Comparative evaluation of rat and human in vitro assays for evaluation of thyroid toxicity

Main Article Content

Laure Asselin , Audrey Baze, Betty Ory, Lucille Wiss, Amélie Schäfer, Liliia Horbal, Larry Higgins, Lysiane Richert
[show affiliations]

Abstract

The effects of ten test chemicals towards thyroid sodium-iodide symporter (NIS), thyroid peroxidase (TPO), and deiodinases (DIOs) type I, II, and III were evaluated in in vitro rat and human systems and compared. Test chemicals known to directly affect TH levels in vivo were confirmed to effectively inhibit at least one of the tested in vitro endpoints, without significant disparities between species, and the tested compounds known to not affect thyroid function, were found ineffective. Interestingly, Iodide Transport Blocker 5, a potent non-competitive iodine uptake inhibitor, exhibited effects beyond direct NIS inhibition, by impacting NIS function through ATP depletion, and also inhibited TPO and DIO1/2 enzymes, although to a lesser extent. Finally, while of the four hepatic inducers known to affect thyroid function indirectly in rats through increased TH metabolism in the liver, dexamethasone, phenobarbital and pregnenolone 16α-carbonitrile were found ineffective in the herein described inhibition tests, rifampicin decreased rat and human TPO activities, highlighting a potential direct effect on thyroid function. This study demonstrates the usefulness of data generated by the rat and human in vitro NIS, TPO and DIOs test systems described here to support risk-based decisions.


Plain language summary
This study evaluates three non-animal experimental approaches to study thyroid hormones. This is important because chemicals can affect thyroid hormones levels in the body if they promote excretion or inhibit synthesis. Ten chemicals were studied and include chemicals that are known to affect, known not to affect, and chemicals where it is not known if they affect thyroid hormones in the body. Regulation of thyroid hormones is highly conserved across species, but differences do exist between rats (commonly used to study chemical toxicity) and humans. These experiments show that for the specific mechanisms examined, there is no difference between rat and human systems. These techniques will facilitate screening of chemicals for potential effects on thyroid hormones long before they are studied in animals, thereby supporting the principles of replacement, reduction, and refinement (3Rs) in animal testing, enhancing our understanding and contribute to protecting human health.

Article Details

How to Cite
Asselin, L. (2024) “Comparative evaluation of rat and human in vitro assays for evaluation of thyroid toxicity”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2405072.
Section
Articles
References

Andersson, N., Arena, M., Auteri, D. et al. (2018). Guidance for the identification of endocrine disruptors in the con-text of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J 16, e05311. doi:10.2903/j.efsa.2018.5311

Barter, R. A. and Klaassen, C. D. (1992). UDP-glucuronosyltransferase inducers reduce thyroid hormone levels in rats by an extrathyroidal mechanism. Toxicol Appl Pharmacol 113, 36‑42. doi:10.1016/0041-008x(92)90006-e

Baze, A., Wiss, L., Horbal, L. et al. (2024). Comparison of in vitro thyroxine (T4) metabolism between Wistar rat and human hepatocyte cultures. Toxicol in Vitro 96, 105763. doi:10.1016/j.tiv.2023.105763

Bianco, A. C., Salvatore, D., Gereben, B. et al. (2002). Biochemistry, cellular and molecular biology, and physiologi-cal roles of the iodothyronine selenodeiodinases. Endocrine Rev 23, 38‑89. doi:10.1210/edrv.23.1.0455

Buckalew, A. R., Wang, J., Murr, A. S. et al. (2020). Evaluation of potential sodium-iodide symporter (NIS) inhibitors using a secondary Fischer rat thyroid follicular cell (FRTL-5) radioactive iodide uptake (RAIU) assay. Arch Toxicol 94, 873‑885. doi:10.1007/s00204-020-02664-y

Butt, C. M., Wang, D. and Stapleton, H. M. (2011). Halogenated phenolic contaminants inhibit the in vitro activity of the thyroid-regulating deiodinases in human liver. Toxicol Sci 124, 339‑347. doi:10.1093/toxsci/kfr117

Carvalho, D. P. and Dupuy, C. (2017). Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 458, 6‑15. doi:10.1016/j.mce.2017.01.038

Clavel Rolland, N., Graslin, F., Schorsch, F. et al. (2024). Investigating the mechanisms of action of thyroid disrup-tors: A multimodal approach that integrates in vitro and metabolomic analysis. Toxicol in Vitro 100, 105911. doi:10.1016/j.tiv.2024.105911

Christensen, H. R., Simonsen, K., Hegedüs, L. et al. (1989). Influence of rifampicin on thyroid gland volume, thyroid hormones, and antipyrine metabolism. Acta Endocrinol 121, 406-410. doi:10.1530/acta.0.1210406

