Characterization of the C17.2 cell line as testing system for endocrine disruption-induced developmental neurotoxicity
Main Article Content
Abstract
Hormone signaling plays an essential role during fetal life and is vital for brain development. Endocrine-disrupting chemicals can interfere with the hormonal milieu during this critical time-period, disrupting key neurodevelopmental processes. Hence, there is a need for the development of assays that evaluate developmental neurotoxicity (DNT) induced by an endocrine mode of action. Herein, we evaluated the applicability of the neural progenitor C17. 2 cell-line, as an in vitro test system to aid in the detection of endocrine disruption (ED) induced DNT. For this, C17.2 cells were exposed during 10 days of differentiation to agonists and antagonists of the thyroid hormone (Thr), glucocorticoid (Gr), retinoic acid (Rar), retinoic x (Rxr), oxysterols (Lxr), estrogen (Er), androgen (Ar), and peroxisome proliferator activated delta (Pparβ/δ) receptors, as well as to the agonist of the vitamin D (Vdr) receptor. Upon exposure and differentiation, neuronal morphology (neurite outgrowth and branching), and the percentage of neurons in culture were assessed by immunofluorescence. For this, the cells were incubated with Hoechst (nuclear staining) and stained for βIII-tubulin (neuronal marker). The C17.2 cells were responsive to the Rar, Rxr and Pparβ/δ agonists which decreased neurite outgrowth and branching. Additionally, exposure to the Gr agonist increased the number of cells differentiating into neurons, while exposure to the Rxr agonist had the opposite effect. With this approach, we have identified that the C17.2 cells are responsive to Gr, Rar, Rxr, and Pparβ/δ agonists, hence contributing to the development of test systems for hazard assessment of ED-induced DNT.
Plain language summary
Endocrine disrupting chemicals (EDCs) interfere with hormonal signaling. As hormones play a vital role for an organism’s development, EDC exposure is of high concern. In European regulations, the use of a chemical can be restricted if its toxicity is mediated by hormonal interference. A number of EDCs affect brain development. However, in animal tests, it is impossible to prove that a chemical induces developmental neurotoxicity (DNT) via endocrine disruption (ED). Furthermore, the regulatory DNT tests require large amounts of animals. Thus, there is an urgent need for in vitro test systems to identify ED-induced DNT. Herein we present the development of such a method based on the murine neural progenitor cell-line C17.2 with which neuronal differentiation processes can be mimicked. We show that differentiation of C17.2 cells are sensitive to retinoid, glucocorticoid, and peroxisome proliferator activated receptor signaling disruption, thus providing an alternative method for identifying ED-induced DNT.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Abu-Abed, S., Dollé, P., Metzger, D. et al. (2001). The retinoic acid-metabolizing enzyme, cyp26a1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15, 226-240. doi:10.1101/gad.855001
Allen Institute for Brain Science, D. (2010). Allen developing human brain atlas: Developmental transcriptome [da-taset]. Available from brainspan.Org. Rrid:Scr_008083 | primary publication: Miller, j. A., ding, s.-l., et al. (2014). Transcriptional landscape of the prenatal human brain. Nature 508, 199-206. doi:10.1038/nature13185
