Data-driven derivation of an adverse outcome pathway linking vascular endothelial growth factor receptor (VEGFR), endocrine disruption, and atherosclerosis
Main Article Content
Abstract
Dysregulation of vascular endothelial growth factor (VEGF) and its receptor (VEGFR) contributes to atherosclerosis and cardiovascular disease (CVD), making it a potential target for CVD risk assessment. High-throughput screening (HTS) approaches have resulted in large-scale in vitro data, providing mechanistic information that can help assess chemical toxicity and identify molecular initiating events (MIEs) of adverse outcome pathways (AOPs). AOPs represent a logical sequence of biological responses contributing to toxicity and are valuable tools to inform chemical risk assessment. Here, we used HTS data to formulate an AOP relating VEGF signaling perturbation to atherosclerosis. ToxCast, Tox21, and PubChem data were evaluated to obtain bioprofiles of 4165 compounds active in assays targeting VEGFR. Cheminformatics analysis identified 109 enriched structural fingerprints. Applying a subspace clustering approach based on chemical structure bioactivity yielded 12 primary targets, whose relevance to CVD was confirmed by an AI-assisted literature review. An AOP was hypothesized by coupling mechanistic relationships highlighted by HTS data with literature review findings, linking serotonin receptor (HTR), estrogen receptor alpha (ERα), and vasopressin receptor (AVPR) targets with VEGFR activity, angiogenic signaling, and atherosclerosis. Several endocrine disrupting chemicals (EDCs), e.g., bisphenols, triclosan, dichlorodiphenyltrichloroethane (DDT), and polychlorinated biphenyls (PCBs), were identified as relevant chemical stressors. Subspace clustering of these chemicals evaluated potential MIEs and highlighted associations with use case classes. By applying computational methods to profile HTS data and hypothesize a mechanistic AOP, this study proposes a data-driven approach to evaluating environmental cardiotoxicity, which could eventually supplement and reduce the need for animal testing in toxicological assessments.
Plain language summary
This study explores how exposure of humans to chemicals in the environment can contribute to atherosclerosis, the buildup of plaques in arteries that can lead to diseases of the heart and blood vessels. Using existing data on thousands of chemicals from non-animal screening methods, the study links certain chemicals, e.g., bisphenols and DDT, to biological changes related to the signaling receptor VEGFR and the development of atherosclerosis. An adverse outcome pathway (AOP) framework is used to map the sequence of biological events initiated upon exposure to chemicals to the manifestation of adverse health outcomes. This approach helps understand the risks posed by environmental chemicals and protects public health while reducing animal experiments.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Bastian, M., Heymann, S. and Jacomy, M. (2009). Gephi: An open-source software for exploring and manipulating networks. Proc Int AAAI Conference Web Soc Media 3, 361-362. doi:10.1609/icwsm.v3i1.13937
Bhatnagar, A. (2017). Environmental determinants of cardiovascular disease. Circ Res 121, 162-180. doi:10.1161/circresaha.117.306458
Birnbaum, L. S. (2013). State of the science of endocrine disruptors. Environ Health Perspect 121, A107. doi:10.1289/ehp.1306695
Bode, M. F. and Mackman, N. (2015). Protective and pathological roles of tissue factor in the heart. Hamostaseologie 35, 37-46. doi:10.5482/hamo-14-09-0042
Bowes, J., Brown, A. J., Hamon, J. et al. (2012). Reducing safety-related drug attrition: The use of in vitro pharmacological profiling. Nat Rev Drug Discov 11, 909-922. doi:10.1038/nrd3845
Boyd, J. H., Chau, E. H., Tokunanga, C. et al. (2008). Fibrinogen decreases cardiomyocyte contractility through an ICAM-1-dependent mechanism. Crit Care 12, R2. doi:10.1186/cc6213
Bozada, T., Borden, J., Workman, J. et al. (2021). Sysrev: A FAIR platform for data curation and systematic evidence review. Front Artif Intell 4, 685298. doi:10.3389/frai.2021.685298
Brant, K. A. and Caruso, R. L. (2006). PCB 50 stimulates release of arachidonic acid and prostaglandins from late gestation rat amnion fibroblast cells. Reprod Toxicol 22, 591-598. doi:10.1016/j.reprotox.2006.04.012
