A sensitive cell-based assay for testing potency of botulinum neurotoxin type A
Main Article Content
Abstract
Botulinum neurotoxin type A (BoNT/A) is a biopharmaceutic widely used for the treatment of neurological diseases and in aesthetic medicine to achieve months-long paralysis of target muscles and glands. Large numbers of mice are used in the mouse bioassay (MBA) for various botulinum-related applications including batch release potency testing, antitoxin testing, countermeasure development, and basic research. BoNT/A intoxication causes severe suffering to the mice used for testing, and application-specific, non-animal alternatives are urgently needed. Cell-based assays (CBA) need to replicate all the physiological steps of botulinum intoxication, comprising neuronal binding, internalization, endosomal escape, and cleavage of synaptosomal-associated protein of 25 kDa (SNAP25). However, the CBA currently in use have limitations. In this study we show that LAN5 cells, a human neuroblastoma-derived cell line, are sensitive to BoNT/A and can be engineered to express a recombinant NanoLuciferase (NanoLuc)-tagged SNAP25 reporter molecule. On exposure, the reporter molecule is cleaved and releases a NanoLuc-SNAP25 fragment that can be captured on a 96-well plate for quantitative luminometry using a cleavage-specific SNAP25 antibody. We demonstrate, using purified BoNT/A and a commercial BoNT/A product, that the sensitivity of this new cell-based assay is in the fM range, comparable to that of the MBA. The new assay could replace the MBA in research and commercial testing of BoNT/A, benefiting both scientific progress and animal welfare.
Plain language summary
Botulinum neurotoxin type A (BoNT/A) is extensively used in the treatment of neurological disorders and in aesthetic medicine. The toxin targets a protein called SNAP25 in nerve cells and blocks signaling. Traditionally, the potency and safety of BoNT/A has been tested in mice, which causes significant distress to the animals. Our study introduces a new method for detecting BoNT/A activity based on LAN5 cells, which are a self-replicating, human cell line derived from a tumor. We have engineered the cells to express a version of SNAP25 that allows the potency of BoNT/A to be measured. This new assay is as sensitive as the mouse bioassay. This development could lead to fewer animals being used in research and commercial testing of BoNT/A, benefiting both scientific progress and animal welfare.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Adler, S., Bicker, G., Bigalke, H. et al. (2010). The current scientific and legal status of alternative methods to the LD50 test for botulinum neurotoxin potency testing. The report and recommendations of a ZEBET expert meeting. Altern Lab Anim 38, 315-330. doi:10.1177/026119291003800401
Andreou, A. P., Leese, C., Greco, R. et al. (2021). Double-binding botulinum molecule with reduced muscle paralysis: Evaluation in in vitro and in vivo models of migraine. Neurother J Am Soc Exp Neurother 18, 556-568. doi:10.1007/s13311-020-00967-7
Antonucci, F., Rossi, C., Gianfranceschi, L. et al. (2008). Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci Off J Soc Neurosci 28, 3689-3696. doi:10.1523/jneurosci.0375-08.2008
Atapattu, D. N., Olivares, H. A., Piazza, T. M. et al. (2013). Performance and mouse bioassay comparability of the BoCell™ A cell-based assay. Toxicon 68, 105. doi:10.1016/j.toxicon.2012.07.127
