On the usefulness of animals as a model system (part II): Considering benefits within distinct use domains

Main Article Content

Giorgia Pallocca , Marcel Leist
[show affiliations]


In many countries, animal experiments can only be performed when their necessity has been demonstrated in a legal document. As the usefulness of animals in research is also a significant societal and political issue, criteria to structure debates and evaluations are needed. Here, background information is given on laboratory animal studies. Moreover, parameters that may be considered in judging their usefulness are suggested. The discussion is strictly focused on animals used as tools/test systems/models to provide information on humans. In this context, general features and performance characteristics of models are discussed. Examples are given for well-recognized criteria (e.g., robustness, relevance, predictivity) to judge the usefulness of predictive models. The main hypothesis put forward here is that a benefits evaluation (usefulness metrics) is only possible within sharply circumscribed “use domains”. Examples are given for the research fields of drug and vaccine research, toxicology, disease pathogenesis, and basic biological research. Efficacy, safety, and quality studies are highlighted as “use domains” within the field of drug discovery and production. A further separation into individual diseases, drug targets or symptoms is suggested for, e.g., efficacy studies or pathophysiology. Finally, an outlook is given on the evaluation of model advantages and disadvantages to arrive at their “net benefit”. Moreover, the need to compare the net benefits of animal models versus that of their alternatives is highlighted.

Article Details

How to Cite
Pallocca, G. and Leist, M. (2022) “On the usefulness of animals as a model system (part II): Considering benefits within distinct use domains”, ALTEX - Alternatives to animal experimentation, 39(3), pp. 531–539. doi: 10.14573/altex.2207111.

Ambrin, G., Cai, S. and Singh, B. R. (2022). Critical analysis in the advancement of cell-based assays for botulinum neurotoxin. Crit Rev Microbiol 25, 1-17. doi:10.1080/1040841X.2022.2035315

Bal-Price, A., Hogberg, H. T., Crofton, K. M. et al. (2018). Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX 35, 306-352. doi:10.14573/altex.1712081

Beilmann, M., Boonen, H., Czich, A. et al. (2019). Optimizing drug discovery by investigative toxicology: Current and future trends. ALTEX 36, 289-313. doi:10.14573/altex.1808181

Burt, T., Young, G., Lee, W. et al. (2020). Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 19, 801-818. doi:10.1038/s41573-020-0080-x

Burt, T., Roffel, A. F., Langer, O. et al. (2022). Strategic, feasibility, economic, and cultural aspects of phase 0 approaches: Is it time to change the drug development process in order to increase productivity? Clin Transl Sci 15, 1355-1379. doi:10.1111/cts.13269

Busquet, F., Hartung, T., Pallocca, G. et al. (2020a). Harnessing the power of novel animal-free test methods for the development of COVID-19 drugs and vaccines. Arch Toxicol 94, 2263-2272. doi:10.1007/s00204-020-02787-2

Busquet, F., Kleensang, A., Rovida, C. et al. (2020b). New European Union statistics on laboratory animal use – What really counts! ALTEX 37, 167-186. doi:10.14573/altex.2003241

Daneshian, M., Busquet, F., Hartung, T. et al. (2015). Animal use for science in Europe. ALTEX 32, 261-274. doi:10.14573/altex.1509081

Driehuis, E. and Clevers, H. (2017). CRISPR/Cas 9 genome editing and its applications in organoids. Am J Physiol Gastrointest Liver Physiol 312, G257-G265. doi:10.1152/ajpgi.00410.2016

Ellwein, L. B. and Cohen, S. M. (1990). The health risks of saccharin revisited. Crit Rev Toxicol 20, 311-326. doi:10.3109/10408449009089867

Griesinger, C., Desprez, B., Coecke, S. et al. (2016). Validation of alternative in vitro methods to animal testing: Concepts, challenges, processes and tools. Adv Exp Med Biol 856, 65-132. doi:10.1007/978-3-319-33826-2_4

