Characterization and optimization of variability in a human colonic epithelium culture model
Main Article Content
Abstract
Animal models have historically been poor preclinical predictors of gastrointestinal (GI) directed therapeutic efficacy and drug-induced GI toxicity. Human stem and primary cell-derived culture systems are a major focus of efforts to create biologically relevant models that enhance preclinical predictive value of intestinal efficacy and toxicity. The inherent variability in stem cell-based cultures makes development of useful models a challenge; the stochastic nature of stem cell differentiation interferes with the ability to build and validate reproducible assays that query drug responses and pharmacokinetics. In this study, we aimed to characterize and reduce sources of variability in a complex stem cell-derived intestinal epithelium model, termed RepliGut® Planar, across cells from multiple human donors, cell lots, and passage numbers. Assessment criteria included barrier formation and integrity, gene expression, and cytokine responses. Gene expression and culture metric analyses revealed that controlling cell passage number reduces variability and maximizes physiological relevance of the model. In a case study where passage number was optimized, distinct cytokine responses were observed among four human donors, indicating that biological variability can be detected in cell cultures originating from diverse human sources. These findings highlight key considerations for designing assays that can be applied to additional primary cell-derived systems, as well as establish utility of the RepliGut® Planar platform for robust development of human-predictive drug-response assays.
Plain language summary
Animal models are frequently used as tools for studying gastrointestinal (GI) disease, but they inadequately replicate the complexities of the human gut, making them poor predictors of how humans respond to new drugs. Models using human stem cells are closer to human GI physiology, but their responses are not uniform owing to variability in the stem cells. We looked for the sources of this variability in the primary stem-cell derived RepliGut® Planar model. We found that limiting how long the cells were kept in culture reduced their variability and improved the physiological relevance of the model. These findings highlight key assay design considerations that also can be applied to other primary cell-derived systems. Reliable and physiologically relevant cell-based models can reduce animal testing, improve research accuracy, and ensure new treatments are more relevant and effective for patients.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Ahmad, A. A., Wang, Y., Gracz, A. D. et al. (2014). Optimization of 3-D organotypic primary colonic cultures for organ-on-chip applications. J Biol Eng 8, 9. doi:10.1186/1754-1611-8-9
Al-Bawardy, B., Shivashankar, R. and Proctor, D. D. (2021). Novel and emerging therapies for inflammatory bowel disease. Front Pharmacol 12, 651415. doi:10.3389/fphar.2021.651415
Andreou, N.-P., Legaki, E. and Gazouli, M. (2020). Inflammatory bowel disease pathobiology: The role of the interferon signature. Ann Gastroenterol 33, 125-133. doi:10.20524/aog.2020.0457
Antunes, J. C., Seabra, C. L., Domingues, J. M. et al. (2021). Drug targeting of inflammatory bowel diseases by biomolecules. Nanomaterials 11, 2035. doi:10.3390/nano11082035
Apostolou, A., Panchakshari, R. A., Banerjee, A. et al. (2021). A novel microphysiological colon platform to decipher mechanisms driving human intestinal permeability. Cell Mol Gastroenterol Hepatol 12, 1719-1741. doi:10.1016/j.jcmgh.2021.07.004
Bank, S., Andersen, P. S., Burisch, J. et al. (2014). Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a Danish cohort. PLoS One 9, e98815. doi:10.1371/journal.pone.0098815
Beaurivage, C., Naumovska, E., Chang, Y. X. et al. (2019). Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int J Mol Sci 20, 5661. doi:10.3390/ijms20225661
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc B 57, 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x
Bhatt, A. P., Gunasekara, D. B., Speer, J. et al. (2018). Nonsteroidal anti-inflammatory drug-induced leaky gut modeled using polarized monolayers of primary human intestinal epithelial cells. ACS Infect Dis 4, 46-52. doi:10.1021/acsinfecdis.7b00139
Biagini, F., Daddi, C., Calvigioni, M. et al. (2023). Designs and methodologies to recreate in vitro human gut microbiota models. Biodes Manufact 6, 298-318. doi:10.1007/s42242-022-00210-6
Cai, Z., Wang, S. and Li, J. (2021). Treatment of inflammatory bowel disease: A comprehensive review. Front Med 8, 765474. doi:10.3389/fmed.2021.765474
Creff, J., Malaquin, L. and Besson, A. (2021). In vitro models of intestinal epithelium: Toward bioengineered systems. J Tissue Eng 12, 204173142098520. doi:10.1177/2041731420985202
Dutton, J. S., Hinman, S. S., Kim, R. et al. (2019). Primary cell-derived intestinal models: Recapitulating physiology. Trends Biotechnol 37, 744-760. doi:10.1016/j.tibtech.2018.12.001
Dwinell, M. B., Lügering, N., Eckmann, L. et al. (2001). Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 120, 49-59. doi:10.1053/gast.2001.20914
Franco, Y. L., Da Silva, L. and Cristofoletti, R. (2021). Navigating through cell-based in vitro models available for prediction of intestinal permeability and metabolism: Are we ready for 3D? AAPS J 24, 2. doi:10.1208/s12248-021-00665-y
Friedrich, M., Pohin, M. and Powrie, F. (2019). Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50, 992-1006. doi:10.1016/j.immuni.2019.03.017
