Evaluation of a high-throughput in-vitro-to-in-vivo extrapolation (IVIVE) workflow for the prioritization of potential developmental toxicity of chemicals

Main Article Content

Matthew W. Linakis , Rebecca A. Clewell, Jerry Campbell, P. Robinan Gentry, Harvey J. 3rd Clewell
[show affiliations]

Abstract

New approach methodologies (NAMs) are rapidly being developed to help improve the speed of risk assessment and reduce the use of animals. In vitro to in vivo extrapolation (IVIVE) is necessary to translate NAM data to human exposures. While past IVIVE efforts have demonstrated impressive success, several specialized scenarios exist where current IVIVE methods have not been tested, including pregnancy and developmental toxicity. To that end, this investigation proposes a preliminary IVIVE workflow for identification of potential developmental toxicants. Readily available in vitro and in vivo data with developmental toxicity endpoints were aggregated from the US Environmental Protection Agency’s CompTox Chemicals Dashboard. In vitro distribution models (i.e. Armitage model) and both generic (httk) and bespoke physiologically-based pharmacokinetic (PBPK) models were used to estimate exposures from blood concentrations associated with in vitro bioactivity (reverse dosimetry) and NAM-based bioactive doses were compared to in vivo endpoints (LOAELs) where available. Based on literature sources, this method identified chemicals as a high, medium, or low priority for follow-up as a developmental toxicant. Of the 23 chemicals with in vitro developmental toxicity assays, 7 had a NAM-based human oral equivalent dose (hOED) that was lower for developmental assays than for all available assays, indicating that the use of all in vitro data to derive a hOED would generally provide the most conservative approach. Potential data streams and refinements for improvement of the IVIVE workflow are also discussed.


Plain language summary
To reduce or even replace the use of animals in toxicology testing, a number of new approach methodologies (NAMs) are currently being developed. Developmental toxicity (DevTox), or toxicity to the developing embryo/fetus, is still in its early stages of NAM generation. Therefore, this study aimed to use public data to prioritize which chemicals may be more likely to cause DevTox. To do this, data on 23 example chemicals with known DevTox status were used in combination with computer models for estimating chemical concentrations in lab tests (in vitro distribution models) and for estimating chemical concentrations in the human body (pharmacokinetic models) to see if they could be prioritized as a potential DevTox chemical. Additionally, we used those models to estimate a daily dose of a chemical that may lead to DevTox. Ultimately, this study provides an initial step for DevTox NAMs, though a number of areas for improvement are identified.

Article Details

How to Cite
Linakis, M. W. (2025) “Evaluation of a high-throughput in-vitro-to-in-vivo extrapolation (IVIVE) workflow for the prioritization of potential developmental toxicity of chemicals”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2406281.
Section
Articles
References

Armitage, J. M., Wania, F. and Arnot, J. A. (2014). Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ Sci Technol 48, 9770–9779. doi:10.1021/es501955g

Armitage, J. M., Sangion, A., Parmar, R. et al. (2021). Update and Evaluation of a High-Throughput In Vitro Mass Balance Distribution Model: IV-MBM EQP v2.0. Toxics 9, 315. doi:10.3390/toxics9110315

Atoyebi, S. A., Rajoli, R. K. R., Adejuyigbe, E. et al. (2019). Using mechanistic physiologically-based pharmacokinetic models to assess prenatal drug exposure: Thalidomide versus efavirenz as case studies. Eur J Pharm Sci Off J Eur Fed Pharm Sci 140, 105068. doi:10.1016/j.ejps.2019.105068

Bury, D., Alexander-White, C., Clewell, H. J. et al. (2021). New framework for a non-animal approach adequately assures the safety of cosmetic ingredients - A case study on caffeine. Regul Toxicol Pharmacol RTP 123, 104931. doi:10.1016/j.yrtph.2021.104931

Chang, X., Palmer, J., Lumen, A. et al. (2022). Quantitative in vitro to in vivo extrapolation for developmental toxicity potency of valproic acid analogues. Birth Defects Res 114, 1037–1055. doi:10.1002/bdr2.2019

Clewell, H. J., Andersen, M. E., Wills, R. J. et al. (1997). A physiologically based pharmacokinetic model for retinoic acid and its metabolites. J Am Acad Dermatol 36, S77-85. doi:10.1016/s0190-9622(97)70063-x