Hartung, T and Leist, M. (2008). Food for thought ... on the evolution of toxicology and the phasing out of animal testing. ALTEX 25, 91-102. doi:10.14573/altex.2008.2.91

Hartung, T. and Zurlo, J. (2012). Alternative approaches for medical countermeasures to biological and chemical terrorism and warfare. ALTEX 29, 251-260. doi:10.14573/altex.2012.3.251

Hartung, T. (2015). The human whole blood pyrogen test – Lessons learned in twenty years. ALTEX 32, 79-100. doi:10.14573/altex.1503241

Hartung, T. (2021). Pyrogen testing revisited on occasion of the 25th anniversary of the whole blood monocyte activation test. ALTEX 38, 3-19. doi:10.14573/altex.2101051

Hendriks, D., Clevers, H. and Artegiani, B. (2020). CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27, 705-731. doi:10.1016/j.stem.2020.10.014

Krebs, A., van Vugt-Lussenburg, B. M. A., Waldmann, T. et al. (2020). The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Arch Toxicol 94, 2435-2461. doi:10.1007/s00204-020-02802-6

Lea, I. A., Chappell, G. A. and Wikoff, D. S. (2021). Overall lack of genotoxic activity among five common low- and no-calorie sweeteners: A contemporary review of the collective evidence. Mutat Res Genet Toxicol Environ Mutagen 868-869, 503389. doi:10.1016/j.mrgentox.2021.503389

Leist, M., Hartung, T. and Nicotera, P. (2008). The dawning of a new age of toxicology. ALTEX 25, 103-114. doi:10.14573/altex.2008.2.103

Leist, M., Efremova, L. and Karreman, C. (2010). Food for thought ... Considerations and guidelines for basic test method descriptions in toxicology. ALTEX 27, 309-317. doi:10.14573/altex.2010.4.309

Leist, M. and Hartung, T. (2013). Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87, 563-567. doi:10.1007/s00204-013-1038-0

Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse outcome pathways: Opportunities, limitations and open questions. Arch Toxicol 91, 3477-3505. doi:10.1007/s00204-017-2045-3

Marx, U., Andersson, T. B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272-321. doi:10.14573/altex.1603161

Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365-394. doi:10.14573/altex.2001241

Moné, M. J., Pallocca, G., Escher, S. E. et al. (2020). Setting the stage for next-generation risk assessment with non-animal approaches: The EU-ToxRisk project experience. Arch Toxicol 94, 3581-3592. doi:10.1007/s00204-020-02866-4

NRC – National Research Council (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC, USA: The National Academies Press. http://www.nap.edu/catalog.php?record_id=11970

Pallocca, G., Rovida, C. and Leist, M. (2022a). On the usefulness of animals as a model system (part I): Overview of criteria and focus on robustness. ALTEX 39, 347-353. doi:10.14573/altex.2203291

Pallocca, G., Moné, M. J., Kamp, H. et al. (2022b). Next-generation risk assessment of chemicals – Rolling out a human-centric testing strategy to drive 3R implementation: The RISK-HUNT3R project perspective. ALTEX, online ahead of print. doi:10.14573/altex.2204051

Schmidt, B. Z., Lehmann, M., Gutbier, S. et al. (2017). In vitro acute and developmental neurotoxicity screening: An overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 91, 1-33. doi:10.1007/s00204-016-1805-9

Seok, J., Warren, H. S., Cuenca, A. G. et al. (2013). Inflammation and host response to injury, large scale collaborative research program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110, 3507-3512. doi:10.1073/pnas.1222878110

Suntharalingam, G., Perry, M. R., Ward, S. et al. (2006). Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355, 1018-1028. doi:10.1056/NEJMoa063842

Worth, A. P. and Balls, M. (2001). The importance of the prediction model in the validation of alternative tests. Altern Lab Anim 29, 135-44. doi:10.1177/026119290102900210

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>