Anacker, C., Cattaneo, A., Luoni, A. et al. (2013). Glucocorticoid-related molecular signaling pathways regulating hip-pocampal neurogenesis. Neuropsychopharmacology 38, 872-883. doi:10.1038/npp.2012.253
Andersson, N., Arena, M., Auteri, D. et al. (2018). Guidance for the identification of endocrine disruptors in the context of regulations (eu) no 528/2012 and (ec) no 1107/2009. EFSA journal 16, e05311. doi:10.2903/j.efsa.2018.5311
Attoff, K., Kertika, D., Lundqvist, J. et al. (2016). Acrylamide affects proliferation and differentiation of the neural progenitor cell line c17.2 and the neuroblastoma cell line sh-sy5y. Toxicol In Vitro 35, 100-111. doi:10.1016/j.tiv.2016.05.014
Attoff, K., Gliga, A., Lundqvist, J. et al. (2017). Whole genome microarray analysis of neural progenitor c17.2 cells during differentiation and validation of 30 neural mrna biomarkers for estimation of developmental neurotox-icity. PLoS One 12, e0190066. doi:10.1371/journal.pone.0190066
Barbieri, R. L., Saltzman, D., Phillippe, M. et al. (1985). Elevated beta-human chorionic gonadotropin and testosterone in cord serum of male infants of diabetic mothers. J Clin Endocrinol Metab 61, 976-979. doi:10.1210/jcem-61-5-976
Baud, O. and Berkane, N. (2019). Hormonal changes associated with intra-uterine growth restriction: Impact on the developing brain and future neurodevelopment. Frontiers in endocrinology 10, 179. doi:10.3389/fendo.2019.00179
Blum, J., Masjosthusmann, S., Bartmann, K. et al. (2023). Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals. Chemosphere 311, 137035. doi:10.1016/j.chemosphere.2022.137035
Bornehag, C. G., Engdahl, E., Unenge Hallerbäck, M. et al. (2021). Prenatal exposure to bisphenols and cognitive func-tion in children at 7 years of age in the swedish selma study. Environ Int 150, 106433. doi:10.1016/j.envint.2021.106433
Calvo, R. M., Jauniaux, E., Gulbis, B. et al. (2002). Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. The Journal of Clinical Endocrinology & Metabolism 87, 1768-1777. doi:10.1210/jcem.87.4.8434
Chan, S. Y., Vasilopoulou, E. and Kilby, M. D. (2009). The role of the placenta in thyroid hormone delivery to the fetus. Nature clinical practice Endocrinology & metabolism 5, 45-54. doi:10.1038/ncpendmet1026
Chandrasekaran, V., Zhai, Y., Wagner, M. et al. (2000). Retinoic acid regulates the morphological development of sym-pathetic neurons. Journal of Neurobiology 42, 383-393. doi:10.1002/(SICI)1097-4695(200003)42:4<383::AID-NEU1>3.0.CO;2-9
Chatonnet, F., Picou, F., Fauquier, T. et al. (2011). Thyroid hormone action in cerebellum and cerebral cortex develop-ment. Journal of Thyroid Research 2011, doi:10.4061/2011/145762
Chatonnet, F., Guyot, R., Picou, F. et al. (2012). Genome-wide search reveals the existence of a limited number of thyroid hormone receptor alpha target genes in cerebellar neurons. PLoS One 7, e30703. doi:10.1371/journal.pone.0030703
Chatonnet, F., Guyot, R., Benoît, G. et al. (2013). Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc Natl Acad Sci U S A 110, E766-775. doi:10.1073/pnas.1210626110
Clagett‐Dame, M., McNeill, E. M. and Muley, P. D. (2006). Role of all‐trans retinoic acid in neurite outgrowth and ax-onal elongation. Journal of neurobiology 66, 739-756. doi:doi:10.1002/neu.20241
Combarnous, Y. and Nguyen, T. M. D. (2019). Comparative overview of the mechanisms of action of hormones and endocrine disruptor compounds. Toxics 7, 5. doi:10.3390/toxics7010005
Combarnous, Y. and Nguyen, T. M. D. (2022). Membrane hormone receptors and their signaling pathways as targets for endocrine disruptors. Journal of Xenobiotics 12, 64-73. doi:10.3390/jox12020007