Gareb, B., Otten, A. T., Frijlink, H. W. et al. (2020). Review: Local tumor necrosis factor-α inhibition in inflammatory bowel disease. Pharmaceutics 12, 539. doi:10.3390/pharmaceutics12060539
Gracz, A. D. and Magness, S. T. (2014). Defining hierarchies of stemness in the intestine: Evidence from biomarkers and regulatory pathways. Am J Physiol Gastrointest Liver Physiol 307, G260-G273. doi:10.1152/ajpgi.00066.2014
Grossmann, J., Maxson, J. M., Whitacre, D. E. et al. (1998). New isolation technique to study apoptosis in human intestinal epithelial cells. Am J Pathol 153, 53-62. doi:10.1016/s0002-9440(10)65545-9
Grossmann, J., Walther, K., Artinger, M. et al. (2003). Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur J Cell Biol 82, 262-270. doi:10.1078/0171-9335-00312
Gunasekara, D. B., Speer, J., Wang, Y. et al. (2018). A monolayer of primary colonic epithelium generated on a scaffold with a gradient of stiffness for drug transport studies. Anal Chem 90, 13331-13340. doi:10.1021/acs.analchem.8b02845
Khan, I., Ullah, N., Zha, L. et al. (2019). Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 8, 126. doi:10.3390/pathogens8030126
Kucharzik, T., Hudson 3rd, J. T., Lügering, A. et al. (2005). Acute induction of human IL-8 production by intestinal epithelium triggers neutrophil infiltration without mucosal injury. Gut 54, 1565-1572. doi:10.1136/gut.2004.061168
Larregieu, C. A. and Benet, L. Z. (2013). Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J 15, 483-497. doi:10.1208/s12248-013-9456-8
Lennernäs, H. (2007). Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 37, 1015-1051. doi:10.1080/00498250701704819
Liu, L. and Rando, T. A. (2011). Manifestations and mechanisms of stem cell aging. J Cell Biol 193, 257-266. doi:10.1083/jcb.201010131
Marrero, D., Pujol-Vila, F., Vera, D. et al. (2021). Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron 181, 113156. doi:10.1016/j.bios.2021.113156
Mohammadi, S., Morell-Perez, C., Wright, C. W. et al. (2021). Assessing donor-to-donor variability in human intestinal organoid cultures. Stem Cell Reports 16, 2364-2378. doi:10.1016/j.stemcr.2021.07.016
Monticello, T. M., Jones, T. W., Dambach, D. M. et al. (2017). Current nonclinical testing paradigm enables safe entry to first-in-human clinical trials: The IQ consortium nonclinical to clinical translational database. Toxicol Appl Pharmacol 334, 100-109. doi:10.1016/j.taap.2017.09.006
Olson, H., Betton, G., Robinson, D. et al. (2000). Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32, 56-67. doi:10.1006/rtph.2000.1399
Parlesak, A. (2004). Modulation of cytokine release by differentiated CACO‐2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol 60, 477-485. doi:10.1111/j.0300-9475.2004.01495.x
Peters, M. F., Landry, T., Pin, C. et al. (2019). Human 3D gastrointestinal microtissue barrier function as a predictor of drug-induced diarrhea. Toxicol Sci 168, 3-17. doi:10.1093/toxsci/kfy268
Press, B. and Grandi, D. D. (2008). Permeability for intestinal absorption: Caco-2 assay and related issues. Curr Drug Metab 9, 893-900. doi:10.2174/138920008786485119
Rees, W. D., Tandun, R., Yau, E. et al. (2020). Regenerative intestinal stem cells induced by acute and chronic injury: The saving grace of the epithelium? Front Cell Dev Biol 8, 583919. doi:10.3389/fcell.2020.583919
Reynolds, A., Wharton, N., Parris, A. et al. (2014). Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium. Gut 63, 610-621. doi:10.1136/gutjnl-2012-304067
Sambuy, Y., De Angelis, I., Ranaldi, G. et al. (2005). The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21, 1-26. doi:10.1007/s10565-005-0085-6
Sashio, H., Tamura, K., Ito, R. et al. (2002). Polymorphisms of the TNF gene and the TNF receptor superfamily member 1B gene are associated with susceptibility to ulcerative colitis and Crohn’s disease, respectively. Immunogenetics 53, 1020-1027. doi:10.1007/s00251-001-0423-7
Sato, T., Vries, R. G., Snippert, H. J. et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-265. doi:10.1038/nature07935
Snippert, H. J., van der Flier, L. G., Sato, T. et al. (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134-144. doi:10.1016/j.cell.2010.09.016
Sonnier, D. I., Bailey, S. R., Schuster, R. M. et al. (2010). TNF-α induces vectorial secretion of IL-8 in Caco-2 cells. J Gastrointest Surg 14, 1592-1599. doi:10.1007/s11605-010-1321-9
Sun, H., Chow, E. C., Liu, S. et al. (2008). The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin Drug Metab Toxicol 4, 395-411. doi:10.1517/17425255.4.4.395
Treede, I., Braun, A., Jeliaskova, P. et al. (2009). TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol 9, 53. doi:10.1186/1471-230X-9-53
Trujillo-de Santiago, G., Logo-Zegers, M. J., Montes-Fonseca, S. L. et al. (2018). Gut-microbiota-on-a-chip: An enabling field for physiological research. Microphysiol Syst 2, 7. doi:10.21037/mps.2018.09.01
VanDussen, K. L., Marinshaw, J. M., Shaikh, N. et al. (2015). Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64, 911-920. doi:10.1136/gutjnl-2013-306651
Wang, Q., Guo, F., Jin, Y. et al. (2022). Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 7, 336. doi:10.1038/s41392-022-01194-6
Wang, Y., DiSalvo, M., Gunasekara, D. B. et al. (2017). Self-renewing monolayer of primary colonic or rectal epithelial cells. Cell Mol Gastroenterol Hepatol 4, 165-182.e7. doi:10.1016/j.jcmgh.2017.02.011
Yoo, J.-H. and Donowitz, M. (2019). Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World J Gastroenterol 25, 4125-4147. doi:10.3748/wjg.v25.i30.4125