Bajjalieh, S. M., Peterson, K., Shinghal, R. et al. (1992). SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257, 1271-1273. doi:10.1126/science.1519064
Beske, P. H., Bradford, A. B., Grynovicki, J. O. et al. (2016). Botulinum and tetanus neurotoxin-induced blockade of synaptic transmission in networked cultures of human and rodent neurons. Toxicol Sci 149, 503-515. doi:10.1093/toxsci/kfv254
Binz, T. and Rummel, A. (2009). Cell entry strategy of clostridial neurotoxins. J Neurochem 109, 1584-1595. doi:10.1111/j.1471-4159.2009.06093.x
Binz, T., Sikorra, S. and Mahrhold, S. (2010). Clostridial neurotoxins: Mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering. Toxins 2, 665-682. doi:10.3390/toxins2040665
Boute, N., Lowe, P., Berger, S. et al. (2016). NanoLuc luciferase – A multifunctional tool for high throughput antibody screening. Front Pharmacol 7, 27. doi:10.3389/fphar.2016.00027
Chaddock, J. A. and Marks, P. M. H. (2006). Clostridial neurotoxins: Structure-function led design of new therapeutics. Cell Mol Life Sci CMLS 63, 540-551. doi:10.1007/s00018-005-5505-5
Cotter, L., Yu, F., Roqueviere, S. et al. (2023). Split luciferase-based assay to detect botulinum neurotoxins using hiPSC-derived motor neurons. Commun Biol 6, 1-9. doi:10.1038/s42003-023-04495-w
Darios, F., Niranjan, D., Ferrari, E. et al. (2010). SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proc Natl Acad Sci U S A 107, 18197-18201. doi:10.1073/pnas.1007125107
Davletov, B., Bajohrs, M. and Binz, T. (2005). Beyond BOTOX: Advantages and limitations of individual botulinum neurotoxins. Trends Neurosci 28, 446-452. doi:10.1016/j.tins.2005.06.001
Dong, M., Tepp, W. H., Johnson, E. A. et al. (2004). Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc Natl Acad Sci U S A 101, 14701-14706. doi:10.1073/pnas.0404107101
Dong, M., Yeh, F., Tepp, W. H. et al. (2006). SV2 is the protein receptor for botulinum neurotoxin A. Science 312, 592-596. doi:10.1126/science.1123654
Erbguth, F. J. and Naumann, M. (1999). Historical aspects of botulinum toxin: Justinus Kerner (1786-1862) and the “sausage poison”. Neurology 53, 1850-1853. doi:10.1212/wnl.53.8.1850
Fernández-Salas, E., Wang, J., Molina, Y. et al. (2012). Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS One 7, e49516. doi:10.1371/journal.pone.0049516
Ferreira, J. L., Eliasberg, S. J., Edmonds, P. et al. (2004). Comparison of the mouse bioassay and enzyme-linked immunosorbent assay procedures for the detection of type A botulinal toxin in food. J Food Prot 67, 203-206. doi:10.4315/0362-028x-67.1.203
Fonfria, E., Maignel, J., Lezmi, S. et al. (2018). The expanding therapeutic utility of botulinum neurotoxins. Toxins 10, 208. doi:10.3390/toxins10050208
Fonfria, E., Marks, E., Foulkes, L.-M. et al. (2023). Replacement of the mouse LD50 assay for determination of the potency of abobotulinumtoxinA with a cell-based method in both powder and liquid formulations. Toxins 15, 314. doi:10.3390/toxins15050314
Foster, K. A., Bigalke, H. and Aoki, K. R. (2006). Botulinum neurotoxin – From laboratory to bedside. Neurotox Res 9, 133-140. doi:10.1007/bf03033931
Guglielmi, L., Cinnella, C., Nardella, M. et al. (2014). MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death Dis 5, e1081. doi:10.1038/cddis.2014.42
Hong, W. S., Pezzi, H. M., Schuster, A. R. et al. (2016). Development of a highly sensitive cell-based assay for detecting botulinum neurotoxin type A through neural culture media optimization. J Biomol Screen 21, 65-73. doi:10.1177/1087057115608103