Crofton, K. M. and Mundy, W. R. (2021). External scientific report on the interpretation of data from the developmen-tal neurotoxicity in vitro testing assays for use in integrated approaches for testing and assessment. EFSA Sup-porting Publications 18, 6924E. doi:10.2903/sp.efsa.2021.EN-6924
Crouzet, T., Grignard, E., Brion, F. et al. (2023). Readedtest: A tool to assess the readiness of in vitro test methods under development for identifying endocrine disruptors. Environment International 174, 107910. doi:10.1016/j.envint.2023.107910
de Escobar, G. M., Ares, S., Berbel, P. et al. (2008). The changing role of maternal thyroid hormone in fetal brain de-velopment. Seminars in perinatology, Elsevier 32, 380-386. doi:10.1053/j.semperi.2008.09.002
Denuzière, A. and Ghersi-Egea, J.-F. (2022). Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. NeuroToxicology 91, 100-118. doi:10.1016/j.neuro.2022.04.004
Derakhshan, A., Shu, H., Broeren, M. A. C. et al. (2021). Association of phthalate exposure with thyroid function dur-ing pregnancy. Environ Int 157, 106795. doi:10.1016/j.envint.2021.106795
Derakhshan, A., Kortenkamp, A., Shu, H. et al. (2022). Association of per-and polyfluoroalkyl substances with thyroid homeostasis during pregnancy in the selma study. Environment international 167, 107420. doi:10.1016/j.envint.2022.107420
Di Loreto, S., D'Angelo, B., D'Amico, M. et al. (2007). Pparβ agonists trigger neuronal differentiation in the human neuroblastoma cell line sh‐sy5y. Journal of cellular physiology 211, 837-847. doi:10.1002/jcp.20996
Diez del Corral, R., Olivera-Martinez, I., Goriely, A. et al. (2003). Opposing fgf and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65-79. doi:10.1016/s0896-6273(03)00565-8
Dollé, P., Fraulob, V., Kastner, P. et al. (1994). Developmental expression of murine retinoid x receptor (rxr) genes. Mechanisms of development 45, 91-104. doi:10.1016/0925-4773(94)90023-X
Dollé, P. (2009). Developmental expression of retinoic acid receptors (rars). Nucl Recept Signal 7, e006. doi:10.1621/nrs.07006
Dusza, H. M., Manz, K. E., Pennell, K. D. et al. (2022). Identification of known and novel nonpolar endocrine disrup-tors in human amniotic fluid. Environment international 158, 106904. doi:10.1016/j.envint.2021.106904
EFSA, S. C., Hardy, A., Benford, D. et al. (2017). Update: Use of the benchmark dose approach in risk assessment. EFSA Journal 15, e04658. doi:10.2903/j.efsa.2017.4658
Ejaredar, M., Nyanza, E. C., Ten Eycke, K. et al. (2015). Phthalate exposure and childrens neurodevelopment: A sys-tematic review. Environmental research 142, 51-60. doi:10.1016/j.envres.2015.06.014
Snyder, E. Y., Deitcher, D. L., Walsh, C. et al. (1992). Multipotent neural cell lines can engraft and participate in devel-opment of mouse cerebellum. Cell 68, 33-51. doi:10.1016/0092-8674(92)90204-p
Firestein, M. R., Romeo, R. D., Winstead, H. et al. (2022). Elevated prenatal maternal sex hormones, but not placental aromatase, are associated with child neurodevelopment. Hormones and Behavior 140, 105125. doi:10.1016/j.yhbeh.2022.105125
Fritsche, E., Crofton, K. M., Hernandez, A. F. et al. (2017). Oecd/efsa workshop on developmental neurotoxicity (dnt): The use of non-animal test methods for regulatory purposes. Altex 34, 311-315. doi:10.14573/altex.1701171
Gitau, R., Cameron, A., Fisk, N. M. et al. (1998). Fetal exposure to maternal cortisol. Lancet 352, 707-708. doi:10.1016/S0140-6736(05)60824-0
Gliga, A. R., Edoff, K., Caputo, F. et al. (2017). Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci Rep 7, 9284. doi:10.1038/s41598-017-09430-8
