Improved identification of human hepatotoxic potential by summary variables of gene expression
Main Article Content
Abstract
Prediction of hepatotoxicity in humans remains an unresolved challenge. Recently, an in-vitro/in-silico-method was established to predict blood concentrations of test compounds with an increased risk of causing human hepatotoxicity. In the present study, we addressed the question whether gene expression data can improve the quality of hepatotoxicity prediction compared to cytotoxicity analysis alone. A particular challenge is that high-dimensional gene expression data must be summarized into variables that allow for the determination of the lowest test compound concentration that causes altered gene expression. To address this challenge, we analyzed 60 hepatotoxic and non-hepatotoxic substances in a concentration dependent manner for cytotoxicity and expression of 3,524 probes, whose expression were previously reported to be influenced by hepatotoxicants. The toxicity separation index (TSI) was applied to quantify how well specific summary variables of gene expression are able to differentiate between the set of hepatotoxic and non-hepatotoxic substances. The best TSI was obtained when the lowest concentration of a test compound was considered positive that led to differential expression of two genes when compared to vehicle controls. Furthermore, the best gene expression-based summary variable was superior to cytotoxicity-based variables alone, and the combination of the best summary variables of gene expression and cytotoxicity data further improved the TSI compared to each category alone. In conclusion, the method used to derive summary variables of gene expression is critical and the best summary variables improve the prediction of hepatotoxic substances in relation to oral doses and blood concentrations in humans.
Plain language summary
Liver injury is a relevant side effect of many drugs. It represents the most common cause of acute liver failure in Western countries as well as the most common reason for late-stage drug development failure or withdrawal of drugs from the market. We show that genome-wide gene expression analysis of drug-exposed cultured human hepatocytes can differentiate between hepatotoxic and non-hepatotoxic substances. A precondition, is that the multivariate gene expression variables are summarized by the here described technique to a single variable that indicates the lowest concentration where a test substances begins to influence gene expression. A second precondition is that testing includes the plasma peak concentration of the test compounds for therapeutic doses of the respective compounds. The here presented in vitro/in silico procedure can reduce the number of animals needed in pre-clinical safety studies as liver damaging drug candidates would be detected prior to the studies in rodents.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Adeluwa, T., McGregor, B. A., Guo, K. et al. (2021). Predicting Drug-Induced Liver Injury Using Machine Learning on a Diverse Set of Predictors. Front Pharmacol 12, 648805. doi:10.3389/fphar.2021.648805
Albrecht, W., Kappenberg, F., Brecklinghaus, T. et al. (2019). Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol 93, 1609-1637. doi:10.1007/s00204-019-02492-9F
Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Statist Soc B 57, 289-300. doi:10.1111/j.2517-6161.1995.tb02031
