Determining a point of departure for skin sensitization potency and quantitative risk assessment of fragrance ingredients using the GARDskin dose-response assay

Main Article Content

Isabelle Lee , Andy Forreryd, Mihwa Na, Isabella Schember, Maura Lavelle, Robin Gradin, Ulrika Mattson, Henrik Johansson, Shashikiran Donthamsetty, Gregory Ladics, Anne Marie Api
[show affiliations]

Abstract

Potency and quantitative risk assessment are essential for determining safe concentrations for the formulation of potential skin sensitizers into consumer products. Several new approach methodologies (NAMs) for skin sensitization hazard assessment have been developed, validated, and adopted in OECD test guidelines. However, work is ongoing to develop NAMs for predicting skin sensitization potency on a quantitative scale for use as a point of departure (POD) in next-generation risk assessment (NGRA). GARDskin Dose-Response (DR) is an adaptation of the validated GARDskin assay (OECD TG 442E), and the readout of the assay is a quantitative potency prediction similar to the No Expected Sensitization Induction Level (NESIL) value (µg/cm2). The goal of this study was to evaluate the performance of the GARDskin DR assay for potency prediction of fragrance ingredients. One hundred (100) fragrance ingredients from a reference database covering varied structural reactivity domains and potency were tested in GARDskin DR. Materials tested had varied protein-binding reactivity alerts, including Schiff base, Michael addition, SN2, and acylation. Potency categories were predicted with a total accuracy of 37% and an approximate accuracy (exact match or off by 1 category) of 81%. Combining predicted weak and very weak categories increased total accuracy to 53% and approximate accuracy to 98%. The mean prediction error for the NESIL and local lymph node assay (LLNA) EC3 was 3.15- and 3.36-fold, respectively. Based on the results of this study, GARDskin DR is a promising predictor of skin sensitization potency with an applicability domain covering a wide range of fragrance ingredient reaction mechanisms, increasing the confidence in using the assay to conduct NGRA, ultimately reducing the need for animal testing.


Plain language summary
This study focused on testing a new in vitro method, GARDskin Dose-Response (DR), to predict the quantitative potency of fragrance ingredients in causing skin sensitization. This potency is important for setting safe levels of chemicals in consumer products. The GARDskin DR assay, based on an existing skin sensitization test (OECD TG 442E), provides a quantitative measure of potency similar to the No Expected Sensitization Induction Level (NESIL). One hundred (100) fragrance ingredients with different chemical structures and reactivity patterns were tested. The assay accurately distinguished between sensitizers and non-sensitizers for 81% of the materials, and also correctly predicted their approximate potency categories. The results show that GARDskin DR is a promising tool for predicting quantitative potency for skin sensitization risk, helping to reduce animal testing and support safer product development.

Article Details

How to Cite
Lee, I. (2025) “Determining a point of departure for skin sensitization potency and quantitative risk assessment of fragrance ingredients using the GARDskin dose-response assay”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2405131.
Section
Articles
References

Api, A. M., Basketter, D. A., Cadby, P. A. et al. (2008). Dermal sensitization quantitative risk assessment (QRA) for fra-grance ingredients. Regul Toxicol Pharmacol 52, 3-23. doi:10.1016/j.yrtph.2007.10.008

Api, A. M., Basketter, D., Bridges, J. et al. (2020). Updating exposure assessment for skin sensitization quantitative risk assessment for fragrance materials. Regulatory Toxicology and Pharmacology 118. doi:10.1016/j.yrtph.2020.104805

Api, A. M., Basketter, D. and Lalko, J. (2015). Correlation between experimental human and murine skin sensitization induction thresholds. Cutan Ocul Toxicol 34. doi:10.3109/15569527.2014.979425

Api, A. M., Belsito, D., Botelho, D. et al. (2022). RIFM fragrance ingredient safety assessment, 3-methyl-2-butenyl salicy-late, CAS Registry Number 68555-58-8. Food and Chemical Toxicology 159. doi:10.1016/j.fct.2021.112735