Goncalves, M. B. C., Boyle, J., Webber, D. J. et al. (2005). Timing of the retinoid-signalling pathway determines the expression of neuronal markers in neural progenitor cells. Developmental biology 278, 60-70. doi:10.1016/j.ydbio.2004.10.015
Gore, A. C., Martien, K. M., Gagnidze, K. et al. (2014). Implications of prenatal steroid perturbations for neurodevel-opment, behavior, and autism. Endocr Rev 35, 961-991. doi:10.1210/er.2013-1122
Grandjean, P. and Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. The lancet neurology 13, 330-338. doi:10.1016/S1474-4422(13)70278-3
Grignard, E., Håkansson, H. and Munn, S. (2020). Regulatory needs and activities to address the retinoid system in the context of endocrine disruption: The european viewpoint. Reproductive Toxicology 93, 250-258. doi:10.1016/j.reprotox.2020.03.002
Haskell, B. E., Stach, R. W., Werrbach-Perez, K. et al. (1987). Effect of retinoic acid on nerve growth factor receptors. Cell Tissue Res 247, 67-73. doi:10.1007/bf00216548
Hollis, B. W. and Pittard III, W. B. (1984). Evaluation of the total fetomaternal vitamin d relationships at term: Evidence for racial differences. The Journal of Clinical Endocrinology & Metabolism 59, 652-657. doi:10.1210/jcem-59-4-652
Hume, R., Simpson, J., Delahunty, C. et al. (2004). Human fetal and cord serum thyroid hormones: Developmental trends and interrelationships. The Journal of Clinical Endocrinology & Metabolism 89, 4097-4103. doi:10.1210/jc.2004-0573
IPCS (2002). Global assessment of the state of the science of endocrine disruptors. World Health Organization, Interna-tional Programme on Chemical Safety https://www.who.int/publications/i/item/WHO-PSC-EDC-02.2
Iturbide, A., Ruiz Tejeda Segura, M. L., Noll, C. et al. (2021). Retinoic acid signaling is critical during the totipotency window in early mammalian development. Nat Struct Mol Biol 28, 521-532. doi:10.1038/s41594-021-00590-w
Janesick, A., Wu, S. C. and Blumberg, B. (2015). Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 72, 1559-1576. doi:10.1007/s00018-014-1815-9
Jansen, T. A., Korevaar, T. I. M., Mulder, T. A. et al. (2019). Maternal thyroid function during pregnancy and child brain morphology: A time window-specific analysis of a prospective cohort. Lancet Diabetes Endocrinol 7, 629-637. doi:10.1016/s2213-8587(19)30153-6
Jiang, Y., Li, J., Xu, S. et al. (2020). Prenatal exposure to bisphenol a and its alternatives and child neurodevelopment at 2 years. Journal of hazardous materials 388, 121774. doi:10.1016/j.jhazmat.2019.121774
Johansson, N., Fredriksson, A. and Eriksson, P. (2008). Neonatal exposure to perfluorooctane sulfonate (pfos) and perfluorooctanoic acid (pfoa) causes neurobehavioural defects in adult mice. Neurotoxicology 29, 160-169. doi:10.1016/j.neuro.2007.10.008
Keßel, H. E., Masjosthusmann, S., Bartmann, K. et al. (2023). The impact of biostatistics on hazard characterization using in vitro developmental neurotoxicity assays. ALTEX - Alternatives to animal experimentation. 40(4), 619–634. doi:10.14573/altex.2210171
Kim, M., Habiba, A., Doherty, J. M. et al. (2009). Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev Biol 328, 456-471. doi:10.1016/j.ydbio.2009.02.001
Kim, S., Yang, S., Kim, J. et al. (2023). Glucocorticoid receptor down-regulation affects neural stem cell proliferation and hippocampal neurogenesis. Molecular Neurobiology 1-14. doi:10.1007/s12035-023-03785-y
