagati, A., Bianchi-Smiraglia, A., Nair, J. R., Moparthy, K., Lipchick, B. C., Drokov, M., Utley, A., Ross, J., et al. (2016). Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia 30(1), 104-111.

Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodríguez De Fonseca, F., Rosengarth, A., Luecke, H., Di Giacomo, B., Tarzia, G., et al. (2003). Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425(6953), 90-3.

Gaballah, S., Swank, A., Sobus, J. R., Howey, X. M., Schmid, J., Catron, T., McCord, J., Hines, E., Strynar, M., and Tal, T. (2020). Evaluation of Developmental Toxicity, Developmental Neurotoxicity, and Tissue Dose in Zebrafish Exposed to GenX and Other PFAS. Environmental health perspectives 128(4), 47005.

Gerçel-Taylor, C., Ackermann, M. A., and Taylor, D. D. (2001). Evaluation of cell proliferation and cell death based assays in chemosensitivity testing. Anticancer research 21(4a), 2761-8.

Griffith, E. C., Su, Z., Niwayama, S., Ramsay, C. A., Chang, Y. H., and Liu, J. O. (1998). Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proceedings of the National Academy of Sciences of the United States of America 95(26), 15183-15188.

Grulke, C. M., Williams, A. J., Thillainadarajah, I., and Richard, A. M. (2019). EPA's DSSTox database: History of development of a curated chemistry resource supporting computation toxicology research. Computational Toxicology 12.

Halloran, P. F., Helms, L. M., Kung, L., and Noujaim, J. (1999). The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation 68(9), 1356-61.

Hammitzsch, A., Tallant, C., Fedorov, O., O'Mahony, A., Brennan, P. E., Hay, D. A., Martinez, F. O., Al-Mossawi, M. H., de Wit, J., Vecellio, M., et al. (2015). CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci U S A 112(34), 10768-73.

Houck, K. A., Dix, D. J., Judson, R. S., Kavlock, R. J., Yang, J., and Berg, E. L. (2009). Profiling bioactivity of the ToxCast chemical library using BioMAP primary human cell systems. J Biomol Screen 14(9), 1054-66.

Hungria, V. T. M., Crusoé, E. Q., Bittencourt, R. I., Maiolino, A., Magalhães, R. J. P., Sobrinho, J. D. N., Pinto, J. V., Fortes, R. C., Moreira, E. S., and Tanaka, P. Y. (2019). New proteasome inhibitors in the treatment of multiple myeloma. Hematol Transfus Cell Ther 41(1), 76-83.

Itoh, K., Inoue, T., Ito, K., and Hirohata, S. (1994). The interplay of interleukin-10 (IL-10) and interleukin-2 (IL-2) in humoral immune responses: IL-10 synergizes with IL-2 to enhance responses of human B lymphocytes in a mechanism which is different from upregulation of CD25 expression. Cell Immunol 157(2), 478-88.

Ji, C. H., and Kwon, Y. T. (2017). Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Molecules and cells 40(7), 441-449.

Kapetanovic, M. C., Nagel, J., Nordström, I., Saxne, T., Geborek, P., and Rudin, A. (2017). Methotrexate reduces vaccine-specific immunoglobulin levels but not numbers of circulating antibody-producing B cells in rheumatoid arthritis after vaccination with a conjugate pneumococcal vaccine. Vaccine 35(6), 903-908.

Khalesi, N., Korani, S., Korani, M., Johnston, T. P., and Sahebkar, A. (2021). Bortezomib: a proteasome inhibitor for the treatment of autoimmune diseases. Inflammopharmacology 29(5), 1291-1306.

Kisselev, A. F., and Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology 8(8), 739-758.

Kleinstreuer, N. C., Yang, J., Berg, E. L., Knudsen, T. B., Richard, A. M., Martin, M. T., Reif, D. M., Judson, R. S., Polokoff, M., Dix, D. J., et al. (2014). Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol 32(6), 583-91.

Knight, S. D., Adams, N. D., Burgess, J. L., Chaudhari, A. M., Darcy, M. G., Donatelli, C. A., Luengo, J. I., Newlander, K. A., Parrish, C. A., Ridgers, L. H., et al. (2010). Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. ACS Medicinal Chemistry Letters 1(1), 39-43.

Kumon, Y., Suehiro, T., Hashimoto, K., and Sipe, J. D. (2001). Dexamethasone, but not IL-1 alone, upregulates acute-phase serum amyloid A gene expression and production by cultured human aortic smooth muscle cells. Scandinavian journal of immunology 53(1), 7-12.