Breitholtz, M., Ivanov, P., Ek, K. et al. (2020). Calmodulin inhibition as a mode of action of antifungal imidazole pharmaceuticals in non-target organisms. Toxicol Res (Camb) 9, 425-430. doi:10.1093/toxres/tfaa039
Burnett, S. D., Blanchette, A. D., Grimm, F. A. et al. (2019). Population-based toxicity screening in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 381, 114711. doi:10.1016/j.taap.2019.114711
Cai, C., Guo, P., Zhou, Y. et al. (2019). Deep learning-based prediction of drug-induced cardiotoxicity. J Chem Inf Model 59, 1073-1084. doi:10.1021/acs.jcim.8b00769
Camare, C., Pucelle, M., Negre-Salvayre, A. et al. (2017). Angiogenesis in the atherosclerotic plaque. Redox Biol 12, 18-34. doi:10.1016/j.redox.2017.01.007
Canzoniero, L. M. T., Adornetto, A., Secondo, A. et al. (2006). Involvement of the nitric oxide/protein kinase G pathway in polychlorinated biphenyl-induced cell death in SH-SY 5Y neuroblastoma cells. J Neurosci Res 84, 692-697. doi:10.1002/jnr.20971
Christian, R. C., Liu, P. Y., Harrington, S. et al. (2006). Intimal estrogen receptor (ER)beta, but not ERalpha expression, is correlated with coronary calcification and atherosclerosis in pre- and postmenopausal women. J Clin Endocrinol Metab 91, 2713-2720. doi:10.1210/jc.2005-2672
Chu, P.-W., Yang, Z.-J., Huang, H.-H. et al. (2018). Low-dose bisphenol A activates the ERK signaling pathway and attenuates steroidogenic gene expression in human placental cells. Biol Reprod 98, 250-258. doi:10.1093/biolre/iox162
Chu, P. H., Chen, G., Kuo, D. et al. (2020). Stem cell-derived endothelial cell model that responds to tobacco smoke like primary endothelial cells. Chem Res Toxicol 33, 751-763. doi:10.1021/acs.chemrestox.9b00363
Chung, N. C., Miasojedow, B., Startek, M. et al. (2019). Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinformatics 20, 644. doi:10.1186/s12859-019-3118-5
Clippinger, A. J., Allen, D., Behrsing, H. et al. (2018). Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol In Vitro 52, 131-145. doi:10.1016/j.tiv.2018.06.009
Cosselman, K. E., Navas-Acien, A. and Kaufman, J. D. (2015). Environmental factors in cardiovascular disease. Nat Rev Cardiol 12, 627-642. doi:10.1038/nrcardio.2015.152
Das, S. K. and Chakrabarti, R. (2006). Role of PPAR in cardiovascular diseases. Recent Pat Cardiovasc Drug Discov 1, 193-209. doi:10.2174/157489006777442441
Edwards, S. W., Tan, Y. M., Villeneuve, D. L. et al. (2016). Adverse outcome pathways-organizing toxicological information to improve decision making. J Pharmacol Exp Ther 356, 170-181. doi:10.1124/jpet.115.228239
Ellis-Hutchings, R. G., Settivari, R. S., McCoy, A. T. et al. (2017). Embryonic vascular disruption adverse outcomes: Linking high throughput signaling signatures with functional consequences. Reprod Toxicol 71, 16-31. doi:10.1016/j.reprotox.2017.04.003
Fiordelisi, A., Iaccarino, G., Morisco, C. et al. (2019). NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases. Int J Mol Sci 20, doi:10.3390/ijms20071599
Fonseca, M. I., Lorigo, M. and Cairrao, E. (2022). Endocrine-disrupting effects of bisphenol a on the cardiovascular system: A review. J Xenobiot 12, 181-213. doi:10.3390/jox12030015
Hafezi, S. A. and Abdel-Rahman, W. M. (2019). The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy. Curr Mol Pharmacol 12, 230-238. doi:10.2174/1874467212666190306164507
Hecker, M. and LaLone, C. A. (2019). Adverse outcome pathways: Moving from a scientific concept to an internationally accepted framework. Environ Toxicol Chem 38, 1152-1163. doi:10.1002/etc.4385
Herrmann, J., Lerman, L. O., Mukhopadhyay, D. et al. (2006). Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol 26, 1948-1957. doi:10.1161/01.atv.0000233387.90257.9b
Hicklin, D. J. and Ellis, L. M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23, 1011-1027. doi:10.1200/JCO.2005.06.081
Hirai, T. and Chida, K. (2003). Protein kinase Czeta (PKCzeta): Activation mechanisms and cellular functions. J Biochem 133, 1-7. doi:10.1093/jb/mvg017
Hu, X., Saunders, N., Safley, S. et al. (2021). Environmental chemicals and metabolic disruption in primary and secondary human parathyroid tumors. Surgery 169, 102-108. doi:10.1016/j.surg.2020.06.010
Inglefield, J. R., Mundy, W. R. and Shafer, T. J. (2001). Inositol 1,4,5-triphosphate receptor-sensitive Ca2+ release, store-operated Ca2+ entry, and cAMP responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. J Pharmacol Exp Ther 297, 762-773.