Koutaki, D., Paltoglou, G., Vourdoumpa, A. et al. (2021). The impact of bisphenol a on thyroid function in neonates and children: A systematic review of the literature. Nutrients 14, 168. doi:10.3390/nu14010168
Krust, A., Kastner, P., Petkovich, M. et al. (1989). A third human retinoic acid receptor, hrar-gamma. Proceedings of the National Academy of Sciences 86, 5310-5314. doi:10.1073/pnas.86.14.5310
Lein, P., Silbergeld, E., Locke, P. et al. (2005). In vitro and other alternative approaches to developmental neurotoxicity testing (dnt). Environmental toxicology and pharmacology 19, 735-744. doi:10.1016/j.etap.2004.12.035
Lin, H., Yuan, K., Li, L. et al. (2015). In utero exposure to diethylhexyl phthalate affects rat brain development: A behavioral and genomic approach. International Journal of Environmental Research and Public Health 12, 13696-13710. doi:10.3390/ijerph121113696
Liu, D., Yan, S., Liu, Y. et al. (2024). Association of prenatal exposure to perfluorinated and polyfluoroalkyl substanc-es with childhood neurodevelopment: A systematic review and meta-analysis. Ecotoxicology and Environmen-tal Safety 271, 115939. doi:10.1016/j.ecoenv.2024.115939
Lundqvist, J., El Andaloussi-Lilja, J., Svensson, C. et al. (2013). Optimisation of culture conditions for differentiation of c17.2 neural stem cells to be used for in vitro toxicity tests. Toxicol In Vitro 27, 1565-1569. doi:10.1016/j.tiv.2012.04.020
Lupu, D.-I., Cediel Ulloa, A. and Rüegg, J. (2023). Endocrine-disrupting chemicals and hippocampal development: The role of estrogen and androgen signaling. Neuroendocrinology 113, 1193-1214. doi:10.1159/000531669
Lupu, D., Andersson, P., Bornehag, C. G. et al. (2020). The endpoints project: Novel testing strategies for endocrine disruptors linked to developmental neurotoxicity. Int J Mol Sci 21, doi:10.3390/ijms21113978
Maden, M. (2002). Retinoid signalling in the development of the central nervous system. Nature Reviews Neuroscience 3, 843-853. doi:10.1038/nrn963
Maden, M. (2007). Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8, 755-765. doi:10.1038/nrn2212
McCaffery, P. J., Adams, J., Maden, M. et al. (2003). Too much of a good thing: Retinoic acid as an endogenous regula-tor of neural differentiation and exogenous teratogen. Eur J Neurosci 18, 457-472. doi:10.1046/j.1460-9568.2003.02765.x
Meng, L., Gui, S., Ouyang, Z. et al. (2023). Low-dose bisphenols exposure sex-specifically induces neurodevelopmen-tal toxicity in juvenile rats and the antagonism of egcg. Journal of Hazardous Materials 459, 132074. doi:10.1016/j.jhazmat.2023.132074
Miranda-Negrón, Y. and García-Arrarás, J. E. (2022). Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front Neurosci 16, 1006037. doi:10.3389/fnins.2022.1006037
Mollard, R., Viville, S., Ward, S. J. et al. (2000). Tissue-specific expression of retinoic acid receptor isoform transcripts in the mouse embryo. Mech Dev 94, 223-232. doi:10.1016/s0925-4773(00)00303-8
Mounier, A., Georgiev, D., Nam, K. N. et al. (2015). Bexarotene-activated retinoid x receptors regulate neuronal differ-entiation and dendritic complexity. Journal of Neuroscience 35, 11862-11876. doi:10.1523/JNEUROSCI.1001-15.2015
Mundy, W. R., Padilla, S., Breier, J. M. et al. (2015). Expanding the test set: Chemicals with potential to disrupt mamma-lian brain development. Neurotoxicology and teratology 52, 25-35. doi:10.1016/j.ntt.2015.10.001
Nagamani, M., McDonough, P. G., Ellegood, J. O. et al. (1979). Maternal and amniotic fluid steroids throughout human pregnancy. Am J Obstet Gynecol 134, 674-680. doi:10.1016/0002-9378(79)90649-5