Api, A. M., Belsito, D., Botelho, D. et al. (2023). RIFM fragrance ingredient safety assessment, isobutyl salicylate, CAS Registry Number 87-19-4. Food and Chemical Toxicology 179. doi:10.1016/j.fct.2023.113909

Donthamsetty, S., Forreryd, A., Sterchele, P. et al. (2024). GARDskin dose-response assay and its application in con-ducting Quantitative Risk Assessment (QRA) for fragrance materials using a Next Generation Risk Assess-ment (NGRA) framework. Regulatory Toxicology and Pharmacology, 105597. doi:10.1016/j.yrtph.2024.105597

European Chemicals Agency (2024). Guidance on the Application of the CLP Criteria. Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures. https://echa.europa.eu/documents/10162/2324906/clp_en.pdf/58b5dc6d-ac2a-4910-9702-e9e1f5051cc5

Forreryd, A., Johansson, H., Albrekt, A. S. et al. (2014). Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization. BMC Genomics 15. doi:10.1186/1471-2164-15-379

Forreryd, A., Zeller, K. S., Lindberg, T. et al. (2016). From genome-wide arrays to tailor-made biomarker readout – Pro-gress towards routine analysis of skin sensitizing chemicals with GARD. Toxicology in Vitro 37. doi:10.1016/j.tiv.2016.09.013

Gerberick, G. F., Ryan, C. A., Kern, P. S. et al. (2005). Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis 16. doi:10.2310/6620.2005.05040

Gilmour, N., Reynolds, J., Przybylak, K. et al. (2022). Next generation risk assessment for skin allergy: Decision making using new approach methodologies. Regulatory Toxicology and Pharmacology 131. doi:10.1016/j.yrtph.2022.105159

Goodman, L. A. and Kruskal, W. H. (1954). Measures of Association for Cross Classifications*. J Am Stat Assoc 49. doi:10.1080/01621459.1954.10501231

Gradin, R., Forreryd, A., Mattson, U. et al. (2021). Quantitative assessment of sensitizing potency using a dose–response adaptation of GARDskin. Sci Rep 11. doi:10.1038/s41598-021-98247-7

Gradin, R., Tourneix, F., Mattson, U. et al. (2024). In Vitro Prediction of Skin-Sensitizing Potency Using the GARDskin Dose–Response Assay: A Simple Regression Approach. Toxics 12, 626. doi:10.3390/toxics12090626

Griem, P., Goebel, C. and Scheffler, H. (2003). Proposal for a risk assessment methodology for skin sensitization based on sensitization potency data. Regulatory Toxicology and Pharmacology 38. doi:10.1016/j.yrtph.2003.07.001

Irizar, A., Bender, H., Griem, P. et al. (2022). Reference Chemical Potency List (RCPL): A new tool for evaluating the accuracy of skin sensitisation potency measurements by New Approach Methodologies (NAMs). Regulatory Toxicology and Pharmacology 134. doi:10.1016/j.yrtph.2022.105244

Jaworska, J. S., Natsch, A., Ryan, C. et al. (2015). Bayesian integrated testing strategy (ITS) for skin sensitization po-tency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol 89. doi:10.1007/s00204-015-1634-2

Johansson, H., Gradin, R., Johansson, A. et al. (2019). Validation of the GARDTMskin Assay for Assessment of Chemi-cal Skin Sensitizers: Ring Trial Results of Predictive Performance and Reproducibility. Toxicological Sciences 170. doi:10.1093/toxsci/kfz108

Johansson, H., Lindstedt, M., Albrekt, A. S. et al. (2011). A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genomics 12. doi:10.1186/1471-2164-12-399

Lee, I., Na, M., Lavelle, M. et al. (2022). Derivation of the no expected sensitization induction level for dermal quantitative risk assessment of fragrance ingredients using a weight of evidence approach. Food and Chemical Toxicology 159. doi:10.1016/j.fct.2021.112705

Lee, I., Na, M., Lavelle, M. et al. (2024). Predicting points of departure and potency categories for fragrance ingredients by integrating OECD in vitro models. Food and Chemical Toxicology 193, 114998. doi:10.1016/j.fct.2024.114998.

