The probable future of toxicology – probabilistic risk assessment
Main Article Content
Abstract
Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated artificial intelligence (AI) models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges, and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public.
Plain language summary
This workshop report discusses the future of toxicology and how probabilistic risk assessment can help address uncertainties in assessing chemical risks. Experts emphasize the importance of quantitative assessment in toxicology and the need for a deeper understanding of how chemicals affect our health. By incorporating probabilistic risk assessment, we can better evaluate the potential risks posed by chemicals and make more informed decisions to protect human health and the environment. Embracing new technologies like artificial intelligence and natural language processing can enhance data analysis and improve the accuracy of risk assessments in toxicology.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Arkes, H. R., Aberegg, S. K. and Arpin, K. A. (2022). Analysis of physicians’ probability estimates of a medical outcome based on a sequence of events. JAMA Netw Open 5, e2218804. doi:10.1001/jamanetworkopen.2022.18804
Baxter, A. L., BenZvi, S. Y., Bonivento, W. et al. (2022). Collaborative experience between scientific software projects using agile scrum development. Softw Pract Exp 52, 2077-2096. doi:10.1002/spe.3120
Blackburn, K. L., Ellison, C. A., Stuard, S. B. et al. (2019). Dosimetry considerations for in vivo and in vitro test data and a novel surrogate ITTC approach for read-across based on metabolites. Comput Toxicol 10, 145-157. doi:10.1016/j.comtox.2018.08.005
Cofield, S. S., Corona, R. V. and Allison, D. B. (2010). Use of causal language in observational studies of obesity and nutrition. Obes Facts 3, 353-356. doi:10.1159/000322940
Corradi, M. P. F., de Haan, A. M., Staumont, B. et al. (2022). Natural language processing in toxicology: Delineating adverse outcome pathways and guiding the application of new approach methodologies. Biomater Biosyst 7, 100061. doi:10.1016/j.bbiosy.2022.100061
Crevel, R. W., Baumert, J. L., Baka, A. et al. (2014). Development and evolution of risk assessment for food allergens. Food Chem Toxicol 67, 262-276. doi:10.1016/j.fct.2014.01.032
Di Guardo, A., Gouin, T., MacLeod, M. et al. (2018). Environmental fate and exposure models: Advances and challenges in 21st century chemical risk assessment. Environ Sci 20, 58-71. doi:10.1039/c7em00568g
Dourson, M., Ewart, L., Fitzpatrick, S. C. et al. (2022). The future of uncertainty factors with in vitro studies using human cells. Toxicol Sci 186, 12-17. doi:10.1093/toxsci/kfab134
Eaton, C. D., Lamar, M. D. and McCarthy, M. L. (2020). 21st century reform efforts in undergraduate quantitative biology education: Conversations, initiatives, and curriculum change in the United States of America. Lett Biomath 7, 55. https://scarab.bates.edu/faculty_publications/345/
EFSA Scientific Committee, More, S. J., Bampidis, V. et al. (2019). Guidance on the use of the threshold of toxicological concern approach in food safety assessment. EFSA J 17, e05708. doi:10.2903/j.efsa.2019.5708
Ellison, C. A., Api, A. M., Becker, R. A. et al. (2021). Internal threshold of toxicological concern (iTTC): Where we are today and what is possible in the near future. Front Toxicol 2, 621541. doi:10.3389/ftox.2020.621541