Comenges, J. M. Z., Joossens, E., Benito, J. V. S. et al. (2017). Theoretical and mathematical foundation of the Virtual Cell Based Assay - A review. Toxicol Vitro Int J Publ Assoc BIBRA 45, 209–221. doi:10.1016/j.tiv.2016.07.013

El-Masri, H., Kleinstreuer, N., Hines, R. N. et al. (2016). Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards. Toxicol Sci Off J Soc Toxicol 152, 230–243. doi:10.1093/toxsci/kfw082

England, L. J., Aagaard, K., Bloch, M. et al. (2017). Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products. Neurosci Biobehav Rev 72, 176–189. doi:10.1016/j.neubiorev.2016.11.013

Fisher, C., Siméon, S., Jamei, M. et al. (2019). VIVD: Virtual in vitro distribution model for the mechanistic prediction of intracellular concentrations of chemicals in in vitro toxicity assays. Toxicol Vitro Int J Publ Assoc BIBRA 58, 42–50. doi:10.1016/j.tiv.2018.12.017

Gentry, P. R., Covington, T. R., Clewell, H. J. et al. (2003a). Application of a physiologically based pharmacokinetic model for reference dose and reference concentration estimation for acetone. J Toxicol Environ Health A 66, 2209–2225. doi:10.1080/713853996

Gentry, P. R., Covington, T. R. and Clewell, H. J. (2003b). Evaluation of the potential impact of pharmacokinetic differences on tissue dosimetry in offspring during pregnancy and lactation. Regul Toxicol Pharmacol RTP 38, 1–16. doi:10.1016/s0273-2300(03)00047-3

Groothuis, F. A., Heringa, M. B., Nicol, B. et al. (2015). Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose extrapolations. Toxicology 332, 30–40. doi:10.1016/j.tox.2013.08.012

Honda, G. S., Pearce, R. G., Pham, L. L. et al. (2019). Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions. PloS One 14, e0217564. doi:10.1371/journal.pone.0217564

Judson, R., Houck, K., Martin, M. et al. (2016). Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space. Toxicol Sci Off J Soc Toxicol 153, 409. doi:10.1093/toxsci/kfw148

Kapraun, D. F., Sfeir, M., Pearce, R. G. et al. (2022). Evaluation of a rapid, generic human gestational dose model. Reprod Toxicol Elmsford N 113, 172–188. doi:10.1016/j.reprotox.2022.09.004

Kramer, N. I., Krismartina, M., Rico-Rico, A. et al. (2012). Quantifying processes determining the free concentration of phenanthrene in Basal cytotoxicity assays. Chem Res Toxicol 25, 436–445. doi:10.1021/tx200479k

Kramer, N.I., Blaauboer, Bas, van den Berg, M. et al. (2010). Measuring, modeling, and increasing the free Concentration of test Chemicals in cell assays. Utrecht University. Available at: https://dspace.library.uu.nl/handle/1874/37545[Accessed March 22, 2022].

Lloyd, K. A. (2013). A scientific review: mechanisms of valproate-mediated teratogenesis. Biosci Horiz Int J Stud Res 6, hzt003. doi:10.1093/biohorizons/hzt003

Lloyd, M. E., Carr, M., McElhatton, P. et al. (1999). The effects of methotrexate on pregnancy, fertility and lactation. QJM Mon J Assoc Physicians 92, 551–563. doi:10.1093/qjmed/92.10.551

Loccisano, A. E., Longnecker, M. P., Campbell, J. L. et al. (2013). Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages. J Toxicol Environ Health A 76, 25–57. doi:10.1080/15287394.2012.722523

Louisse, J., Verwei, M., Woutersen, R. A. et al. (2012). Toward in vitro biomarkers for developmental toxicity and their extrapolation to the in vivo situation. Expert Opin Drug Metab Toxicol. Available at: https://www.tandfonline.com/doi/full/10.1517/17425255.2012.639762 [Accessed June 26, 2024].