Kunkel, E. J., Dea, M., Ebens, A., Hytopoulos, E., Melrose, J., Nguyen, D., Ota, K. S., Plavec, I., Wang, Y., Watson, S. R., et al. (2004a). An integrative biology approach for analysis of drug action in models of human vascular inflammation. FASEB J 18(11), 1279-81.

Kunkel, E. J., Plavec, I., Nguyen, D., Melrose, J., Rosler, E. S., Kao, L. T., Wang, Y., Hytopoulos, E., Bishop, A. C., Bateman, R., et al. (2004b). Rapid structure-activity and selectivity analysis of kinase inhibitors by BioMAP analysis in complex human primary cell-based models. Assay and drug development technologies 2(4), 431-41.

Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., and Seed, J. (2007). Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings. Toxicological Sciences 99(2), 366-394.

Lee, C. R., Chun, J. N., Kim, S.-Y., Park, S., Kim, S.-H., Park, E.-J., Kim, I.-S., Cho, N.-H., Kim, I.-G., So, I., et al. (2012). Cyclosporin A suppresses prostate cancer cell growth through CaMKKβ/AMPK-mediated inhibition of mTORC1 signaling. Biochemical Pharmacology 84(4), 425-431.

Levitt, D., and Liss, A. (1986). Toxicity of perfluorinated fatty acids for human and murine B cell lines. Toxicology and applied pharmacology 86(1), 1-11.

Levy, J., Barnett, E. V., MacDonald, N. S., Klinenberg, J. R., and Pearson, C. M. (1972). The effect of azathioprine on gammaglobulin synthesis in man. The Journal of clinical investigation 51(9), 2233-8.

Liberatore, H. K., Jackson, S. R., Strynar, M. J., and McCord, J. P. (2020). Solvent Suitability for HFPO-DA (“GenX” Parent Acid) in Toxicological Studies. Environmental Science & Technology Letters 7(7), 477-481.

Loveless, S. E., Hoban, D., Sykes, G., Frame, S. R., and Everds, N. E. (2008). Evaluation of the immune system in rats and mice administered linear ammonium perfluorooctanoate. Toxicol Sci 105(1), 86-96.

Matsuda, S., and Koyasu, S. (2000). Mechanisms of action of cyclosporine. Immunopharmacology 47(2), 119-125.

Melton, A. C., Melrose, J., Alajoki, L., Privat, S., Cho, H., Brown, N., Plavec, A. M., Nguyen, D., Johnston, E. D., Yang, J., et al. (2013). Regulation of IL-17A production is distinct from IL-17F in a primary human cell co-culture model of T cell-mediated B cell activation. PLoS One 8(3), e58966.

NTP (2016). NTP Monograph: Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid or Perfluorooctane Sulfonate. In (O. o. H. A. a. T. D. o. t. N. T. P. N. I. o. E. H. S. N. I. o. H. U. D. o. H. a. H. Services, Ed.).

O'Mahony, A., John, M. R., Cho, H., Hashizume, M., and Choy, E. H. (2018). Discriminating phenotypic signatures identified for tocilizumab, adalimumab, and tofacitinib monotherapy and their combinations with methotrexate. J Transl Med 16(1), 156.

OECD (2018). Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): Summary report on updating the OECD 2007 list of per- and polyfluoroalkyl substances (PFASs). In (E. Directorate, Ed.), Vol. Series on Risk Management No. 39. Joint Meeting of the Chemicals Committee and the Working Party on Cheimcals, Pesticides, and Biotechnology.

Ojo, A. F., Peng, C., and Ng, J. C. (2020). Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. Journal of hazardous materials 407, 124863.

Patlewicz, G., Richard, A. M., Williams, A. J., Grulke, C. M., Sams, R., Lambert, J., Noyes, P. D., DeVito, M. J., Hines, R. N., Strynar, M., et al. (2019). A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing. Environ Health Perspect 127(1), 14501.

Peden-Adams, M. M., Keller, J. M., Eudaly, J. G., Berger, J., Gilkeson, G. S., and Keil, D. E. (2008). Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci 104(1), 144-54.

Perkins, R. G., Butenhoff, J. L., Kennedy, G. L., and Palazzolo, M. J. (2004). 13‐Week Dietary Toxicity Study of Ammonium Perfluorooctanoate (APFO) in Male Rats. Drug and chemical toxicology 27(4), 361-378.

Popa-Burke, I. G., Issakova, O., Arroway, J. D., Bernasconi, P., Chen, M., Coudurier, L., Galasinski, S., Jadhav, A. P., Janzen, W. P., Lagasca, D., et al. (2004). Streamlined system for purifying and quantifying a diverse library of compounds and the effect of compound concentration measurements on the accurate interpretation of biological assay results. Anal Chem 76(24), 7278-87.

