Integrated skin sensitization assessment based on OECD methods (III): Adding human data to the assessment
Main Article Content
Abstract
Skin sensitizer potency assessment based on New Approach Methodologies (NAM) is key to derive a Point of Departure (PoD) for risk assessment. Regression models to predict a PoD based on OECD validated in vitro tests and trained on LLNA data were previously presented and results from human tests were recently compiled. To integrate both data sources, the Reference Chemical Potency List (RCPL) was developed that provides potency values (PV) for 33 chemicals integrating LLNA and human data in a structured weight-of-evidence approach. When calculating regression models vs. PV or LLNA data, different weights for the input parameters were noted. As the RCPL is based on too few chemicals to train robust statistical models, the list of human data was extended to a larger set of PV (n = 139) with associated in vitro data. This database was used to retrain the regression models and to compare regression models trained vs. (i) LLNA, (ii) PV or (iii) human DSA04 values. Using the PV as a target, predictive models of similar predictivity to the LLNA-based models were obtained, which mainly differ in a lower weight for cytotoxicity and a higher weight for cell activation and reactivity parameters. Analysis of the human DSA04 dataset indicates a similar pattern, but also shows that the human dataset appears to be too small and biased as a key dataset for potency prediction. Hence using an enlarged set of PV values appears as a complementary tool to train predictive models next to an LLNA only database.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Api, A. M., Basketter, D. and Lalko, J. (2015). Correlation between experimental human and murine skin sensitization induction thresholds. Cutan Ocul Toxicol 34, 298-302. doi:10.3109/15569527.2014.979425
Api, A. M., Basketter, D. A., Cadby, P. A. et al. (2008). Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol 52, 3-23. doi:10.1016/j.yrtph.2007.10.008
Ball, N., Cagen, S., Carrillo, J. C. et al. (2011). Evaluating the sensitization potential of surfactants: Integrating data from the local lymph node assay, guinea pig maximization test, and in vitro methods in a weight-of-evidence approach. Regul Toxicol Pharmacol 60, 389-400. doi:10.1016/j.yrtph.2011.05.007
Bil, W., Schuur, A. G., Ezendam, J. and Bokkers, B. G. H. (2017). Probabilistic derivation of the interspecies assessment factor for skin sensitization. Regul Toxicol Pharmacol 88, 34-44. doi:10.1016/j.yrtph.2017.05.015
Dean, J. H., Twerdok, L. E., Tice, R. R. et al. (2001). ICCVAM evaluation of the murine local lymph node assay. Conclusions and recommendations of an independent scientific peer review panel. Regul Toxicol Pharmacol 34, 258-73. doi:10.1006/rtph.2001.1497
Emter, R., Ellis, G. and Natsch, A. (2010). Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol Appl Pharmacol 245, 281-290. doi:10.1016/j.taap.2010.03.009
Garcia, C., Ball, N., Cagen, S. et al. (2010). Comparative testing for the identification of skin-sensitizing potentials of nonionic sugar lipid surfactants. Regul Toxicol Pharmacol 58, 301-7. doi:10.1016/j.yrtph.2010.06.016
Gerberick, G. F., Vassallo, J. D., Bailey, R. E. et al. (2004). Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81, 332-343. doi:10.1093/toxsci/kfh213
Gilmour, N., Reynolds, J., Przybylak, K. et al. (2022). Next generation risk assessment for skin allergy: Decision making using new approach methodologies. Regul Toxicol Pharmacol 131, 105159. doi:10.1016/j.yrtph.2022.105159
Griem, P., Goebel, C. and Scheffler, H. (2003). Proposal for a risk assessment methodology for skin sensitization based on sensitization potency data. Regul Toxicol Pharmacol 38, 269-90. doi:10.1016/j.yrtph.2003.07.001
Haneke, K. E., Tice, R. R., Carson, B. L. et al. (2001). ICCVAM evaluation of the murine local lymph node assay. Data analyses completed by the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods. Regul Toxicol Pharmacol 34, 274-86. doi:10.1006/rtph.2001.1498
ICCVAM (2008). ICCVAM database, downloaded in December 2008 from http://iccvam.niehs.nih.gov/methods/immunotox/LLNA-pot/appx/LLNApotencyAppB18Jan08FD.xls
ICCVAM (2011). ICCVAM Test Method Evaluation Report: Usefulness and Limitations of the Murine Local Lymph Node Assay for Potency Categorization of Chemicals Causing Allergic Contact Dermatitis in Humans. NIH Publication Number 11-7709; Downloaded 23.1.2014 from http://ntp.niehs.nih.gov/iccvam/docs/immunotox_docs/LLNA-pot/TMER.pdf#search=Test%20Method%20Evaluation%20Report:%20Usefulness%20and%20Limitations%20of%20the%20Murine%20Local%20Lymph%20Node%20Assay
Irizar, A., Bender, H., Griem, P. et al. (2022). Reference Chemical Potency List (RCPL): A new tool for evaluating the accuracy of skin sensitisation potency measurements by New Approach Methodologies (NAMs). Regul Toxicol Pharmacol 134, 105244. doi:10.1016/j.yrtph.2022.105244
Jaworska, J., Dancik, Y., Kern, P. et al. (2013). Bayesian integrated testing strategy to assess skin sensitization potency: From theory to practice. J Appl Toxicol 33, 1353-1364. doi:10.1002/jat.2869