Niederreither, K. and Dollé, P. (2008). Retinoic acid in development: Towards an integrated view. Nat Rev Genet 9, 541-553. doi:10.1038/nrg2340
Odaka, H., Adachi, N. and Numakawa, T. (2017). Impact of glucocorticoid on neurogenesis. Neural regeneration re-search 12, 1028-1035. doi:10.4103/1673-5374.211174
OECD (2012). Detailed review paper on the state of the science on novel in vitro and in vivo screening and testing methods and endpoints for evaluating endocrine disruptors. Series on testing and assessment, no. 178. https://one.oecd.org/document/env/jm/mono(2012)23/en/pdf
OECD (2018). Revised guidance document 150 on standardised test guidelines for evaluating chemicals for endocrine disruption. OECD Series on Testing and Assessment, No. 150, OECD Publishing, Paris, doi:10.1787/9789264304741-en
OECD (2021). Detailed review paper on the retinoid system. Series on testing and assessment, no. 343. https://one.oecd.org/document/ENV/CBC/MONO(2021)20/en/pdf
OECD (2023). Initial recommendations on evaluation of data from the developmental neurotoxicity (dnt) in-vitro testing battery. OECD Series on Testing and Assessment, No. 377, OECD Publishing, Paris doi:10.1787/91964ef3-en
Peivasteh-roudsari, L., Barzegar-bafrouei, R., Sharifi, K. A. et al. (2023). Origin, dietary exposure, and toxicity of endo-crine-disrupting food chemical contaminants: A comprehensive review. Heliyon 9, doi:10.1016/j.heliyon.2023.e18140
Pironti, C., Ricciardi, M., Proto, A. et al. (2021). Endocrine-disrupting compounds: An overview on their occurrence in the aquatic environment and human exposure. Water 13, 1347. doi:10.3390/w13101347
Ponsonby, A.-L., Symeonides, C., Saffery, R. et al. (2020). Prenatal phthalate exposure, oxidative stress-related genetic vulnerability and early life neurodevelopment: A birth cohort study. Neurotoxicology 80, 20-28. doi:10.1016/j.neuro.2020.05.006
Préau, L., Fini, J. B., Morvan-Dubois, G. et al. (2015). Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1849, 112-121. doi:10.1016/j.bbagrm.2014.06.015
Quinn, S. D. and De Boni, U. (1991). Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro. In Vitro Cell Dev Biol 27, 55-62. doi:10.1007/bf02630895
Radio, N. M., Breier, J. M., Shafer, T. J. et al. (2008). Assessment of chemical effects on neurite outgrowth in pc12 cells using high content screening. Toxicological sciences 105, 106-118. doi:10.1093/toxsci/kfn114
Rice, D. and Barone Jr, S. (2000). Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environmental health perspectives 108, 511-533. doi:10.1289/ehp.00108s351
Roncati, L., Termopoli, V. and Pusiol, T. (2016). Negative role of the environmental endocrine disruptors in the human neurodevelopment. Frontiers in Neurology 7, 143. doi: doi:10.3389/fneur.2016.00143
Saibro‐Girardi, C., Scheibel, I. M., Santos, L. et al. (2023). Bexarotene drives the self‐renewing proliferation of adult neural stem cells, promotes neuron‐glial fate shift, and regulates late neuronal differentiation. Journal of Neu-rochemistry doi:10.1111/jnc.15998
Sakai, Y., Meno, C., Fujii, H. et al. (2001). The retinoic acid-inactivating enzyme cyp26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes & devel-opment 15, 213-225. doi:10.1101/gad.851501
Saluja, I., Granneman, J. G. and Skoff, R. P. (2001). Ppar δ agonists stimulate oligodendrocyte differentiation in tissue culture. Glia 33, 191-204. doi:10.1002/1098-1136(200103)33:3<191::AID-GLIA1018>3.0.CO;2-M
Santini, F., Chiovato, L., Ghirri, P. et al. (1999). Serum iodothyronines in the human fetus and the newborn: Evidence for an important role of placenta in fetal thyroid hormone homeostasis. The Journal of Clinical Endocrinology & Metabolism 84, 493-498. doi:10.1210/jcem.84.2.5439