Marotta, F. and Tiboni, G. M. (2010). Molecular aspects of azoles-induced teratogenesis. Expert Opin Drug Metab Toxicol 6, 461–482. doi:10.1517/17425251003592111

Nair, A. B. and Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 27–31. doi:10.4103/0976-0105.177703

OECD (2018). Test No. 414: Prenatal Developmental Toxicity Study. Available at: https://www.oecd-ilibrary.org/content/publication/9789264070820-en

O’Flaherty, E. J., Scott, W., Schreiner, C. et al. (1992). A physiologically based kinetic model of rat and mouse gestation: disposition of a weak acid. Toxicol Appl Pharmacol 112, 245–256. doi:10.1016/0041-008x(92)90194-w

Palmer, J. A., Smith, A. M., Egnash, L. A. et al. (2013). Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res B Dev Reprod Toxicol 98, 343–363. doi:10.1002/bdrb.21078

Paul Friedman, K., Gagne, M., Loo, L.-H. et al. (2020). Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol Sci Off J Soc Toxicol 173, 202–225. doi:10.1093/toxsci/kfz201

Pearce, R. G., Setzer, R. W., Strope, C. L. et al. (2017). httk: R Package for High-Throughput Toxicokinetics. J Stat Softw 79, 1–26. doi:10.18637/jss.v079.i04

Piersma, A. H., Janer, G., Wolterink, G. et al. (2008). Quantitative extrapolation of in vitro whole embryo culture embryotoxicity data to developmental toxicity in vivo using the benchmark dose approach. Toxicol Sci Off J Soc Toxicol 101, 91–100. doi:10.1093/toxsci/kfm253

Piersma, A. H., Hessel, E. V. and Staal, Y. C. (2017). Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod Toxicol Elmsford N 72, 53–61. doi:10.1016/j.reprotox.2017.05.014

Proença, S., Escher, B. I., Fischer, F. C. et al. (2021). Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicol Vitro Int J Publ Assoc BIBRA 73, 105133. doi:10.1016/j.tiv.2021.105133

Scialli, A. R., Daston, G., Chen, C. et al. (2018). Rethinking developmental toxicity testing: Evolution or revolution? Birth Defects Res 110, 840–850. doi:10.1002/bdr2.1212

Stadnicka-Michalak, J., Bramaz, N., Schönenberger, R. et al. (2021). Predicting exposure concentrations of chemicals with a wide range of volatility and hydrophobicity in different multi-well plate set-ups. Sci Rep 11, 4680. doi:10.1038/s41598-021-84109-9

Strikwold, M., Spenkelink, B., de Haan, L. H. J. et al. (2017a). Integrating in vitro data and physiologically based kinetic (PBK) modelling to assess the in vivo potential developmental toxicity of a series of phenols. Arch Toxicol 91, 2119–2133. doi:10.1007/s00204-016-1881-x

Strikwold, M., Spenkelink, B., Woutersen, R. A. et al. (2017b). Development of a Combined In Vitro Physiologically Based Kinetic (PBK) and Monte Carlo Modelling Approach to Predict Interindividual Human Variation in Phenol-Induced Developmental Toxicity. Toxicol Sci Off J Soc Toxicol 157, 365–376. doi:10.1093/toxsci/kfx054

US FDA (2005). Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Rockville, MD: Center for Drug Evaluation and Research (CDER).

Valdiviezo, A., Luo, Y.-S., Chen, Z. et al. (2021). Quantitative In Vitro-to-In Vivo Extrapolation for Mixtures: A Case Study of Superfund Priority List Pesticides. Toxicol Sci Off J Soc Toxicol 183, 60–69. doi:10.1093/toxsci/kfab076

Wei, Z., Sakamuru, S., Zhang, L. et al. (2019). Identification and Profiling of Environmental Chemicals That Inhibit the TGFβ/SMAD Signaling Pathway. Chem Res Toxicol 32, 2433–2444. doi:10.1021/acs.chemrestox.9b00228

Williams, A. J., Grulke, C. M., Edwards, J. et al. (2017). The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminformatics 9, 61. doi:10.1186/s13321-017-0247-6

Worth, A. P., Louisse, J., Macko, P. et al. (2017). Virtual Cell Based Assay simulations of intra-mitochondrial concentrations in hepatocytes and cardiomyocytes. Toxicol Vitro Int J Publ Assoc BIBRA 45, 222–232. doi:10.1016/j.tiv.2017.09.009

Most read articles by the same author(s)