Judson, R., Richard, A., Dix, D. J. et al. (2009). The toxicity data landscape for environmental chemicals. Environ Health Perspect 117, 685-695. doi:10.1289/ehp.0800168
Kibel, A., Lukinac, A. M., Dambic, V. et al. (2020). Oxidative stress in ischemic heart disease. Oxid Med Cell Longev 2020, 6627144. doi:10.1155/2020/6627144
Kim, H.-S., Park, S.-Y., Yoo, K.-Y. et al. (2012). Induction of heat shock proteins and antioxidant enzymes in 2,3,7,8-TCDD-induced hepatotoxicity in rats. Korean J Physiol Pharmacol 16, 469-476.
Kleinstreuer, N., Dix, D., Rountree, M. et al. (2013). A computational model predicting disruption of blood vessel development. PLoS Comput Biol 9, e1002996. doi:10.1371/journal.pcbi.1002996
Kleinstreuer, N. C., Yang, J., Berg, E. L. et al. (2014). Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol 32, 583-591. doi:10.1038/nbt.2914
Knudsen, T. B. and Kleinstreuer, N. C. (2011). Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res C Embryo Today 93, 312-323. doi:10.1002/bdrc.20223
Kodavanti, P. R. S. and Tilson, H. A. (2000). Neurochemical effects of environmental chemicals: In vitro and in vivo correlations on second messenger pathways. Ann N Y Acad Sci 919, 97-105. doi:10.1111/j.1749-6632.2000.tb06872.x
Krishna, S., Berridge, B. and Kleinstreuer, N. (2021). High-throughput screening to identify chemical cardiotoxic potential. Chem Res Toxicol 34, 566-583. doi:10.1021/acs.chemrestox.0c00382
Krishna, S., Borrel, A., Huang, R. et al. (2022). High-throughput chemical screening and structure-based models to predict hERG inhibition. Biology (Basel) 11, doi:10.3390/biology11020209
Lamore, S. D., Kohnken, R. A., Peters, M. F. et al. (2020). Cardiovascular toxicity induced by kinase inhibitors: Mechanisms and preclinical approaches. Chem Res Toxicol 33, 125-136. doi:10.1021/acs.chemrestox.9b00387
Lang, I. A., Galloway, T. S., Scarlett, A. et al. (2008). Association of urinary bisphenol a concentration with medical disorders and laboratory abnormalities in adults. JAMA 300, 1303-1310. doi:10.1001/jama.300.11.1303
Li, Y.-Q. and Wang, Q. (2017). Quantitative structure-activity relationship model for prediction of cardiotoxicity of chemical components in traditional Chinese medicines [Article in Chinese]. J Peking University 49, 551-556.