Lee, I., Na, M., O’Brien, D. et al. (2022). Assessment of the skin sensitization potential of fragrance ingredients using the U-SENSTM assay. Toxicology in Vitro 79. doi:10.1016/j.tiv.2021.105298

Na, M., O’Brien, D., Gerberick, G. F. et al. (2022). Benchmarking performance of SENS-IS assay against weight of evidence skin sensitization potency categories. Regulatory Toxicology and Pharmacology 130. doi:10.1016/j.yrtph.2022.105128

Na, M., O’Brien, D., Lavelle, M. et al. (2022). Weight of Evidence Approach for Skin Sensitization Potency Categoriza-tion of Fragrance Ingredients. Dermatitis 33. doi:10.1097/DER.0000000000000854

Na, M., Ritacco, G., O’Brien, D. et al. (2021). Fragrance Skin Sensitization Evaluation and Human Testing: 30-Year Experience. Dermatitis 32. doi:10.1097/DER.0000000000000684

Natsch, A. (2023). Integrated Skin Sensitization Assessment Based on OECD Methods (III): Adding Human Data to the Potency Assessment. ALTEX 40. doi:10.14573/altex.2302081

Natsch, A. and Gerberick, G. F. (2022a). Integrated Skin Sensitization Assessment Based on OECD Methods (I): Deriv-ing a Point of Departure for Risk Assessment. ALTEX 39. doi:10.14573/altex.2201141

Natsch, A. and Gerberick, G. F. (2022b). Integrated Skin Sensitization Assessment Based on OECD Methods (II): Haz-ard and Potency by Combining Kinetic Peptide Reactivity and the “2 out of 3” Defined Approach. ALTEX 39. doi:10.14573/altex.2201142.

OECD (2021). Guideline No. 497: Defined Approaches on Skin Sensitisation. OECD Guidelines for the testing of chemi-cals, section 4

OECD (2022). Test No. 442D: In Vitro Skin Sensitisation. OECD. doi:10.1787/9789264229822-en

OECD (2023a). Guideline No. 497: Defined Approaches on Skin Sensitisation. OECD. doi:10.1787/b92879a4-en

OECD (2023b). Test No. 442C: In Chemico Skin Sensitisation. OECD. doi:10.1787/9789264229709-en

OECD (2023c). Test No. 442E: In Vitro Skin Sensitisation. OECD. doi:10.1787/9789264264359-en

OECD (2024). Test No. 442E: In Vitro Skin Sensitisation. OECD. doi:10.1787/9789264264359-en.

Politano, V. T. and Api, A. M. (2008). The Research Institute for Fragrance Materials’ human repeated insult patch test protocol. Regulatory Toxicology and Pharmacology 52. doi:10.1016/j.yrtph.2007.11.004

Roberts, D. W., Patlewicz, G., Kern, P. S. et al. (2007). Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization. Chem Res Toxicol 20. doi:10.1021/tx700024w

Roberts, D. W., Schultz, T. W. and Api, A. M. (2017). Skin Sensitization QMM for HRIPT NOEL Data: Aldehyde Schiff-Base Domain. Chem Res Toxicol 30. doi:10.1021/acs.chemrestox.7b00050

Ryan, C. A., Chaney, J. G., Gerberick, G. F. et al. (2007). Extrapolating local lymph node assay EC3 values to estimate relative sensitizing potency. Cutan Ocul Toxicol 26. doi:10.1080/15569520701212258

Silva, R. J. and Tamburic, S. (2022). A State-of-the-Art Review on the Alternatives to Animal Testing for the Safety Assessment of Cosmetics. Cosmetics 9. doi:10.3390/cosmetics9050090

Zuang, V., Daskalopoulos, E. P. et al. (2023). Non-animal methods in science and regulation – EURL ECVAM status report 2022.

Most read articles by the same author(s)