Rackham, O. J., Sills, J. A., and Davidson, J. E. (2002). Immunoglobulin levels in methotrexate treated paediatric rheumatology patients. Archives of Disease in Childhood 87(2), 147-148.

Sakamoto, J., Kimura, H., Moriyama, S., Odaka, H., Momose, Y., Sugiyama, Y., and Sawada, H. (2000). Activation of Human Peroxisome Proliferator-Activated Receptor (PPAR) Subtypes by Pioglitazone. Biochemical and biophysical research communications 278(3), 704-711.

Shah, F., Stepan, A. F., O'Mahony, A., Velichko, S., Folias, A. E., Houle, C., Shaffer, C. L., Marcek, J., Whritenour, J., Stanton, R., et al. (2017a). Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol 24(7), 858-869 e5.

Shah, F., Stepan, A. F., O'Mahony, A., Velichko, S., Folias, A. E., Houle, C., Shaffer, C. L., Marcek, J., Whritenour, J., Stanton, R., et al. (2017b). Understanding the Mechanism(s) of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chemical Biology 24(7), 858-869.e5.

Simms, L., Mason, E., Berg, E. L., Yu, F., Rudd, K., Czekala, L., Trelles Sticken, E., Brinster, O., Wieczorek, R., Stevenson, M., et al. (2021). Use of a rapid human primary cell-based disease screening model, to compare next generation products to combustible cigarettes. Curr Res Toxicol 2, 309-321.

Singer, J. W., Al-Fayoumi, S., Taylor, J., Velichko, S., and O’Mahony, A. (2019). Comparative phenotypic profiling of the JAK2 inhibitors ruxolitinib, fedratinib, momelotinib, and pacritinib reveals distinct mechanistic signatures. PLOS ONE 14(9), e0222944.

Smeltz, M. G., Clifton, M. S., Henderson, W. M., McMillan, L., and Wetmore, B. A. (in preparation). An analytical framework to evaluate per- and poly-fluoroalkyl substances (PFAS) stock quality for in vitro high-throughput toxicity testing.

Stahn, C., Löwenberg, M., Hommes, D. W., and Buttgereit, F. (2007). Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Molecular and cellular endocrinology 275(1), 71-78.

Steenland, K., Tinker, S., Frisbee, S., Ducatman, A., and Vaccarino, V. (2009). Association of Perfluorooctanoic Acid and Perfluorooctane Sulfonate With Serum Lipids Among Adults Living Near a Chemical Plant. American Journal of Epidemiology 170(10), 1268-1278.

Wambaugh, J. F., Wetmore, B. A., Ring, C. L., Nicolas, C. I., Pearce, R. G., Honda, G. S., Dinallo, R., Angus, D., Gilbert, J., Sierra, T., et al. (2019). Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization. Toxicological sciences : an official journal of the Society of Toxicology 172(2), 235-251.

Wang, Z., DeWitt, J. C., Higgins, C. P., and Cousins, I. T. (2017). A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environmental science & technology 51(5), 2508-2518.

Yang, C., Tarkhov, A., Marusczyk, J., Bienfait, B., Gasteiger, J., Kleinoeder, T., Magdziarz, T., Sacher, O., Schwab, C. H., Schwoebel, J., et al. (2015). New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling. J Chem Inf Model 55(3), 510-28.

Yang, D., Han, J., Hall, D. R., Sun, J., Fu, J., Kutarna, S., Houck, K. A., LaLone, C. A., Doering, J. A., Ng, C. A., et al. (2020). Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. Environmental science & technology 54(9), 5676-5686.

Young, P. W., Buckle, D. R., Cantello, B. C., Chapman, H., Clapham, J. C., Coyle, P. J., Haigh, D., Hindley, R. M., Holder, J. C., Kallender, H., et al. (1998). Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. The Journal of pharmacology and experimental therapeutics 284(2), 751-9.

Yu, S., and Reddy, J. K. (2007). Transcription coactivators for peroxisome proliferator-activated receptors. Biochim Biophys Acta 1771(8), 936-51.

Zhang, C., McElroy, A. C., Liberatore, H. K., Alexander, N. L. M., and Knappe, D. R. U. (2021). Stability of Per- and Polyfluoroalkyl Substances in Solvents Relevant to Environmental and Toxicological Analysis. Environ Sci Technol doi: 10.1021/acs.est.1c03979.

Zhang, W., Pang, S., Lin, Z., Mishra, S., Bhatt, P., and Chen, S. (2020). Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Environmental Pollution doi: https://doi.org/10.1016/j.envpol.2020.115908, 115908.

Most read articles by the same author(s)