EC – European Commission, Directorate-General for Research and Innovation, Valdes, C. et al. (2017). Evaluation of research careers fully acknowledging Open Science practices: Rewards, incentives and/or recognition for researchers practicing Open Science. Publications Office of the European Union. https://data.europa.eu/doi/10.2777/75255
European Commission (2020). Chemicals Strategy for Sustainability – Towards a toxic-free environment communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM/2020/667 final. European Commission, Brussels, Belgium. https://eur-lex.europa.eu/legal-content/en/txt/pdf/?uri=celex:52020dc0667
Gao, J., Aksoy, B. A., Gross, B. et al. (2014). Abstract 4271: The CBioPortal for cancer genomics as a clinical decision support tool. Cancer Res 74, Suppl, 4271. doi:10.1158/1538-7445.am2014-4271
Gentleman, R. C., Carey, V. J., Bates, D. M. et al. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 5, R80. doi:10.1186/gb-2004-5-10-r80
Hartung, T. (2013). Look back in anger – What clinical studies tell us about preclinical work. ALTEX 30, 275-291. doi:10.14573/altex.2013.3.275
Hartung, T. (2017). Thresholds of toxicological concern – Setting a threshold for testing below which there is little concern. ALTEX 34, 331-351. doi:10.14573/altex.1707011
Heidari, S., Mostafaei, S., Razazian, N. et al. (2022). The effect of lead exposure on IQ test scores in children under 12 years: A systematic review and meta-analysis of case-control studies. Syst Rev 11, 106. doi:10.1186/s13643-022-01963-y
Herzler, M., Marx-Stoelting, P., Pirow, R. et al. (2021). The “EU chemicals strategy for sustainability” questions regulatory toxicology as we know it: Is it all rooted in sound scientific evidence? Arch Toxicol 95, 2589-2601. doi:10.1007/s00204-021-03091-3
Hoover, R. N., Hyer, M., Pfeiffer, R. M. et al. (2011). Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med 365, 1304-1314. doi:10.1056/nejmoa1013961
Houben, G. F., Baumert, J. L., Blom, W. M. et al. (2020). Full range of population eliciting dose values for 14 priority allergenic foods and recommendations for use in risk characterization. Food Chem Toxicol 146, 111831. doi:10.1016/j.fct.2020.111831
Houck, K. A., Richard, A. M., Judson, R. S. et al. (2013). ToxCast: Predicting toxicity potential through high-throughput bioactivity profiling. In P. Steinberg (ed.), High-Throughput Screening Methods in Toxicity Testing (1-31). John Wiley & Sons, Inc. doi:10.1002/9781118538203.ch1
Ioannidis J. P. (2005). Why most published research findings are false. PLoS Med 2, e124. doi:10.1371/journal.pmed.0020124
Jentink, J., Loane, M. A., Dolk, H. et al. (2010). Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med 362, 2185-2193. doi:10.1056/nejmoa0907328
Kleensang, A., Maertens, A., Rosenberg, M. et al. (2014). Pathways of toxicity. ALTEX 31, 53-61. doi:10.14573/altex.1309261
Krewski, D., Acosta, D., Jr, Andersen, M. et al. (2010). Toxicity testing in the 21st century: A vision and a strategy. J Toxicol Environ Health B Crit Rev 13, 51-138. doi:10.1080/10937404.2010.483176
Kroes, R., Kleiner, J. and Renwick, A. (2005). The threshold of toxicological concern concept in risk assessment. Toxicol Sci 86, 226-230. doi:10.1093/toxsci/kfi169
Krug, H. F., Bohmer, N., Kühnel, D. et al. (2018). The DaNa2.0 knowledge base nanomaterials – An important measure accompanying nanomaterials development. Nanomaterials 8, 204. doi:10.3390/nano8040204
Lucas, R. M. and McMichael, A. J. (2005). Association or causation: Evaluating links between “environment and disease”. Bull World Health Organ 83, 792-795.