Jaworska, J. S., Natsch, A., Ryan, C. et al. (2015). Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol 89, 2355-83. doi:10.1007/s00204-015-1634-2
Kligman, A. M. (1966). The identification of contact allergens by human assay. 3. The maximization test: a procedure for screening and rating contact sensitizers. J Invest Dermatol 47, 393-409. doi:10.1038/jid.1966.160
Kreiling, R., Hollnagel, H. M., Hareng, L. et al. (2008). Comparison of the skin sensitizing potential of unsaturated compounds as assessed by the murine local lymph node assay (LLNA) and the guinea pig maximization test (GPMT). Food Chem Toxicol 46, 1896-904. doi:10.1016/j.fct.2008.01.019
Muller-Decker, K., Furstenberger, G. and Marks, F. (1994). Keratinocyte-derived proinflammatory key mediators and cell viability as in vitro parameters of irritancy: a possible alternative to the Draize skin irritation test. Toxicol Appl Pharmacol 127, 99-108. doi:10.1006/taap.1994.1144
Na, M., Ritacco, G., O'Brien, D., Lavelle, M. et al. (2021). Fragrance Skin Sensitization Evaluation and Human Testing: 30-Year Experience. Dermatitis 32, 339-352. doi:10.1097/DER.0000000000000684
Natsch, A., Emter, R., Haupt, T. and Ellis, G. (2018). Deriving a No Expected Sensitization Induction Level for Fragrance Ingredients Without Animal Testing: An Integrated Approach Applied to Specific Case Studies. Toxicol Sci 165, 170-185. doi:10.1093/toxsci/kfy135
Natsch, A. and Gerberick, G. F. (2022a). Integrated skin sensitization assessment based on OECD methods (I): Deriving a point of departure for risk assessment. ALTEX 39, 636-646. doi:10.14573/altex.2201141
Natsch, A. and Gerberick, G. F. (2022b). Integrated skin sensitization assessment based on OECD methods (II): Hazard and potency by combining kinetic peptide reactivity and the "2 out of 3" Defined Approach. ALTEX 39, 647-655. doi:10.14573/altex.2201142
Natsch, A., Haupt, T., Wareing, B. et al. (2020). Predictivity of the kinetic direct peptide reactivity assay (kDPRA) for sensitizer potency assessment and GHS subclassification. ALTEX 37, 652-664. doi:10.14573/altex.2004292
Natsch, A., Kleinstreuer, N. and Asturiol, D. (2023). Reduced specificity for the local lymph node assay for lipophilic chemicals: Implications for the validation of new approach methods for skin sensitization. Regul Toxicol Pharmacol 138, 105333. doi:10.1016/j.yrtph.2023.105333
OECD (2012). The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins, Part 1: Scientific Evidence. OECD ENVIRONMENT, HEALTH AND SAFETY PUBLICATIONS, SERIES ON TESTING AND ASSESSMENT NO. 168. doi:10.1787/9789264221444-en
OECD (2018a). In vitro skin sensitisation assays addressing the AOP key event on keratinocyte activation. OECD Guidelines for the Testing of Chemicals, Section 4 442d. doi:10.1787/9789264229822-en
OECD (2018b). In vitro skin sensitisation assays addressing the key event on activation of dendritic cells on the adverse outcome pathway for skin sensitisation. OECD Guidelines for the Testing of Chemicals, Section 4 442e. doi:10.1787/9789264264359-en
OECD (2020). In Chemico Skin Sensitisation Assays addressing the Adverse Outcome Pathway, key event on covalent binding to proteins. OECD Guidelines for the Testing of Chemicals, Section 4 442c. doi:10.1787/9789264229709-en
OECD (2021a). Guideline No. 497: Defined Approaches on Skin Sensitisation. https://www.oecd-ilibrary.org/content/publication/b92879a4-en
OECD (2021b). Series on Testing and Assessment No. 336: Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation - Annex 2. Organisation for Economic Cooperation and Development, Paris. https://www.oecd.org/chemicalsafety/testing/Annex-2-in-vitro-in-silico-in-vivo-defined-approaches.xlsx
OECD (2021c). Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation- Annex 3. https://one.oecd.org/document/ENV/CBC/MONO(2021)11/ann3/en/pdf
OECD (2021d). Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation- Annex 4. https://one.oecd.org/document/ENV/CBC/MONO(2021)11/ann4/en/pdf
Politano, V. T. and Api, A. M. (2008). The Research Institute for Fragrance Materials' human repeated insult patch test protocol. Regul Toxicol Pharmacol 52, 35-8. doi:10.1016/j.yrtph.2007.11.004
Reynolds, J., Gilmour, N., Baltazar, M. T. et al. (2022). Decision making in next generation risk assessment for skin allergy: Using historical clinical experience to benchmark risk. Regul Toxicol Pharmacol 134, 105219. doi:10.1016/j.yrtph.2022.105219
Sakaguchi, H., Ashikaga, T., Miyazawa, M. et al. (2006). Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT) II. An inter-laboratory study of the h-CLAT. Toxicology in Vitro 20, 774-784. doi:10.1016/j.tiv.2005.10.014
Takenouchi, O., Fukui, S., Okamoto, K. et al. (2015). Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J Appl Toxicol 35, 1318-1332. doi:10.1002/jat.3127
Wareing, B., Kolle, S. N., Birk, B. et al. (2020). The kinetic direct peptide reactivity assay (kDPRA): Intra- and inter-laboratory reproducibility in a seven-laboratory ring trial. ALTEX 37, 639-651. doi:10.14573/altex.2004291