Liu, Y.-S. and Yang, M. (2006). The effect of 5-hydroxtryptamine on the regulation of megakaryocytopoiesis. Hematology (Luxembourg) 11, 53-56. doi:10.1080/10245330500322370
Long, X., Burke, K. A., Bigsby, R. M. et al. (2001). Effects of the xenoestrogen bisphenol a on expression of vascular endothelial growth factor (VEGF) in the rat. Exp Biol Med (Maywood) 226, 477-483. doi:10.1177/153537020122600514
Ma, Y., Liang, X., Li, C. et al. (2022). 5-HT2A receptor and 5-HT degradation play a crucial role in atherosclerosis by modulating macrophage foam cell formation, vascular endothelial cell inflammation, and hepatic steatosis. J Atheroscler Thromb 29, 322-336. doi:10.5551/jat.58305
Mansouri, K., Karmaus, A. L., Fitzpatrick, J. et al. (2021). CATMoS: Collaborative acute toxicity modeling suite. Environ Health Perspect 129, 47013. doi:10.1289/ehp8495
Marin-Garcia, J., Goldenthal, M. J. and Moe, G. W. (2001). Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52, 103-110. doi:10.1016/s0008-6363(01)00368-6
Marques, A. C., Mariana, M. and Cairrao, E. (2022). Triclosan and its consequences on the reproductive, cardiovascular and thyroid levels. Int J Mol Sci 23, 11427. doi:10.3390/ijms231911427
Mason, J. W. (2017). Cardiologist’s point of view: Novel ECG biomarkers and in silico models for proarrhythmic risk prediction: Are we ready? J Electrocardiol 50, 825-827. doi:10.1016/j.jelectrocard.2017.08.011
Melzer, D., Gates, P., Osborne, N. J. et al. (2012a). Urinary bisphenol A concentration and angiography-defined coronary artery stenosis. PLoS One 7, e43378. doi:10.1371/journal.pone.0043378
Melzer, D., Osborne, N. J., Galloway, T. S. et al. (2012b). Urinary bisphenol a concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 125, 1482-1490. doi:10.1161/circulationaha.111.069153
Mendelsohn, M. E. and Karas, R. H. (1999). The protective effects of estrogen on the cardiovascular system. N Engl J Med 340, 1801-1811. doi:10.1056/nejm199906103402306
Mercer, J. and Bennett, M. (2006). The role of p53 in atherosclerosis. Cell Cycle 5, 1907-1909. doi:10.4161/cc.5.17.3166
Parish, S. T., Aschner, M., Casey, W. et al. (2020). An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul Toxicol Pharmacol 112, 104592. doi:10.1016/j.yrtph.2020.104592
Patisaul, H. B. (2017). Endocrine disruption of vasopressin systems and related behaviors. Front Endocrinol 8, 134. doi:10.3389/fendo.2017.00134
Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N. et al. (2011). Using graph theory to analyze biological networks. BioData Min 4, 10. doi:10.1186/1756-0381-4-10
Pierro, J. D., Ahir, B. K., Baker, N. C. et al. (2022). Computational model for fetal skeletal defects potentially linked to disruption of retinoic acid signaling. Front Pharmacol 13, 971296. doi:10.3389/fphar.2022.971296
Pugach, E. K., Blenck, C. L., Dragavon, J. M. et al. (2016). Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol 431, 62-70. doi:10.1016/j.mce.2016.05.004
Richard, A. M., Huang, R., Waidyanatha, S. et al. (2021). The Tox21 10K compound library: Collaborative chemistry advancing toxicology. Chem Res Toxicol 34, 189-216. doi:10.1021/acs.chemrestox.0c00264
Rodrigues, M., Griffith, L. G. and Wells, A. (2010). Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther 1, 32. doi:10.1186/scrt32
Russo, D. P., Strickland, J., Karmaus, A. L. et al. (2019). Nonanimal models for acute toxicity evaluations: Applying data-driven profiling and read-across. Environ Health Perspect 127, 47001. doi:10.1289/ehp3614
Saili, K. S., Franzosa, J. A., Baker, N. C. et al. (2019). Systems modeling of developmental vascular toxicity. Curr Opin Toxicol 15, 55-63. doi:10.1016/j.cotox.2019.04.004