Luechtefeld, T., Marsh, D., Rowlands, C. et al. (2018). Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165, 198-212. doi:10.1093/toxsci/kfy152
Luo, R., Sun, L., Xia, Y. et al. (2022). BioGPT: Generative pre-trained transformer for biomedical text generation and mining. Brief Bioinform 23, bbac409. doi:10.1093/bib/bbac409
Maertens, A., Tran, V., Kleensang, A. et al. (2018). Weighted gene correlation network analysis (WGCNA) reveals novel transcription factors associated with bisphenol A dose-response. Front Genet 9, 508. doi:10.3389/fgene.2018.00508
Maertens, A., Golden, E. and Hartung, T. (2021). Avoiding regrettable substitutions: Green toxicology for sustainable chemistry. ACS Sustain Chem Eng 9, 7749-7758. doi:10.1021/acssuschemeng.0c09435
Maertens, A., Golden, E., Luechtefeld, T. H. et al. (2022). Probabilistic risk assessment – The keystone for the future of toxicology. ALTEX 39, 3-29. doi:10.14573/altex.2201081
McDonald, J. A., Goyal, A. and Terry, M. B. (2013). Alcohol intake and breast cancer risk: Weighing the overall evidence. Curr Breast Cancer Rep 5, 208-221. doi:10.1007/s12609-013-0114-z
McNamara, C., Rohan, D., Golden, D. et al. (2007). Probabilistic modelling of European consumer exposure to cosmetic products. Food Chem Toxicol 45, 2086-2096. doi:10.1016/j.fct.2007.06.037
Middleton, A. M., Reynolds, J., Cable, S. et al. (2022). Are non-animal systemic safety assessments protective? A toolbox and workflow. Toxicol Sci 189, 124-147. doi:10.1093/toxsci/kfac068
Munro, I. C., Ford, R. A., Kennepohl, E. et al. (1996). Correlation of structural class with no-observed-effect levels: A proposal for establishing a threshold of concern. Food Chem Toxicol 34, 829-867. doi:10.1016/s0278-6915(96)00049-x
Najjar, A., Ellison, C. A., Gregoire, S. et al. (2023). Practical application of the interim internal threshold of toxicological concern (iTTC): A case study based on clinical data. Arch Toxicol 97, 155-164. doi:10.1007/s00204-022-03371-6
Peng, R. D. and Hicks, S. C. (2021). Reproducible research: A retrospective. Ann Rev Publ Health 42, 79-93. doi:10.1146/annurev-publhealth-012420-105110
Ruffle, B., Henderson, J., Murphy-Hagan, C. et al. (2018). Application of probabilistic risk assessment: Evaluating remedial alternatives at the Portland Harbor Superfund Site, Portland, Oregon, USA. Integr Environ Assess Manag 14, 63-78. doi:10.1002/ieam.1999
Rusyn, I. and Chiu, W. A. (2022). Decision-making with new approach methodologies: Time to replace default uncertainty factors with data. Toxicol Sci 189, 148-149. doi:10.1093/toxsci/kfac033
Safford, B., Api, A. M., Barratt, C. et al. (2017). Application of the expanded Creme RIFM consumer exposure model to fragrance ingredients in cosmetic, personal care and air care products. Regul Toxicol Pharmacol 86, 148-156. doi:10.1016/j.yrtph.2017.02.021
Savage, S. L. and Markowitz, H. M. (2009). The Flaw of Averages: Why We Underestimate Risk in the Face of Uncertainty. John Wiley & Sons. https://play.google.com/store/books/details?id=2lsLAQi0LlcC
Schickore, J. (2010). Trying again and again: Multiple repetitions in early modern reports of experiments on snake bites. Early Sci Med 15, 567-617. http://www.jstor.org/stable/20787431
Sherman, M. (2009). Vinyl chloride and the liver. J Hepatology 51, 1074-1081. doi:10.1016/j.jhep.2009.09.012
Sillé, F. C. M., Karakitsios, S., Kleensang, A. et al. (2020). The exposome – A new approach for risk assessment. ALTEX 37, 3-23. doi:10.14573/altex.2001051
Spinu, N., Cronin, M. T. D., Enoch, S. J. et al. (2020). Quantitative adverse outcome pathway (qAOP) models for toxicity prediction. Arch Toxicol 94, 1497-1510. doi:10.1007/s00204-020-02774-7
Viscusi, W. K., Hamilton, J. T. and Dockins, P. C. (1997). Conservative versus mean risk assessments: Implications for superfund policies. J Environ Econ Manage 34, 187-206. doi:10.1006/jeem.1997.1012
Voigt, C. A. (2020). Synthetic biology 2020-2030: Six commercially-available products that are changing our world. Nat Commun 11, 6379. doi:10.1038/s41467-020-20122-2