Scheibe, R. J., Ginty, D. D. and Wagner, J. A. (1991). Retinoic acid stimulates the differentiation of pc12 cells that are deficient in camp-dependent protein kinase. J Cell Biol 113, 1173-1182. doi:10.1083/jcb.113.5.1173
Schug, T. T., Blawas, A. M., Gray, K. et al. (2015). Elucidating the links between endocrine disruptors and neurodevel-opment. Endocrinology 156, 1941-1951. doi:10.1210/en.2014-1734
Singh, L., Pressly, B., Mengeling, B. J. et al. (2016). Chasing the elusive benzofuran impurity of the thr antagonist nh-3: Synthesis, isotope labeling, and biological activity. The Journal of organic chemistry 81, 1870-1876. doi:10.1021/acs.joc.5b02665
Skogheim, T. S., Weyde, K. V. F., Aase, H. et al. (2021). Prenatal exposure to per-and polyfluoroalkyl substances (pfas) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children. Envi-ronmental Research 202, 111692. doi:10.1016/j.envres.2021.111692
Steichen, J. J., Tsang, R. C., Gratton, T. L. et al. (1980). Vitamin d homeostasis in the perinatal period: 1, 25-dihydroxyvitamin d in maternal, cord, and neonatal blood. New England Journal of Medicine 302, 315-319. doi:10.1056/NEJM19800207302060
Stergiopoulos, A. and Politis, P. K. (2013). The role of nuclear receptors in controlling the fine balance between prolif-eration and differentiation of neural stem cells. Archives of Biochemistry and Biophysics 534, 27-37. doi:10.1016/j.abb.2012.09.009
Stewart, R., Christie, V. B. and Przyborski, S. A. (2003). Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes. Stem Cells 21, 248-256. doi:10.1634/stemcells.21-3-248
Thaller, C. and Eichele, G. (1987). Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327, 625-628. doi:10.1038/327625a0
Tigges, J., Schikowski, T. and Fritsche, E. (2021). Environmental exposures impact the nervous system in a life stage-specific manner. Neuroforum 27, 201-212. doi:10.1515/nf-2021-0021
Vandenberg, L. N., Colborn, T., Hayes, T. B. et al. (2012). Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocrine reviews 33, 378-455. doi:10.1210/er.2011-1050
Ved, H. S. and Pieringer, R. A. (1993). Regulation of neuronal differentiation by retinoic acid alone and in cooperation with thyroid hormone or hydrocortisone. Dev Neurosci 15, 49-53. doi:10.1159/000111316
Viberg, H., Lee, I. and Eriksson, P. (2013). Adult dose-dependent behavioral and cognitive disturbances after a single neonatal pfhxs dose. Toxicology 304, 185-191. doi:10.1016/j.tox.2012.12.013
Williams, G. R. (2008). Neurodevelopmental and neurophysiological actions of thyroid hormone. Journal of neuroen-docrinology 20, 784-794. doi:10.1111/j.1365-2826.2008.01733.x
Wuarin, L., Sidell, N. and de Vellis, J. (1990). Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int J Dev Neurosci 8, 317-326. doi:10.1016/0736-5748(90)90038-4
Xu, Y., Yang, X., Chen, D. et al. (2023). Maternal exposure to pesticides and autism or attention-deficit/hyperactivity disorders in offspring: A meta-analysis. Chemosphere 313, 137459. doi:10.1016/j.chemosphere.2022.137459
Yu, I. T., Lee, S.-H., Lee, Y.-S. et al. (2004). Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochemical and biophysical research communications 317, 484-490. doi:10.1016/j.bbrc.2004.03.071
Zhang, H., Wang, Z., Meng, L. et al. (2020). Maternal exposure to environmental bisphenol a impairs the neurons in hippocampus across generations. Toxicology 432, 152393. doi:10.1016/j.tox.2020.152393