Schönwasser, D. C., Marais, R. M., Marshall, C. J. et al. (1998). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18, 790-798. doi:10.1128/mcb.18.2.790
Sipes, N. (2022). CompTox Chemicals Dashboard. The United States Environmental Protection Agency’s Center for Computational Toxicology and Exposure. Presentation. doi:10.23645/epacomptox.19723420
Solimeo, R., Zhang, J., Kim, M. et al. (2012). Predicting chemical ocular toxicity using a combinatorial QSAR approach. Chem Res Toxicol 25, 2763-2769. doi:10.1021/tx300393v
Song, S., Liu, B., Habibie, H. et al. (2021). D-dopachrome tautomerase contributes to lung epithelial repair via atypical chemokine receptor 3-dependent Akt signaling. EBioMedicine 68, 103412. doi:10.1016/j.ebiom.2021.103412
Sui, Y., Park, S.-H., Wang, F. et al. (2018). Perinatal bisphenol A exposure increases atherosclerosis in adult male PXR-humanized mice. Endocrinology 159, 1595-1608. doi:10.1210/en.2017-03250
Szczepanska-Sadowska, E. (2022). The heart as a target of vasopressin and other cardiovascular peptides in health and cardiovascular diseases. Int J Mol Sci 23, 14414. doi:10.3390/ijms232214414
Takimoto, E. and Kass, D. A. (2007). Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49, 241-248. doi:10.1161/01.HYP.0000254415.31362.a7
Tal, T., Kilty, C., Smith, A. et al. (2017). Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity. Reprod Toxicol 70, 70-81. doi:10.1016/j.reprotox.2016.12.004
Tomasiak, M., Stelmach, H., Rusak, T. et al. (2008). Vasopressin acts on platelets to generate procoagulant activity. Blood Coagul Fibrinolysis 19, 615-624. doi:10.1097/mbc.0b013e328309905d
United Nations (2001). Stockholm Convention on Persistent Organic Pollutants.
Urbani, C., Mattiello, A., Ferri, G. et al. (2021). PCB153 reduces apoptosis in primary cultures of murine pituitary cells through the activation of NF-κB mediated by PI3K/Akt. Mol Cell Endocrinol 520, 111090. doi:10.1016/j.mce.2020.111090
Villablanca, A., Lubahn, D., Shelby, L. et al. (2004). Susceptibility to early atherosclerosis in male mice is mediated by estrogen receptor α. Arterioscler Thromb Vasc Biol 24, 1055-1061. doi:10.1161/01.atv.0000130467.65290.d4
Wang, P., Wang, S. C., Yang, H. et al. (2019). Therapeutic potential of oxytocin in atherosclerotic cardiovascular disease: Mechanisms and signaling pathways. Front Neurosci 13, 454. doi:10.3389/fnins.2019.00454
Wilm, A., Garcia de Lomana, M., Stork, C. et al. (2021). Predicting the skin sensitization potential of small molecules with machine learning models trained on biologically meaningful descriptors. Pharmaceuticals (Basel) 14, 790. doi:10.3390/ph14080790
Wong, P. W., Brackney, W. R. and Pessah, I. N. (1997). Ortho-substituted polychlorinated biphenyls alter microsomal calcium transport by direct interaction with ryanodine receptors of mammalian brain. J Biol Chem 272, 15145-15153. doi:10.1074/jbc.272.24.15145
Yang, C., Tarkhov, A., Marusczyk, J. et al. (2015). New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling. J Chem Inf Model 55, 510-528. doi:10.1021/ci500667v
Zhang, M., Zhu, R. and Zhang, L. (2020). Triclosan stimulates human vascular endothelial cell injury via repression of the PI3K/Akt/mTOR axis. Chemosphere 241, 125077. doi:10.1016/j.chemosphere.2019.125077
Zhang, Z. R., Li, J. H., Li, S. et al. (2014). In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from salvia miltiorrhiza. PLoS One 9, e100416. doi:10.1371/journal.pone.0100416
Zhao, L., Russo, D. P., Wang, W. et al. (2020). Mechanism-driven read-across of chemical hepatotoxicants based on chemical structures and biological data. Toxicol Sci 174, 178-188. doi:10.1093/toxsci/kfaa005
Zhou, Y., Zhu, X., Cui, H. et al. (2021). The role of the VEGF family in coronary heart disease. Front Cardiovasc Med 8, 738325. doi:10.3389/fcvm.2021.738325