Brecklinghaus, T., Albrecht, W., Duda, J. et al. (2022a). In vitro/in silico prediction of drug-induced steatosis in relation to oral doses and blood concentrations by the Nile Red assay. Toxicol Lett 368, 33-46. doi:10.1016/j.toxlet.2022.08.006
Brecklinghaus, T., Albrecht, W., Kappenberg, F. et al. (2022b). The export inhibition assay improves the separation of hepatotoxic from non-hepatotoxic compounds. Chem Biol Interact 351, 109728. doi:10.1016/j.cbi.2021.109728
Chan, R. and Benet, L. Z. (2018a). Measures of BSEP Inhibition In vitro Are Not Useful Predictors of DILI Toxicol Sci 162, 499-508. doi:10.1093/toxsci/kfx284
Chan, R. and Benet, L. Z. (2018b). Evaluation of the Relevance of DILI Predictive Hypotheses in Early Drug Develop-ment: Review of In Vitro Methologies vs BDDCS Classification Toxicol Res 7, 358-370. doi:10.1039/C8TX00016F
Chan, R. and Benet, L. Z. (2017). Evaluation of DILI Predictive Hypotheses in Early Drug Development. Chem Res Toxicol 30, 1017-1029. doi:10.1021/acs.chemrestox.7b00025
Chen, M., Suzuki, A. S., Thakkar, S. et al. (2016). DILIrank: the largest reference drug list ranked by the risk for devel-oping drug-induced liver injury in humans. Drug Discov Today 21, 648-653. doi:10.1016/j.drudis.2016.02.015
Chen, M., Vijay, V., Shi, Q. et al. (2011). FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury. Drug Discov Today 16, 697-703. doi:10.1016/j.drudis.2016.02.015
DeLong, E. R., DeLong, D. M. and Clarke-Pearson, D. L. (1988). Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 44, 837-45. doi:10.2307/2531595
Dichamp, J., Cellière, G., Ghallab, A. et al.(2023). In vitro to in vivo acetaminophen hepatotoxicity extrapolation using classical schemes, pharmacodynamic models and a multiscale spatial-temporal liver twin. Front Bioeng Bio-technol 11, 1049564. doi:10.3389/fbioe.2023.1049564
Ghallab, A., Hofmann, U., Sezgin, S. et al. (2019). Bile Microinfarcts in Cholestasis Are Initiated by Rupture of the Api-cal Hepatocyte Membrane and Cause Shunting of Bile to Sinusoidal Blood. Hepatology 69, 666-683. doi:10.1002/hep.30213
Godoy, P., Schmidt-Heck, W., Natarajan, K. et al. (2015). Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. J Hepatol 63, 934-42. doi:10.1016/j.jhep.2015.05.013. Erratum in: J Hepatol (2016) 64(2):525-526. doi:10.1016/j.jhep.2015.11.003
Godoy, P., Widera, A., Schmidt-Heck, W. et al. (2016). Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue. Arch Toxicol 90, 2513-29. doi:10.1007/s00204-016-1761-4
Grinberg, M., Stöber, R. M., Edlund, K. et al. (2014). Toxicogenomics directory of chemically exposed human hepato-cytes. Arch Toxicol 88, 2261-87. doi:10.1007/s00204-014-1400-x
Hengstler, J. G., van der Burg, B., Steinberg, P. et al. (1999). Interspecies differences in cancer susceptibility and toxici-ty. Drug Metab Rev 31, 917-70. doi:10.1081/dmr-100101946
Jansen, P. L. M., Ghallab, A., Vartak, N. et al. (2017). The ascending pathophysiology of cholestatic liver disease. Hepa-tology 65, 722-738. doi:10.1002/hep.28965
Jia, X., Wen, X., Russo, D. P. et al. (2022). Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and in vitro screening assay J Hazard Materials 436. doi:10.1016/j.jhazmat.2022.129193
Jiang, X. (2013). PhD thesis: Estimation of Effective Concentrations from in Vitro Dose-Response Data Using the Log-Logistic Model. Medical Faculty of Ruprecht-Karls-University in Heidelberg.