Crivellente, F., Hart, A., Hernandez-Jerez, A. F. et al. (2019). Establishment of cumulative assessment groups of pesticides for their effects on the thyroid. EFSA J 17, e05801. doi:10.2903/j.efsa.2019.5801

Darrouzet, E., Lindenthal, S., Marcellin, D. et al. (2014). The sodium/iodide symporter : State of the art of its molecu-lar characterization. Biochim Biophy Acta 1838(1PtB), 244‑253. doi:10.1016/j.bbamem.2013.08.013

Di Bernardo, J., Iosco, C. and Rhoden, K. J. (2011). Intracellular anion fluorescence assay for sodium/iodide sym-porter substrates. Analyt Biochem 415, 32‑38. doi:10.1016/j.ab.2011.04.017

Dong, H., Atlas, E. and Wade, M. G. (2019). Development of a non-radioactive screening assay to detect chemicals disrupting the human sodium iodide symporter activity. Toxicol in Vitro 57, 39‑47. doi:10.1016/j.tiv.2019.01.021

Dong, H., Godlewska, M. and Wade, M. G. (2020). A rapid assay of human thyroid peroxidase activity. Toxicol in Vitro 62, 104662. doi:10.1016/j.tiv.2019.104662

ECHA (2018). Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J 16, e05311. doi:10.2903/j.efsa.2018.5311

EC (2008). Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355. Legal status: In force; current consolidated version: 01/12/2023. ELI: http://data.europa.eu/eli/reg/2008/1272/oj

EC (2009). Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 con-cerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 1-50. http://data.europa.eu/eli/reg/2009/1107/oj

EU (2012). Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. OJ L 167, 1-123. http://data.europa.eu/eli/reg/2012/528/oj

Foster, J. R., Tinwell, H. and Melching-Kollmuss, S. (2021). A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 95, 807‑836. doi:10.1007/s00204-020-02961-6

Haines, C., Elcombe, B. M., Chatham, L. R. et al. (2018). Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cul-tured mouse, rat and human hepatocytes. Toxicology 396-397, 23–32. doi:10.1016/j.tox.2018.02.001

Hallinger, D. R., Murr, A. S., Buckalew, A. R. et al. (2017). Development of a screening approach to detect thyroid disrupting chemicals that inhibit the human sodium iodide symporter (NIS). Toxicol in Vitro 40, 66‑78. doi:10.1016/j.tiv.2016.12.006

Hassan, I., El-Masri, H., Ford, J. et al. (2020). Extrapolating In Vitro Screening Assay Data for Thyroperoxidase Inhi-bition to Predict Serum Thyroid Hormones in the Rat. Toxicol Sci 173, 280‑292. doi:10.1093/toxsci/kfz227

Higgins, L., Princivalle, M., Haines, C. et al. (2019). In vitro approaches to risk assess chemical-mediated changes in thyroid function. Poster presented at the 58th Annual Meeting and ToxExpo, Abstract #3159 https://www.toxicology.org/pubs/docs/Tox/2019Tox.pdf

Hingorani, M., Spitzweg, C., Vassaux, G. et al. (2010). The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targ 10, 242‑267. doi:10.2174/156800910791054194

Hood, A. and Klaassen, C. D. (2000). Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation. Toxicol Sci 55, 78‑84. doi:10.1093/toxsci/55.1.78

Hornung, M. W., Korte, J. J., Olker, J. H. et al. (2018). Screening the ToxCast Phase 1 Chemical Library for Inhibi-tion of Deiodinase Type 1 Activity. Toxicol Sci 162, 570‑581. doi:10.1093/toxsci/kfx279

International Programme on Chemical Safety. (‎2002)‎. Global assessment on the state of the science of endocrine disruptors. World Health Organization (https://iris.who.int/handle/10665/67357)

Iversen, P. W., Beck, B., Chen, Y.-F. et al. (2004). HTS Assay Validation. In S. Markossian, A. Grossman, M. Arkin et al. (Eds.), Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Transla-tional Sciences. http://www.ncbi.nlm.nih.gov/books/NBK83783/

Jahnke, G. D., Choksi, N. Y., Moore, J. A. and Shelby, M. D. (2004). Thyroid toxicants : Assessing reproductive health effects. Environ Health Perspec 112, 363‑368. doi:10.1289/ehp.6637

Kato, Y., Suzuki, H., Ikushiro, S. et al. (2005). Decrease in serum thyroxine level by phenobarbital in rats is not nec-essarily dependent on increase in hepatic UDP-glucuronosyltransferase. Drug Metab Dispos 33, 1608‑1612. doi:10.1124/dmd.105.005744