Karalewitz, A. P.-A., Fu, Z., Baldwin, M. R. et al. (2012). Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry. J Biol Chem 287, 40806-40816. doi:10.1074/jbc.m112.404244
Koriazova, L. K. and Montal, M. (2003). Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10, 13-18. doi:10.1038/nsb879
Lacy, D. B., Tepp, W., Cohen, A. C. et al. (1998). Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5, 898-902. doi:10.1038/2338
Lacy, D. B. and Stevens, R. C. (1999). Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291, 1091-1104. doi:10.1006/jmbi.1999.2945
Ledeen, R. and Wu, G. (2018). Gangliosides of the nervous system. In S. Sonnino and A. Prinetti (eds), Gangliosides: Methods and Protocols (19-55). New York, NY, USA: Springer. doi:10.1007/978-1-4939-8552-4_2
Lee, J.-O., Rosenfield, J., Tzipori, S. et al. (2008). M17 human neuroblastoma cell as a cell model for investigation of botulinum neurotoxin A activity and evaluation of BoNT/A specific antibody. Botulinum J 1, 135-152. doi:10.1504/tbj.2008.018955
Lu, B. (2015). The destructive effect of botulinum neurotoxins on the SNARE protein: SNAP-25 and synaptic membrane fusion. PeerJ 3, e1065. doi:10.7717/peerj.1065
Mahrhold, S., Rummel, A., Bigalke, H. et al. (2006). The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580, 2011-2014. doi:10.1016/j.febslet.2006.02.074
Marini, P., MacLeod, R. A., Treuner, C. et al. (1999). SiMa, a new neuroblastoma cell line combining poor prognostic cytogenetic markers with high adrenergic differentiation. Cancer Genet Cytogenet 112, 161-164. doi:10.1016/s0165-4608(98)00269-6
Montecucco, C. and Schiavo, G. (1994). Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 13, 1-8. doi:10.1111/j.1365-2958.1994.tb00396.x
Montecucco, C. and Molgó, J. (2005). Botulinal neurotoxins: Revival of an old killer. Curr Opin Pharmacol 5, 274-279. doi:10.1016/j.coph.2004.12.006
Pathe-Neuschäfer-Rube, A., Neuschäfer-Rube, F., Genz, L. et al. (2015). Botulinum neurotoxin dose-dependently inhibits release of neurosecretory vesicle-targeted luciferase from neuronal cells. ALTEX 32, 297-306. doi:10.14573/altex.1503061
Pellett, S. (2013). Progress in cell based assays for botulinum neurotoxin detection. Curr Top Microbiol Immunol 364, 257-285. doi:10.1007/978-3-642-33570-9_12
Pellett, S., Schwartz, M. P., Tepp, W. H. et al. (2015). Human induced pluripotent stem cell derived neuronal cells cultured on chemically-defined hydrogels for sensitive in vitro detection of botulinum neurotoxin. Sci Rep 5, 14566. doi:10.1038/srep14566
Pellett, S., Tepp, W. H. and Johnson, E. A. (2019). Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations. FEBS Lett 593, 2675-2685. doi:10.1002/1873-3468.13508
Pirazzini, M., Henke, T., Rossetto, O. et al. (2013). Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Lett 587, 3831-3836. doi:10.1016/j.febslet.2013.10.010
Pirazzini, M., Rossetto, O., Eleopra, R. et al. (2017). Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol Rev 69, 200-235. doi:10.1124/pr.116.012658
Puhar, A., Johnson, E. A., Rossetto, O. et al. (2004). Comparison of the pH-induced conformational change of different clostridial neurotoxins. Biochem Biophys Res Commun 319, 66-71. doi:10.1016/j.bbrc.2004.04.140
Radwan, M. M., Ramdan, K., Abu-Azab, I. et al. (2007). Botulinum toxin treatment for anal fissure. Afr Health Sci 7, 14-17.