Kappenberg, F., Grinberg, M., Jiang, X. et al. (2021). Comparison of Observation-Based and Model-Based Identification of Alert Concentrations from Concentration–Expression Data. Bioinformatics 37, 1990–96. doi:10.1093/bioinformatics/btab043
Kawaguchi, M., Nukaga, T., Sekine, S. et al. (2020). Mechanism-based integrated assay systems for the prediction of drug-induced liver injury. Toxicol Appl Pharmacol 394, 114958. doi:10.1016/j.taap.2020.114958
Khetani, S. R., Kanchager, C., Ukairo, O. et al. (2013). Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans Toxicol Sci 132, 107-117. doi:10.1093/toxsci/kfs326
Kunnen, S. J., Arnesdotter, E., Willenbockel, C. T. et al. (2024). Qualitative and quantitative concentration-response modelling of gene co-expression networks to unlock hepatotoxic mechanisms for next generation chemical safety assessment. ALTEX 41, 213-232 doi:10.14573/altex.2309201
Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse outcome pathways: opportunities, limitations and open ques-tions Arch Toxicol. 91, 3477-3505. doi:10.1007/s00204-017-2045-3
Liu, A., Walter, M., Wright, P. et al. (2021). Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure Biol Direct 16, 6. doi:10.1186/s13062-020-00285-0
Love, M. I., Huber, W. and Anders, S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol 15, 550. doi:10.1186/s13059-014-0550-8
Niemeijer, M., Więcek W., Fu, S. et al. (2024). Mapping Interindividual Variability of Toxicodynamics Using High-Throughput Transcriptomics and Primary Human Hepatocytes from Fifty Donors. Environ Health Perspect 132, 37005. doi:10.1289/EHP11891
Proctor, W. R., Foster, A. J., Vogt, J. et al. (2017). Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury Arch Toxicol. 91, 2849-2863. doi:10.1007/s00204-017-2002-1
Rao, M., Nassiri, V., Alhambra, C. et al. (2023). AI/ML Models to Predict the Severity of Drug-Induced Liver Injury for Small Molecules. Chem Res Toxicol. 36, 1129-1139. doi:10.1021/acs.chemrestox.3c00098
Ritz, C., Baty, F. C., Streibig, J. C. et al. (2015). Dose-Response Analysis Using R. PLOS ONE 10, e0146021. doi:10.1371/journal.pone.0146021
Robertson, T., Wright, F. T. and Dykstra, R. L.(1988). Order Restricted Statistical Inference. New York USA: Wiley ISBN: 0471917877
Sachinidis, A., Albrecht, W., Nell, P. et al. (2019). Road Map for Development of Stem Cell-Based Alternative Test Meth-ods Trends Mol Med 25, 470-481. doi:10.1016/j.molmed.2019.04.003
Schnabl, B., Arteel, G. E., Stickel, F. et al. (2022). Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. Z Gastroenterol 60, 36-44. doi:10.1055/a-1714-9330
Stolte, M., Albrecht, W., Brecklinghaus, T. et al. (2023). Classification of hepatotoxicity of compounds based on cytotox-icity assays is improved by additional interpretable summaries of high-dimensional gene expression data. Comput Toxicol 28, 100288. doi:10.1016/j.comtox.2023.100288
Thakkar, S., Li, T., Liu, Z. et al. (2020). Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today 25, 201-208. doi:10.1016/j.drudis.2019.09.022
Vartak, N., Damle-Vartak, A., Richter, B. et al. (2016). Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology 63, 951-64. doi:10.1002/hep.28373
Vorrink, S. U., Zhou, Y., Ingelman-Sundberg. M. et al. (2018). Prediction of Drug-Induced Hepatotoxicity Using Long-Term Stable Primary Hepatic 3D Spheroid Cultures in Chemically Defined Conditions. Toxicol Sci 163, 655-665. doi:10.1093/toxsci/kfy058
Vucur, M., Ghallab, A., Schneider, A. T. et al. (2023). Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 56, 1578-1595. doi:10.1016/j.immuni.2023.05.017
Wu, C.-Y. and Benet, L. Z. (2005). Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22, 11-23. doi:10.1007/s11095-004-9004-4
Yeakley, J. M., Shepard, P. J., Goyena, D. E. et al. (2017). A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One 12, e0178302. doi:10.1371/journal.pone.0178302
Xu, J. J., Henstock, P. V., Dunn, M. C. et al. (2008). Cellular Imaging Predictions of Clinical Drug-Induced Liver Injury. Toxicol Sci 105, 97-105. doi:10.1093/toxsci/kfn109
Zhu, A., Ibrahim, J.G. and Love, M. I. (2019). Heavy-Tailed Prior Distributions for Sequence Count Data: Removing the Noise and Preserving Large Differences. Bioinformatics 35, 2084-2092. doi:10.1093/bioinformatics/bty895