Kuiper, G. G. J. M., Klootwijk, W. and Visser, T. J. (2003). Substitution of cysteine for selenocysteine in the catalytic center of type III iodothyronine deiodinase reduces catalytic efficiency and alters substrate preference. En-docrinology 144, 2505‑2513. doi:10.1210/en.2003-0084

Lecat-Guillet, N., Merer, G., Lopez, R. et al. (2008). Small-molecule inhibitors of sodium iodide symporter function. Chembiochem 9, 889‑895. doi:10.1002/cbic.200700682

Lewandowski, T. A., Seeley, M. R. and Beck, B. D. (2004). Interspecies differences in susceptibility to perturbation of thyroid homeostasis : A case study with perchlorate. Regul Toxicol Pharmacol 39, 348‑362. doi:10.1016/j.yrtph.2004.03.002

Lindenthal, S., Lecat-Guillet, N., Ondo-Mendez, A. et al. (2009). Characterization of small-molecule inhibitors of the sodium iodide symporter. J Endocrinol 200, 357‑365. doi:10.1677/JOE-08-0246

Marty, M. S., Sauer, U. G., Charlton, A. et al. (2022). Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny-part III : How is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelop-mental effects? Crit Rev Toxicol 52, 546‑617. doi:10.1080/10408444.2022.2130166

Noyes, P. D., Friedman, K. P., Browne, P. et al. (2019). Evaluating Chemicals for Thyroid Disruption : Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. Environ Health Perspect 127, 95001. doi:10.1289/EHP5297

OCSPP. (2011). Aromatase Assay (Human Recombinant) Standard Evaluation Procedure. Guideline 890.1200. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0004

OECD (2018). Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption. OECD Series on Testing and Assessment, No. 150. OECD Publishing, Paris. https://www.oecd-ilibrary.org/content/publication/9789264304741-en

OECD (2023), Test No. 456: H295R Steroidogenesis Assay, OECD Guidelines for the Testing of chemicals, Section 4, OECD Publishing, Paris, doi:10.1787/9789264122642-en

Ohnhaus, E. E., Bürgi, H., Burger, A. and Studer, H. (1981). The effect of antipyrine, phenobarbitol and rifampicin on thyroid hormone metabolism in man. Eur J Clin Invest 11, 381–387. doi:10.1111/j.1365-2362.1981.tb02000.x

Ohnhaus, E. E., Gerber-Taras, E. and Park, B. K. (1983). Enzyme-inducing drug combinations and their effects on liver microsomal enzyme activity in man. Eur J Clin Pharmacol 24, 247‑250. doi:10.1007/BF00613826

Olker, J. H., Korte, J. J., Denny, J. S. et al. (2019). Screening the ToxCast Phase 1, Phase 2, and e1k Chemical Libraries for Inhibitors of Iodothyronine Deiodinases. Toxicol Sci 168, 430‑442. doi:10.1093/toxsci/kfy302

Ortiga-Carvalho, T. M., Chiamolera, M. I., Pazos-Moura, C. C. and Wondisford, F. E. (2016). Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 6, 1387‑1428. doi:10.1002/cphy.c150027

O’Shaughnessy, K. L. and Gilbert, M. E. (2020). Thyroid disrupting chemicals and developmental neurotoxicity—New tools and approaches to evaluate hormone action. Mol Cell Endocrinol 518, 110663. doi:10.1016/j.mce.2019.110663

Parmentier, C., Baze, A., Untrau, M. et al. (2022). Evaluation of human relevance of Nicofluprole-induced rat thyroid disruption. Toxicol Appl Pharmacol 435, 115831. doi:10.1016/j.taap.2021.115831

Paul Friedman, K., Watt, E. D., Hornung, M. W. et al. (2016). Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicol Sci 151, 160‑180. doi:10.1093/toxsci/kfw034

Paul, K. B., Hedge, J. M., Macherla, C. et al. (2013). Cross-species analysis of thyroperoxidase inhibition by xenobi-otics demonstrates conservation of response between pig and rat. Toxicology 312, 97‑107. doi:10.1016/j.tox.2013.08.006

Paul, K. B., Hedge, J. M., Rotroff, D. M. et al. (2014). Development of a thyroperoxidase inhibition assay for high-throughput screening. Chem Res Toxicol 27, 387‑399. doi:10.1021/tx400310w

Peeters, R. P. and Visser, T. J. (2000). Metabolism of Thyroid Hormone. In K. R. Feingold, B. Anawalt, M. R. Black-man et al. (Eds.), Endotext. MDText.com, Inc. http://www.ncbi.nlm.nih.gov/books/NBK285545/

Price, R. J., Burch, R., Chatham, L. R. et al. (2020). An assay for screening xenobiotics for inhibition of rat thyroid gland peroxidase activity. Xenobiotica 50, 318‑322. doi:10.1080/00498254.2019.1629044