Rasetti-Escargueil, C. and Popoff, M. R. (2022). Recent developments in botulinum neurotoxins detection. Microorganisms 10, 1001. doi:10.3390/microorganisms10051001
Reddy, U. R., Venkatakrishnan, G., Roy, A. K. et al. (1991). Characterization of two neuroblastoma cell lines expressing recombinant nerve growth factor receptors. J Neurochem 56, 67-74. doi:10.1111/j.1471-4159.1991.tb02563.x
Rossetto, O. and Montecucco, C. (2008). Presynaptic neurotoxins with enzymatic activities. Handb Exp Pharmacol, 129-170. doi:10.1007/978-3-540-74805-2_6
Rummel, A., Mahrhold, S., Bigalke, H. et al. (2004). The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51, 631-643. doi:10.1046/j.1365-2958.2003.03872.x
Rust, A., Doran, C., Hart, R. et al. (2017). A cell line for detection of botulinum neurotoxin type B. Front Pharmacol 8, 796. doi:10.3389/fphar.2017.00796
Schenke, M., Schjeide, B.-M., Püschel, G. P. et al. (2020). Analysis of motor neurons differentiated from human induced pluripotent stem cells for the use in cell-based botulinum neurotoxin activity assays. Toxins 12, 276. doi:10.3390/toxins12050276
Schiavo, G., Matteoli, M. and Montecucco, C. (2000). Neurotoxins affecting neuroexocytosis. Physiol Rev 80, 717-766. doi:10.1152/physrev.2000.80.2.717
Sesardic, D., Leung, T. and Gaines Das, R. (2003). Role for standards in assays of botulinum toxins: International collaborative study of three preparations of botulinum type A toxin. Biol J Int Assoc Biol Stand 31, 265-276. doi:10.1016/j.biologicals.2003.08.001
Stenmark, P., Dupuy, J., Imamura, A. et al. (2008). Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b – Insight into the toxin-neuron interaction. PLoS Pathog 4, e1000129. doi:10.1371/journal.ppat.1000129
Swift, S., Lorens, J., Achacoso, P. et al. (1999). Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Curr Protoc Immunol 31, 10.17.14-10.17.29. doi:10.1002/0471142735.im1017cs31
Taylor, K., Gericke, C. and Alvarez, L. R. (2019). Botulinum toxin testing on animals is still a Europe-wide issue. ALTEX 36, 81-90. doi:10.14573/altex.1807101
Thirunavukkarasu, N., Johnson, E., Pillai, S. et al. (2018). Botulinum neurotoxin detection methods for public health response and surveillance. Front Bioeng Biotechnol 6, 80. doi:10.3389/fbioe.2018.00080
Vij, N., Kiernan, H., Bisht, R. et al. (2021). Surgical and non-surgical treatment options for piriformis syndrome: A literature review. Anesthesiol Pain Med 11, e112825. doi:10.5812/aapm.112825
von Berg, L., Stern, D., Pauly, D. et al. (2019). Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci Rep 9, 5531. doi:10.1038/s41598-019-41722-z
Walker, T. J. and Dayan, S. H. (2014). Comparison and overview of currently available neurotoxins. J Clin Aesthetic Dermatol 7, 31-39.
Whitemarsh, R. C. M., Pier, C. L., Tepp, W. H. et al. (2012). Model for studying clostridium botulinum neurotoxin using differentiated motor neuron-like NG108-15 cells. Biochem Biophys Res Commun 427, 426-430. doi:10.1016/j.bbrc.2012.09.082
Wictome, M., Newton, K., Jameson, K. et al. (1999). Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl Environ Microbiol 65, 3787-3792. doi:10.1128/aem.65.9.3787-3792.1999
Williams, D. M. and Peden, A. A. (2023). S-acylation of NLRP3 provides a nigericin sensitive gating mechanism that controls access to the Golgi. bioRxiv, 2023.11.14.566891. doi:10.1101/2023.11.14.566891
Yadirgi, G., Stickings, P., Rajagopal, S. et al. (2017). Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods 451, 90-99. doi:10.1016/j.jim.2017.09.007
Yao, G., Zhang, S., Mahrhold, S. et al. (2016). N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol 23, 656-662. doi:10.1038/nsmb.3245