Renko, K., Schäche, S., Hoefig, C. S. et al. (2015). An Improved Nonradioactive Screening Method Identifies Genistein and Xanthohumol as Potent Inhibitors of Iodothyronine Deiodinases. Thyroid 25, 962‑968. doi:10.1089/thy.2015.0058

Saito, K., Kaneko, H., Sato, K. et al. (1991). Hepatic UDP-glucuronyltransferase(s) activity toward thyroid hormones in rats : Induction and effects on serum thyroid hormone levels following treatment with various enzyme in-ducers. Toxicol Appl Pharmacol 111, 99‑106. doi:10.1016/0041-008x(91)90138-5

Sauer, U. G., Asiimwe, A., Botham, P. A. et al. (2020). Toward a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part I : Which parameters from human studies are most relevant for toxicological assessments? Crit Rev Toxicol 50, 740‑763. doi:10.1080/10408444.2020.1839380

Schmeisser, S., Miccoli, A., von Bergen, M. et al. (2023). New approach methodologies in human regulatory toxicol-ogy—Not if, but how and when! Environ Int 178, 108082. doi:10.1016/j.envint.2023.108082

Serrano-Nascimento, C. and Nunes, M. T. (2022). Perchlorate, nitrate, and thiocyanate : Environmental relevant NIS-inhibitors pollutants and their impact on thyroid function and human health. Front Endocrinol 13, 995503. doi:10.3389/fendo.2022.995503

Strupp, C., Quesnot, N., Weber-Parmentier, C. et al. (2020). Weight of Evidence and Human Relevance Evaluation of the Benfluralin Mode of Action in Rats (Part II) : Thyroid carcinogenesis. Regul Toxicol Pharmacol 117, 104736. doi:10.1016/j.yrtph.2020.104736

Suddock, J. T., Kent, K. J., Regina, A. C. and Cain, M. D. (2024). Barbiturate Toxicity. In StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK499875

Takayama, S., Aihara, K., Onodera, T. and Akimoto, T. (1986). Antithyroid effects of propylthiouracil and sulfa-monomethoxine in rats and monkeys. Toxicol Appl Pharmacol 82, 191‑199. doi:10.1016/0041-008x(86)90194-8

Tietge, J. E., Degitz, S. J., Haselman, J. T. et al. (2013). Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole. Aquat Toxicol 126, 128‑136. doi:10.1016/j.aquatox.2012.10.013

Waltz, F., Pillette, L. and Ambroise, Y. (2010). A nonradioactive iodide uptake assay for sodium iodide symporter function. Analyt Biochem 396, 91‑95. doi:10.1016/j.ab.2009.08.038

Wang, J., Hallinger, D. R., Murr, A. S. et al. (2019). High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition. Environ Int 126, 377‑386. doi:10.1016/j.envint.2019.02.024

Wang, J., Hallinger, D. R., Murr, A. S. et al. (2018). High-Throughput Screening and Quantitative Chemical Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical Library. Environ Sci Technol 52, 5417‑5426. doi:10.1021/acs.est.7b06145

Wassen, F. W. J. S., Klootwijk, W., Kaptein, E. et al. (2004). Characteristics and thyroid state-dependent regulation of iodothyronine deiodinases in pigs. Endocrinology 145, 4251‑4263. doi:10.1210/en.2004-0356

Weber, A., Birk, B., Giri, V. et al. (2023). Assessment of the Predictivity of DIO1-SK Assay to Investigate DIO1 Inhibi-tion in Human Liver Microsomes. Appl In Vitro Toxicol 9, 44‑59. doi:10.1089/aivt.2022.0016

Weber, A. G. (2021). A New Approach Method to Study Thyroid Hormone Disruption : Optimization and Standardiza-tion of an Assay to Assess the Inhibition of DIO1 Enzyme in Human Liver Microsomes. Appl In Vitro Toxicol 8, 67-82. doi:10.1089/aivt.2022.00

Weber, A. G., Birk, B., Müller, C. et al. (2022). The thyroid hormone converting enzyme human deiodinase 1 is inhib-ited by gold ions from inorganic salts, organic substances, and by small-size nanoparticles. Chem Biol Inter-act 351, 109709. doi:10.1016/j.cbi.2021.109709

Wu, Y., Beland, F. A. and Fang, J.-L. (2016). Effect of triclosan, triclocarban, 2,2’,4,4’-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol in Vitro 32, 310‑319. doi:10.1016/j.tiv.2016.01.014

Zhang, J. H., Chung, T. D. and Oldenburg, K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4, 67‑73. doi:10.1177/108705719900400206